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Abstract—In this paper, we study the resource allocation and
trajectory design for energy-efficient secure unmanned aerial
vehicle (UAV) communication systems where a UAV base station
serves multiple legitimate ground users in the existence of a
potential eavesdropper. We aim to maximize the energy efficiency
of the UAV by jointly optimizing its transmit power, user schedul-
ing, trajectory, and velocity. The design is formulated as a non-
convex optimization problem taking into account the maximum
tolerable signal-to-noise ratio (SNR) leakage, the minimum data
rate requirement of each user, and the location uncertainty of
the eavesdropper. An iterative algorithm is proposed to obtain an
efficient suboptimal solution. Simulation results demonstrate that
the proposed algorithm can achieve a significant improvement
of the system energy efficiency while satisfying communication
security constraint, compared to some simple scheme adopting
straight flight trajectory with a constant speed.

I. INTRODUCTION

Due to the high flexibility and mobility of unmanned aerial
vehicles (UAVs) offered to wireless communication systems,
several interesting applications of UAV have been proposed
[1], such as mobile base stations [2], mobile relays [3], and
mobile data collections [4], etc. In practice, the total energy
budget for maintaining stable flight and communication is
limited by the onboard battery capacity. Hence, energy effi-
ciency has become an important figure of merit for UAV-based
communications. For example, the authors in [4] studied the
energy efficiency maximization for wireless sensor networks
via jointly optimizing the weak up schedule of sensor nodes
and UAV’s trajectory. Yet, the flight power consumption of
the system was not considered which contributes a significant
portion of total power consumption in the systems. Besides, a
UAV trajectory design was developed to optimize the system
energy efficiency in [5]. However, the investigation of vari-
able speed as well as transmit power allocation strategy for
communications were not conducted which plays an important
role for the design of energy-efficient UAV systems. In [6],
the authors compared the delivery ratio and average delay
of UAV-based wireless communication systems with constant
speed, variable speed, and adaptive speed of the UAV, for
reducing the system energy consumption. Yet, the study was
limited to the case of multiple sensors deployed in a specific
environment and their results cannot be applied to the general
case with different system topologies. Furthermore, although
orthogonal frequency division multiple access (OFDMA) has
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been commonly adopted in conventional communication sys-
tems, an energy-efficient trajectory and resource allocation
design enabling secure UAV-OFDMA wireless communication
systems has not been reported in the literature yet.

Meanwhile, since the line-of-sight (LoS) paths dominate
the air-to-ground communication channels, UAV-based com-
munications are susceptible to potential eavesdropping. Thus,
there is an emerging need for designing secure UAV-based
communication. For instance, the authors in [7] proposed a
joint power allocation and trajectory design to maximize the
secrecy rate in both uplink and downlink systems. In [8],
secure energy efficiency maximization for UAV-based relaying
systems was studied. However, both works only considered
the case of single-user and the proposed designs in [7], [8]
are not applicable to the case of multiple users. Besides, the
availability of the eavesdropper location was assumed in [7],
[8], which is generally over optimistic. Although [9] studied
the resource allocation design for secure UAV systems by tak-
ing into account the imperfect channel state information (CSI)
of an eavesdropper, the energy efficiency of such systems is
still an unknown.

In this paper, we tackle the aforementioned problems via
optimizing the trajectory and resource allocation strategy for
energy-efficient secure UAV-OFDMA systems with multiple
legitimate users and the existence of a potential eavesdrop-
per. Particularly, the malicious eavesdropper is located at an
uncertain region between the UAV’s initial location and its
destination. By exploiting the high flexibility of the UAV, one
can either reduce its transmit power or fly away from the un-
certain region centered at the eavesdropper to guarantee secure
communications for legitimate users. We aim to propose a
joint design of resource allocation and trajectory to maximize
the system energy efficiency while considering the maximum
tolerable signal leakage of the eavesdropper and the minimum
individual user data rate requirement. An iterative algorithm
is proposed to achieve a suboptimal solution of the design
problem. Simulation results unveil that the performance of
our proposed algorithm offers a considerable system energy
efficiency compared to a baseline scheme adopting a straight
flight trajectory and a constant speed.

Notation: R
M×1 is the space of a M-dimensional real-

valued vector. ‖ · ‖ denotes the vector norm. In represents
an n× n identity matrix. [x]+ = max{0, x}. [·]T denotes the
transpose operation. For a vector a, ‖a‖ represents its norm.

II. SYSTEM MODEL

A UAV-based OFDMA communication system is consid-
ered which consists of a UAV serving as a transmitter, K
legitimate users, and a potential eavesdropper, as shown in Fig.
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Fig. 1. An UAV-OFDMA system with multiple users and a potential
eavesdropper with location uncertainty.

1. All the transmitter and receivers are single-antenna devices.
We assume that the total bandwidth and the time duration of
the system are divided equally into NF subcarriers and N time
slots, respectively. In this system, we assume that the UAV
flies at a constant altitude H and all the ground nodes remain
steady for N time slots. The distance between the UAV and
user k ∈ {1, . . . ,K} at time slot n ∈ {1, . . . , N} is given by

dk[n] =
√
‖tk − t[n]‖2 +H2, (1)

where tk = [xk, yk]
T ∈ R

2×1 represents the location of the
ground user k, and t[n] = [x[n], y[n]]T ∈ R

2×1 represents the
horizontal location of the UAV at time slot n. Similarly, the
distance between the UAV and the potential eavesdropper at
time slot n can be modeled by

dE[n] =

√
‖t̂E +∆tE − t[n]‖2 +H2, (2)

where t̂E = [x̂E, ŷE]
T ∈ R

2×1 denotes the estimated location
of the eavesdropper and ∆tE = [∆xE,∆yE]

T ∈ R
2×1 denotes

the estimation error of t̂E. The estimation error satisfies

‖∆tE‖
2 ≤ Q2

E, (3)

where QE is the radius of the uncertain circular region
surrounding the estimated location of the eavesdropper.

To facilitate the design of energy-efficient resource alloca-
tion, the system power consumption is defined as follows. The
flight power consumption for rotary-wing UAV at time slot n
with respect to (w.r.t.) velocity v[n] = [vx[n], vy[n]]

T ∈ R
2×1

is given by [10]:

Pflight[n] = Po

(
1 +

3‖v[n]‖2

Ω2r2

)
+

Piv0

‖v[n]‖

+
1

2
d0ρsA‖v[n]‖

3, (4)

where the notations and the physical meanings of the variables
in (4) are summarized in Table I. The total power consump-
tion at time slot n in Joules-per-second (J/sec) includes the
communication power and flight power consumptions which
can be modeled as

Ptotal[n] =

K∑

k=1

NF∑

i=1

αi
k[n]p

i
k[n] + PC + Pflight[n], (5)

TABLE I
NOTATIONS AND PHYSICAL MEANING FOR FLIGHT POWER CONSUMPTION.

Notations Physical meaning
Ω Blade angular velocity in radians/second
r Rotor radius in meter

ρ Air density in kg/m3

s Rotor solidity in m3

A Rotor disc area in m2

Po Blade profile power in hovering status in W
Pi Induced power in hovering status in W
v0 Mean rotor induced velocity in forwarding flight in m/s
d0 Fuselage drag ratio

where pik[n] denote the power allocation of user k on sub-
carrier i ∈ {1, . . . , NF} at time slot n and PC denotes
the constant circuit power consumption. Variable αi

k[n] = 1
represents that subcarrier i is assigned to user k at time slot
n. Otherwise, αi

k[n] = 0.

We assume that both channels from the UAV to users and
from the UAV to the eavesdropper are dominated by LoS links.
Thus, the channel power gain between the UAV and user k
in time slot n can be characterized by the commonly adopted
free-space path loss model [2], [10], [11] which is given by

hk[n] =
β0

d2k[n]
=

β0

‖tk − t[n]‖2 +H2
, (6)

where β0 represents the channel power gain at a reference
distance of 1 meter. The data rate for user k on subcarrier i
at time slot n is given by

Ri
k[n] =Wαi

k[n] log2

(
1 +

pik[n]hk[n]

WN0

)
, (7)

where W represents the subcarrier bandwidth and N0 is the
power spectral density of the additive white Gaussian noise
(AWGN). On the other hand, the signal-to-noise ratio (SNR)
leakage between the UAV and the potential eavesdropper E
on subcarrier i for user k at time slot n is given by

SNRi
E,k[n] =

pik[n]β0
WN0d

2
E[n]

. (8)

Thus, the system energy efficiency in bits-per-Joule (bits/J) is
defined as

EE(A,P , T ,V) =
1
N

∑K

k=1

∑NF

i=1

∑N

n=1R
i
k[n]

1
N

∑N

n=1 Ptotal[n]
, (9)

where the user scheduling variable set as A =
{αi

k[n], ∀k, i, n}, the transmit power variable set as
P = {pik[n], ∀k, i, n}, the UAV’s trajectory variable set
as T = {t[n], ∀n}, and the velocity variable set as
V = {v[n], ∀n}.

III. PROBLEM FORMULATION

The energy-efficient design of user scheduling, power allo-
cation, UAV’s trajectory, and flight velocity is formulated as



the following optimization problem:

maximize
A,P,T ,V

EE(A,P , T ,V) (10)

s.t. C1 : αi
k[n] ∈ {0, 1}, ∀k, i, n, C2 :

K∑

k=1

αi
k[n] ≤ 1, ∀i, n,

C3 : pik[n] ≥ 0, ∀k, i, n,

C4 :
K∑

k=1

NF∑

i=1

αi
k[n]p

i
k[n] ≤ Ppeak, ∀n,

C5 : Ptotal[n] ≤ Pmax, ∀n,

C6 :
1

N

NF∑

i=1

N∑

n=1

Ri
k[n] ≥ Rmin, ∀k,

C7 : max
‖∆tE‖≤QE

SNRi
E,k[n] ≤ Γth, ∀k, i, n,

C8 : t[0] = t0, C9 : t[N ] = tF,

C10 : t[n+ 1] = t[n] + v[n]τ, n = 1, ..., N − 1,

C11 : ‖v[n]‖≤Vmax,∀n,

C12 : ‖v[n+ 1]− v[n]‖ ≤ Vacc, n = 1, ..., N − 1.

Note that C1 and C2 are user scheduling constraints such that
each subcarrier at each time slot can be assigned to at most
one user1 to avoid multiple access interference. C3 is the non-
negative power constraint. Ppeak in C4 is the peak transmit
power at each time slot. Pmax in C5 is the maximum limitation
for total power consumption at each time slot. Rmin in C6
denotes the minimum required individual user data rate. Γth in
C7 is the maximum tolerable SNR threshold for the potential
eavesdropper in eavesdropping the information of user k on
subcarrier i. Note that constraint C7 takes into account the
location uncertainty of the potential eavesdropper. C8 and
C9 indicate the required UAV’s initial and final locations,
respectively. C10 draws the connections between the velocity
of the UAV and its displacement at two consecutive time slots.
C11 is the UAV’s the maximum flight velocity constraint.
Vacc in constraint C12 is the maximum allowable acceleration
in a given time slot. Note that the flight velocity of a UAV
can be expressed as a function of its trajectory for a given
constant time slot duration τ . Yet, expressing the flight power
consumption as a function of trajectory would complicate the
resource allocation design. Therefore, we introduce the flight
velocity variable v[n] to simplify the problem formulation.

Remark 1. In the considered system, secure communication
can be guaranteed when Rmin > log2(1+Γth) holds. In partic-
ular, the parameters Rmin and Γth can be chosen by the system
operator to provide flexibility in designing resource allocation
algorithms for different applications requiring different levels
of communication security and the adopted formulation has
been widely adopted, e.g. [16].

IV. PROBLEM SOLUTION

The formulated problem in (10) is non-convex, which
generally cannot be solved efficiently by conventional con-
vex optimization methods. To facilitate a low computational
complexity design of resource allocation and trajectory, we
divide the problem (10) into two sub-problems and solve them

1The extension to non-orthogonal multiple access [12], [13] and massive
multiple-input multiple-output [14], [15] will be considered in our future work.

iteratively to achieve a sub-optimal solution using the alternat-
ing optimization approach [17]. In particular, sub-problem 1
aims to optimize the user scheduling A and the transmit power
allocation P for a given feasible UAV’s trajectory T and flight
velocity V . On the other hand, sub-problem 2 aims to optimize
the UAV’s trajectory T and flight velocity V under a given
feasible user scheduling A and transmit power allocation P .
Now, we first study the solution of sub-problem 1.

A. Sub-problem 1: Optimizing User Scheduling and Transmit
Power Allocation

For a given UAV’s trajectory T = {t[n], ∀n} and flight
velocity V = {v[n], ∀n}, we can express sub-problem 1 as
the following optimization problem:

maximize
A,P

1
N

∑K

k=1

∑NF

i=1

∑N

n=1R
i
k[n]

1
N

∑N

n=1 Ptotal[n]
(11)

s.t. C1− C7.

In order to solve sub-problem 1 in (11), we introduce
an auxiliary variable p̃ik[n] = αi

k[n]p
i
k[n], ∀k, i, n, and the

transformed problem is given by

maximize
A,P̃

1
N

∑K

k=1

∑NF

i=1

∑N

n=1 R̃
i
k[n]

1
N

∑N

n=1 P̃total[n]
(12)

s.t. C1,C2,

C̃3: p̃ik[n] ≥ 0, ∀k, i, n, C̃4:

K∑

k=1

NF∑

i=1

p̃ik[n] ≤ Ppeak, ∀n,

C̃5: P̃total[n]≤Pmax,∀n, C̃6:
1

N

NF∑

i=1

N∑

n=1

R̃i
k[n]≥Rmin,∀k,

C̃7: p̃ik[n] ≤ αi
k[n]

WN0Γth

β0
min

‖∆tE‖≤QE

d2E[n], ∀k, i, n,

where P̃ = {p̃ik[n], ∀k, i, n},

R̃i
k[n] =Wαi

k[n] log2

(
1+

p̃ik[n]hk[n]

WN0α
i
k[n]

)
,∀k, i, n, and(13)

P̃total[n]=
K∑

k=1

NF∑

i=1

p̃ik[n] + PC + Pflight[n], ∀n. (14)

Note that since the trajectory of the UAV is given for
sub-problem 1, the minimum distance between the UAV
and the potential eavesdropper is known. In other words,

min
‖∆tE‖≤QE

dE
2[n] is a constant for a given uncertain area of

the eavesdropper. The main obstacle in solving (12) arises
from the binary user scheduling constraint C1 and the objec-
tive function in fractional form. First, we handle the binary
constraint. In particular, we follow the approach as in [18],
and relax the subcarrier variable αi

k[n] such that it is a real
value between 0 and 1, i.e.,

0 ≤ αi
k[n] ≤ 1, ∀k, i, n. (15)

Meanwhile, the relaxed version of αi
k[n] serves as a time-

sharing factor for user k in utilizing subcarrier i at time slot
n. Note that the relaxation is asymptotically tight even if the
number of subcarriers is small, e.g. 8 subcarriers [18].



Then, we tackle the fractional-form objective function. Let
q∗1 be the maximum system energy efficiency of sub-problem
1 which is given by

q∗1 =
R(A∗, P̃∗)

P (P̃∗)
= maximize

A,P̃∈F

R(A, P̃)

P (P̃)
, (16)

where A∗ and P̃∗ are the sets of the optimal user scheduling
and power allocation, respectively. F is the feasible solution
set spanned by constraints C1–C7. Now, by applying the
fractional programming theory [18], the objective function of
(12) from a fractional form can be equivalent transformed into
a subtractive form. More importantly, the optimal value of q∗1
can be achieved if and only if

maximize
A,P̃∈F

R(A, P̃)− q∗1P (P̃) (17)

= R(A∗, P̃∗)− q∗1P (P̃
∗) = 0,

for R(A, P̃) ≥ 0 and P (P̃) > 0.

Therefore, we can apply the iterative Dinkelbach method
[19] to solve (12). In particular, for the gAlgo1-th iteration for

sub-problem 1 and a given intermediate value q
(gAlgo1)
1 , we

need to solve a convex optimization as follows:

{A, P̃} = arg maximize
A,P̃

1

N

K∑

k=1

NF∑

i=1

N∑

n=1

R̃i
k[n]

−q
(gAlgo1)
1

1

N

N∑

n=1

P̃total[n] (18)

s.t. C2 , C̃3− C̃7,

C̃1 : 0 ≤ αi
k[n] ≤ 1, ∀k, i, n,

where A, P̃ is the optimal solution of (18) for a given q
(gAlgo1)
1 .

Then, the intermediate energy efficiency value q
(gAlgo1)
1 should

be updated as q
(gAlgo1)
1 = R(A,P̃)

P (P̃)
for each iteration of the

Dinkelbach method until convergence2.

In the following, we discuss the solution development for
solving (18). Since problem (18) is jointly convex w.r.t. user
scheduling A as well as transmit power allocation P̃ . Also,
it satisfies the Slater’s constraint qualification. Therefore, the
strong duality holds and the duality gap is zero. Hence, solving
the dual problem is equivalent to solving the primal problem
of sub-problem 1 in (18). Although we can directly solve (18)
via numerical convex program solvers, e.g. CVX, it does not
shed light on important system design insights such as the
impact of optimization variables on the system performance.
To this end, we focus on the resource allocation design for
solving the dual problem. Now, we first derive the Lagrangian
function of (18):

2Note that the convergence of the Dinkelbach method is guaranteed if the
problem in (18) can be solved optimally [19].

L(η,ϕ, θ,ω, ε,A, P̃) (19)

=

K∑

k=1

(1+ωk)

N

NF∑

i=1

N∑

n=1

R̃i
k[n]−

(q1
N

+ θn
)
P̃total[n]+ θnPmax

−

NF∑

i=1

N∑

n=1

ηi,n

( K∑

k=1

αi
k[n]−1

)
−

N∑

n=1

ϕn

( K∑

k=1

NF∑

i=1

p̃ik[n]−Ppeak

)

−

K∑

k=1

NF∑

i=1

N∑

n=1

εk,i,n

(
p̃ik[n]−α

i
k[n]

WN0Γth

β0
min

‖∆tE‖≤QE

d2E[n]

)

−

K∑

k=1

ωkRmin,

where η = {ηi,n, ∀i, n}, ϕ = {ϕn, ∀n}, θ = {θn, ∀n},
ω = {ωk, ∀k}, and ε = {εk,i,n, ∀k, i, n} denote the La-

grange multipliers for constraints C2, C̃4, C̃5, C̃6, and C̃7,

respectively. Constraints C1 and C̃3 will be considered in
the Karush-Kuhn-Tucker (KKT) conditions when deriving the
optimal solution in the following. Then, the dual problem of
(18) is given by

D = minimize
η,ϕ,θ,ω,ε≥0

maximize
A,P̃

L(η,ϕ, θ,ω, ε,A, P̃). (20)

Subsequently, the dual problem is solved iteratively via dual
decomposition. In particular, the dual problem is decomposed
into two nested layers: Layer 1, maximizing the Lagrangian
over user scheduling A and power allocation P̃ in (20),
given the Lagrange multipliers η, ϕ, θ, ω, and ε; Layer 2,
minimizing the Lagrangian function over η, ϕ, θ, ω, and ε in
(20), for a given user scheduling A and power allocation P̃ .

Solution of Layer 1 (Power Allocation and User Schedul-

ing): We assume that αi
k

∗
[n] and p̃ik

∗
[n] denote the optimal

solutions of sub-problem 1. Then, the optimal power allocation
for user k on subcarrier i at time slot n is given by

p̃ik
∗
[n] = αi

k[n]p
i
k

∗
[n] = αi

k[n]

[
1 + ωk

Θk,i,n ln2
−

1

hk[n]

]+
,∀k,i,n,(21)

where Θk,i,n = q1 + N(εn,k,i + θn + ϕn). The optimal
power allocation in (21) is the classic multiuser water-filling
solution. The water-levels for different users, i.e., 1+ωk

Θk,i,n ln 2 ,

are generally different on different subcarrier i and time slot n.
In particular, on one hand, the Lagrange multiplier ωk forces
the UAV to increase the transmit power to satisfy the minimum
required individual user data rate Rmin of the system. On the
other hand, the Lagrange multiplier εn,k,i adjusts the water-
level such that the maximum SNR leakage constraint in C7 can
be satisfied. Besides, to find the optimal subcarrier allocation,
we take the derivative of the Lagrangian function w.r.t. αi

k[n]
which yields

M i
k[n]=

(1+ωk)

N

[
log2(1+p

i
k[n]hk[n])−

pik[n]hk[n]

(1+pik[n]hk[n]) ln 2

]

−ηi,n + εk,i,n
WN0d

2
E[n]Γth

β0
. (22)

In fact, M i
k[n] ≥ 0 denotes the marginal benefit of the system

performance improvement when subcarrier i is allocated to
user k at time slot n. As (22) is independent of αi

k[n], due to



Algorithm 1 Proposed Algorithm for Solving Sub-problem 1

1: Initialize the maximum number of iterations GAlgo1
max

2: Set the energy efficiency q
(0)
1 = 0 and the iteration index gAlgo1 = 0

3: repeat {Main Loop}

4: Solve (18) for a given q
(gAlgo1)
1 and obtain resource allocation

{A(gAlgo1), P̃
(gAlgo1)

}

5: if R(A(gAlgo1), P̃
(gAlgo1)

) − q
(gAlgo1)
1 P (P̃

(gAlgo1)
) < ǫ then

6: Convergence = true

7: return {αi
k
[n], pi

k
[n]} = {A(gAlgo1), P̃

(gAlgo1)
} and

8: q1 = R(A(gAlgo1),P̃
(gAlgo1)

)

P (P̃
(gAlgo1)

)
9: else

10: Set gAlgo1 = gAlgo1 + 1

11: q
(gAlgo1)
1 = R(A(gAlgo1),P̃

(gAlgo1)
)

P (P̃
(gAlgo1)

)
12: Convergence = false
13: end if
14: until Convergence = true or gAlgo1 = GAlgo1

max

constraint C2, the optimal user scheduling for each subcarrier
i and time slot n is given by

αi
k

∗
[n] =

{
1, k∗ = max

k
(M i

k[n]),

0, otherwise,
∀i, n. (23)

Solution of Layer 2 (Master Problem): To solve Layer 2
master minimization problem in (20), the gradient method is
adopted and the Lagrange multipliers can be updated by

ϕn(g+1) =

[
ϕn(g)−λ1(g)×

(
Ppeak−

K∑

k=1

NF∑

i=1

p̃ik[n]

)]+
,∀n,(24)

θn(g+1) =

[
θn(g)− λ2(g)×

(
Pmax − P̃total[n]

)]+
, ∀n, (25)

ωk(g+1) =

[
ωk(g)+λ3(g)×

(
Rmin−

1

N

NF∑

i=1

N∑

n=1

R̃i
k[n]

)]+
,∀k,(26)

εk,i,n(g+1)=

[
εk,i,n(g) + λ4(g)×

(
p̃ik[n]

− αi
k[n]

WN0Γth

β0
min

‖∆tE‖≤QE

d2E[n]

)]+
,∀k,i,n,(27)

where g ≥ 0 is the iteration index for sub-problem 1 and
λu(g), u ∈ {1, . . . , 4} are step sizes satisfying the infinite
travel condition [20]. Then, the updated Lagrangian multipliers
in (24)–(27) are used for solving the Layer 1 sub-problem in
(20) via updating the resource allocation policies [20]. Since
the user scheduling and power allocation variables are finite
and non-decreasing over iterations for solving the problem, the
convergence of the proposed algorithm to the optimal solution
of sub-problem 1 is guaranteed. The proposed Algorithm for
sub-problem 1 is summarized in Algorithm 1.

B. Sub-problem 2: Optimizing UAV’s Trajectory and Flight
Velocity

For given user scheduling A = {αi
k[n], ∀k, i, n} and trans-

mit power allocation P = {pik[n], ∀k, i, n}, we can express
sub-problem 2 as

maximize
T ,V

1
N

∑K

k=1

∑NF

i=1

∑N

n=1R
i
k[n]

1
N

∑N

n=1 Ptotal[n]
(28)

s.t. C5− C12.

The problem in (28) is non-convex and non-convexity arises
from the objective function and constraint C7. To facilitate the
derivation of solution, we introduce a slack variables uk[n] to
transform the problem into the following equivalent form:

maximize
T ,V,U

1
N

∑K

k=1

∑NF

i=1

∑N

n=1 R̄
i
k[n]

1
N

∑N

n=1 Ptotal[n]
(29)

s.t. C5 , C8− C12,

C6 :
1

N

NF∑

i=1

N∑

n=1

R̄i
k[n] ≥ Rmin, ∀k,

C7 : minimize
∆tE

‖t̂E+∆tE−t[n]‖2+H2≥
γik[n]

Γth
,∀i,k,n,

C13 : ‖tk − t[n]‖2 +H2 ≤ uk[n], ∀k, n,

where U = {uk[n], ∀k, n},

R̄i
k[n] = Wαi

k[n] log2

(
1 +

γik[n]

uk[n]

)
, and (30)

γik[n] =
pik[n]β0
WN0

. (31)

It can be proved that (28) and (29) are equivalent as the
inequality constraint C13 is active at optimal solution of (29).
Then, we handle the location uncertainty of the eavesdropper
by rewriting constraint C7 as:

max
‖∆tE‖≤QE

− ‖t̂E +∆tE − t[n]‖2 −H2 +
γik[n]

Γth
≤ 0. (32)

Note that the location uncertainty introduces an infinite num-
ber of constraints in C7. To circumvent the difficulty, we apply
the S-Procedure [9] and transform C7 into a finite number of
linear matrix inequalities (LMIs) constraints. In particular, if
there exists a variable ψ[n] ≥ 0 such that

Φ(t[n], ψ[n]) � 0, ∀n, (33)

holds, where

Φ(t[n], ψ[n]) =

[
(ψ[n] + 1)I2 t[n]− t̂E

(t[n]− t̂E)
T −ψ[n]Q2

E + c[n]

]
(34)

and

c[n] = ‖t[n]‖2 − 2‖t̂TEt[n]‖+ ‖t̂E‖
2 +H2 −

γik[n]

Γth
, (35)

then the implication (33)⇒(32) holds.
Note that c[n] in constraint (33) is non-convex. To design

a tractable resource allocation, the successive convex approx-
imation (SCA) is applied [5], [7], [21]. In particular, for a

given feasible solution t
(jAlgo2)[n] in the jAlgo2-th main loop

iteration for sub-problem 2, since c[n] ≥ c̃(j
Algo2)[n], we

obtain a lower bound of equation (33), which is given by

Φ̃(jAlgo2)(t[n], ψ[n]) � 0, ∀n, (36)

where

Φ̃(jAlgo2)(t[n], ψ[n])

=

[
(ψ[n] + 1)I2 t[n]− t̂E

(t[n]− t̂E)
T −ψ[n]Q2

E + c̃(j
Algo2)[n]

]
, (37)

and

c̃(j
Algo2)[n] = ‖t̂E‖

2 + 2tT[n]t(j
Algo2)[n]− t

(jAlgo2)[n]

− 2t̂TEt[n] +H2 −
γik[n]

Γth
. (38)



Algorithm 2 Proposed Algorithm for Solving Sub-problem 2

1: Initialize the maximum number of iterations JAlgo2
max , JAlgo2

inner,max

2: Set the energy efficiency q
(0)
2 = 0 and the iteration index jAlgo2 = 0

3: repeat {Main Loop}

4: Set the inner loop iteration index jAlgo2
inner = 0

5: repeat {Inner Loop}

6: Solve the problem in (47) for a given q
j
Algo2
inner

2 and obtain trajectory

and velocity {T (j
Algo2
inner ), U(j

Algo2
inner ), V(j

Algo2
inner ), Υ(j

Algo2
inner )}

7: if R̄(U (j
Algo2
inner

)) − q
(j

Algo2
inner

)

2 PUB(V(j
Algo2
inner

),Υ(j
Algo2
inner

)) < ǫ
then

8: Inner Loop Convergence = true

9: return {T (j
Algo2
inner

), U(j
Algo2
inner

), V(j
Algo2
inner

)} and q
(j

Algo2
inner

)

2
10: else
11: Set jAlgo2

inner = jAlgo2
inner + 1 and

12: q
(j

Algo2
inner

)

2 =
R̄(U

(j
Algo2
inner

)
)

PUB(V
(j

Algo2
inner

)
,Υ

(j
Algo2
inner

)
)

13: Inner Loop Convergence = false
14: end if
15: until Inner Loop Convergence = true or jAlgo2

inner = JAlgo2
inner,max

16: if q
(jAlgo2)
2 − q

(jAlgo2
−1)

2 < ǫ then
17: Main Loop Convergence = true

18: return {t[n],v[n]} = {T (jAlgo2), U(jAlgo2), V(jAlgo2)} and

q2 = q
(jAlgo2)
2

19: else

20: Set jAlgo2 = jAlgo2 + 1, {T (jAlgo2), U(jAlgo2), V(jAlgo2)} =

{T (j
Algo2
inner

), U(j
Algo2
inner

) , V(j
Algo2
inner

)} and q
(jAlgo2)
2 = q

(j
Algo2
inner

)

2
21: Main Loop Convergence = false
22: end if
23: until Main Loop Convergence = true or jAlgo2 = JAlgo2

max

By replacing constraint C7 in (29) with (36) results in
a smaller feasible solution set and leads to a performance
lower bound of the problem in (29) by solving the resulting
optimization problem:

maximize
T ,V,U ,Ψ

1
N

∑K

k=1

∑NF

i=1

∑N

n=1 R̄
i
k[n]

1
N

∑N

n=1 Ptotal[n]
(39)

s.t. C5 , C6,C8− C13,

C7 : Φ̃(jAlgo2)(t[n], ψ[n]) � 0, ∀n, C14 : ψ[n] ≥ 0, ∀n,

where Ψ = {ψ[n], ∀n}. Next, we handle the objective
function. In particular, both denominator and the numerator
are non-convex functions. Hence, we aim to develop a lower
bound of the objective function. First, we consider the nomi-
nator of the objective function. Based on the SCA, we obtain
the lower bound of the data rate as

R̄i
k[n] ≥ R̄i

k,lb

(jAlgo2)
[n] =Wαi

k[n] log2

(
1 +

γik[n]

u
(jAlgo2)
k [n]

)

−
Wαi

k[n]γ
i
k[n](uk[n]− u

(jAlgo2)
k [n])

u
(jAlgo2)
k [n](u

(jAlgo2)
k [n] + γik[n]) ln 2

, ∀k, i, n, (40)

where u
(jAlgo2)
k [n] denotes the feasible solution for uk[n] in

the jAlgo2-th main loop iteration.
Then, we handle the non-convex power consumption, i.e.,

the denominator of the objective function, by rewriting it in
its equivalent form:

P
Eq
total[n] =

K∑

k=1

NF∑

i=1

αi
k[n]p

i
k[n] + PC + P̃flight[n], (41)

where

P̃flight[n] = Po

(
1 +

3‖v[n]‖2

Ω2r2

)
+
Piv0

υ[n]
+

1

2
d0ρsA‖v[n]‖

3

Algorithm 3 Overall Algorithm for Solving Problem (10)

1: Initialize the maximum number of iterations LAlgo3
max and the maximum

tolerance ǫ → 0
2: Set the iteration index lAlgo3 = 0 and the initial trajectory {t[n],v[n]}
3: repeat
4: Using Algorithm 1 obtain the optimal result q1, {αi

k
[n], pi

k
[n]}

5: Using Algorithm 2 obtain the sub-optimal result q2, {t[n],v[n]}

6: if q
(lAlgo3)
2 − q

(lAlgo3
−1)

2 < ǫ then
7: Convergence = true
8: return αi

k

∗
[n] = αi

k
[n], pi

k

∗
[n] = pi

k
[n], t∗[n] = t[n],v∗[n] =

v[n], and q∗ = q
(lAlgo3)
2

9: else
10: Set lAlgo3 = lAlgo3 + 1
11: Convergence = false
12: end if
13: until Convergence = true or lAlgo3 = LAlgo3

max

is a convex function and variable υ[n] is a new slack opti-
mization variable. In particular, υ[n] satisfies the following
two constraints:

C15 : ‖v[n]‖2 ≥ υ2[n], ∀n, (42)

C16 : υ[n] ≥ 0, ∀n. (43)

Note that the non-convex constraint C15 is active at the
optimal solution and hence the power consumption models
in (5) and (41) are equivalent. Then, by replacing the power
consumption model in (5) with its equivalent form, the non-
convexity of the denominator of the objective function is
captured by constraint C15 which is easier to handle.

Since ‖v[n]‖2 in C15 is convex and differentiable w.r.t.
v[n], we apply the SCA to obtain its lower bound and
improve the bound via an iterative algorithm. Specifically,
for any feasible solution in the jAlgo2-th main loop iteration

v
(jAlgo2)[n], we have

‖v[n]‖2 ≥ ‖v(jAlgo2)[n]‖2

+ 2[v(jAlgo2)[n]]T(v[n] − v
(jAlgo2)[n]). (44)

Now, we obtain a lower bound of the objective function via
replacing the denominator and the numerator of the original
objective function in (39) by its equivalent form in (41) and
the lower bound of average total data rate in (40), respectively.
Therefore, we can obtain a lower bound performance of
the problem in (39) via solving the following optimization
problem:

maximize
T ,V,U ,Ψ,Υ

1
N

∑K

k=1

∑NF

i=1

∑N

n=1 R̄
i
k,lb[n]

1
N

∑N

n=1 P
Eq
total[n]

(45)

s.t. C7 , C8− C14,C16,

C5 : PEq
total[n] ≤ Pmax, ∀n,

C6 :
1

N

NF∑

i=1

N∑

n=1

R̄i
k,lb[n] ≥ Rmin, ∀k,

C15 : ‖v(jAlgo2)[n]‖2+2[v(jAlgo2)[n]]T(v[n]−v
(jAlgo2)[n])

≥υ2[n],∀n,

where Υ = {υ[n], ∀n}. Now, similar to solving sub-problem
1, the optimal value q∗2 of (45) can be achieved if and only if

maximize
T ,U ,V,Ψ,Υ∈F̄

R̄(U)− q∗2P
Eq(V ,Υ) (46)

= R̄(U∗)− q∗2P
Eq(V∗,Υ∗) = 0,



TABLE II
SIMULATION VALUE SETTING. [5], [10]

Notations Simulation value Notations Simulation value
Ω 400 radians/second t1 [700; 900] m
r 0.5 meter t2 [900; 900] m

ρ 1.225 kg/m3
t3 [900; 700] m

s 0.05 t̂E [400; 400] m

A 0.79 m2
t0 [0; 0] m

Po 580.65 W tF [1000; 1000] m
Pi 790.67 W B 1 MHz
v0 7.2 m/s W 7.8 kHz
d0 0.3 N0 -110 dBm/Hz
K 3 PC 30 dBm
NF 128 Pmax 65 dBm
N 50 Rmin 10 kbits/s

Vmax 50 m/s Γth -40 dB
Vacc 5 m/s H 100 m

τ 2 second GAlgo1
max 10

JAlgo2
max 10 LAlgo3

max 8

for R̄(T ,U) ≥ 0 and PEq(V ,Υ) ≥ 0, where F̄ is the feasible
solution set for (45) and U∗,V∗,Υ∗ are the optimal trajectory,
velocity, and new slack variable sets, respectively.

Then, we can apply the iterative Dinkelbach method to solve
(45) and the details of the proposed algorithm is summarized
in Algorithm 2. Specifically, in each inner loop iteration, in
line 6 of Algorithm 2, we need to solve the following convex

optimization problem3 for a given {t(j
Algo2)[n],v(jAlgo2)[n]}

and q
(jAlgo2)
2

{T ,U ,V,Υ}= arg maximize
T ,V,U ,Ψ,Υ

1

N

K∑

k=1

NF∑

i=1

N∑

n=1

R̄i
k,lb[n]

−q
(jAlgo2

inner )
2

1

N

N∑

n=1

P
Eq
total[n] (47)

s.t. C5,C6,C7,C8− C16,

where {T ,U ,V ,Υ} is the optimal solution of (47) for a

given q
(jAlgo2

inner )
2 . After the inner loop converges, we fur-

ther tighten the bounds obtained by the SCA via updating

{T (jAlgo2), U (jAlgo2), V(jAlgo2)} in the main loop, i.e., line 20
of Algorithm 2. We note that the convergence of the SCA is
guaranteed, cf. [5].

C. Overall Algorithm

The overall proposed iterative algorithms for solving the two
sub-problems (11) and (28) are summarized in Algorithm 3.
Since the feasible solution set of (10) is compact and its
objective value is non-decreasing over iterations via solving
the sub-problem in (11) and (28) iteratively, the solution of the
proposed algorithm is guaranteed to converge to a suboptimal
solution [17].

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
trajectory and resource allocation design algorithm via simu-
lation. The simulation setups are summarized in Table II.

Fig. 2 illustrates the convergence behavior of the alternating
optimization Algorithm 3 for the maximization of the system
energy efficiency. We compare the system performance for
different sizes of uncertain areas of the eavesdropper. For

3The problem in (47) can be easily solved by dual decomposition or
numerical convex program solvers.
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Fig. 2. Energy efficiency versus the number of iterations.

comparison, we also include the performance of a baseline
scheme with a straight trajectory between t0 = [0; 0] m and
tF = [1000; 1000] m and a constant cruising velocity. The
peak transmit power is set as Ppeak = 1 W. It can be seen
from Fig. 2 that the system energy efficiency of the proposed
algorithm converges to a sub-optimal solution within 8 iter-
ations. Thus, in the following results, we set the maximum
number of iterations as 8 to show the performance of the
proposed algorithm. In general, the energy efficiency achieved
by the proposed algorithm is superior than that of the baseline
scheme. In fact, the UAV of the proposed algorithm can adjust
its transmit power to reduce the chance of information leakage.
Also, it can avoid the regions and/or reduces the time duration
in being close to the eavesdropper by adapting it trajectory. In
contrast, in order to guarantee the communication security,
the UAV in the baseline scheme would keep its transmit
power sufficiently low when it flies close to the eavesdropper.
Moreover, it can be observed that the energy efficiency for a
smaller uncertain area of the eavesdropper (e.g. QE = 100 m)
is higher than that of the larger uncertain area (e.g. QE = 400
m). In fact, a larger uncertain area of the eavesdropper would
lead to a more stringent security constraint which reduces the
flexibility for resource allocation design.

Fig. 3 shows the UAV’s trajectory with the proposed al-
gorithm and the baseline scheme. The peak transmit power
is set as Ppeak = 1 W. The locations of users and the
estimated location of eavesdropper are marked with © and
×, respectively. Due to the limited flexibility in optimizing
the trajectory, the UAV of the baseline scheme flies directly
over the uncertain region, despite the existence of the potential
eavesdropper. Additionally, it can be observed that the pro-
posed algorithm compromises between the energy efficiency
and security. In particular, the UAV of the proposed algorithm
would keep a high velocity when it is far away from the
users and low velocity when the UAV is close to any desired
user. This behaviour aims to save more time slots for latter
when the UAV is close to the users so as to provide higher
data rate to the system. Also, when the uncertain radius of
the eavesdropper is small, e.g. QE = 100 m, the UAV of
the proposed algorithm tries to keep a distance from the
uncertain region while maintains a sufficient transmit power
for maximizing the system energy efficiency. In contrast, when
the radius of the potential eavesdropper’s uncertain area is
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Fig. 3. UAV trajectory with different algorithms and sizes of uncertain areas.

sufficiently large, e.g. QE = 400 m, detouring or keeping
distance from the uncertain region is not feasible for a given
limited time duration. Thus, the UAV quickly flies through
the uncertain region of the eavesdropper to minimize the
time duration spending in the region. Meanwhile, inside the
uncertain region, it only transmits a sufficiently low power to
reduce the chance of exceedingly large of signal leakage to the
eavesdropper for guaranteeing communication security. In fact,
the UAV allocates a higher amount of energy in cruising than
information transmission for leaving the uncertain region as
soon as possible. After the UAV is sufficiently far away from
the uncertain region, the transmit power of the UAV would
increase again to maximize the system efficiency.

Fig. 4 shows the energy efficiency of the considered system
versus the radius of the potential eavesdropper’s uncertain
area. Although both schemes can guarantee communication
security in the considered cases, it can be observed that the
energy efficiency of both the proposed algorithm and baseline
scheme decreases with the radius of uncertain areas. Indeed, a
larger eavesdropper’s uncertain area imposes a more stringent
security constraint on the system design, which reduces the
flexibility in resource allocation leading to a lower system
energy efficiency. Also, for the proposed algorithm with peak
transmit power Ppeak = 0.01 W, the system energy efficiency
remains a constant when the radius of the uncertain area
is less than 200 m. In other words, for a small uncertain
area, the system performance is always limited by the small
peak power Ppeak where the security issue can be handled
by trajectory and velocity design. On the other hand, it can
be observed that a large performance gain can be achieved
by the proposed algorithm compared to the baseline scheme
for a large peak transmit power. As a matter of fact, a large
peak transmit power offers a higher flexibility for the proposed
scheme in allocating the transmit power to achieve a higher
system energy efficiency. However, when the peak transmit
power is small, both the trajectory and resource allocation
design would become more conservative which reduces the
potential performance gain brought by the proposed scheme.

VI. CONCLUSION

In this paper, we formulated a non-convex energy-efficient
maximization problem for secure UAV-OFDMA communica-
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tion systems via optimizing the resource allocation strategy
and the trajectory design. We proposed a suboptimal algorithm
to achieve an efficient solution. The proposed design enables
adaptive velocity and flexible trajectory for UAV which can
avoid the potential eavesdropper proactively to guarantee
secure communications. Numerical results demonstrated the
fast convergence of the proposed algorithm and the superior
performance compared to the baseline scheme in terms of
energy efficiency.
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