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Abstract—A ubiquitous outdoor localization system that is
easy to deploy and works equally well for all mobile devices
is highly-desirable. The GPS, despite its high accuracy, cannot
be reliably used for this purpose since it is not available on
low-end phones nor in areas with low satellite coverage. The
application of classical fingerprinting approaches, on the other
hand, is prohibited by excessive maintenance and deployment
costs.

In this paper, we propose Crescendo, a cellular network-based
outdoor localization system that does not require calibration or
infrastructure support. Crescendo builds on techniques borrowed
from computational geometry to estimate the user’s location.
Specifically, given the network cells heard by the mobile device
it leverages the Voronoi diagram of the network sites to provide

an initial ambiguity area and incrementally reduces this area by
leveraging pairwise site comparisons and visible cell information.

Evaluation of Crescendo in both an urban and a rural area
using real data shows median accuracies of 152m and 224m,
respectively. This is an improvement over classical techniques by
at least 18% and 15%, respectively.

Index Terms—calibration-free localization, cellular network,
ubiquitous computing

I. INTRODUCTION

Nowadays, finding one’s location outdoors is usually based

on the GPS [1]. Although the GPS can work virtually any-

where around the world, it is not available on all mobile

devices, can fail to find a location (e.g. when the signals to the

satellites are obstructed inside tunnels or because of the urban

canyon effect [2]), and consumes a lot of power. Therefore,

other techniques of outdoor localization need to be developed

to cover scenarios such as energy-efficient localization or

emergency response tracking (E911), where all users regard-

less of their devices’ capabilities need to be tracked. To address

that, a number of approaches have been recently proposed,

including fingerprinting-based [3], [4], sensor-based [2], [5]–

[15], and cellular network-based [3], [16]–[23]. In addition,

due to the availability of both computation resources as well

as huge datasets, neural networks and deep learning have been

recently leveraged for localization [24]–[28]. According to

the experimental study in [21] probabilistic cellular network

fingerprinting in [3] provides the highest accuracy for 2G

networks. However, systems such as [3], [4] require an onerous

and time-consuming wardriving phase either to collect a

cellular signal fingerprint or to build a model based on the road

network and typical driver behavior. Sensor-based systems use

sensors available on high-end phones such as WiFi [6], [7] and

inertial sensors [2], [14], [15]. These techniques do not work

for low-end phones.

In contrast, cellular network-based techniques are by default

available for all phones. The most basic approach is the Cell ID

method [29], where the location is estimated as the longitude

and latitude of the strongest visible network cell. Despite its

simplicity, the Cell ID method has a coarse-grained accuracy.

Cellular fingerprinting approaches [3], [17] provide superior

accuracies, yet require time-consuming data collection. To

completely avoid labeled dataset collection a propagation

model is leveraged in [18] to generate the fingerprint. How-

ever, this significantly affects the accuracy of the system.

In this paper, we propose Crescendo: a ubiquitous cellular

network-based localization technique that does not require

neither calibration nor any additional support from the already

existing infrastructure (the cellular network). Crescendo starts

its operation by building the Voronoi diagram of the area of

interest with network sites as seeds. Since distance is typically

inversely proportional to the Received Signal Strength (RSS),

the user is assumed to be closest to the strongest visible

network site and can hence be placed in the Voronoi polygon

of the strongest site. Thereafter, signal information of cellular

network cells visible to the user’s phone are used to incremen-

tally narrow down this initial ambiguity region. Specifically,

instead of using a propagation model or absolute RSS values

as is commonly done in other approaches, the relative RSS

between each pair of heard cells/sites at the device is used to

constrain the user’s location and hence reduce her ambiguity

region. Additionally, available information about the sector

covered by each visible cell is used to improve the accuracy

of the location estimate.

We have implemented and tested Crescendo in urban and

rural areas with different network densities. The results show

that Crescendo can achieve a median accuracy of 152m and

224m in the urban and rural areas, respectively. This accuracy

is an improvement over classical infrastructure-free techniques

by at least 18% and 15% and comes with no calibration

overhead.

The rest of this paper is organized as follows: in Section II

we briefly give a background on the structure of the cellular
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Fig. 1: Basic cellular network architecture.

network and the terminology used throughout the paper as well

as give an overview of the basic idea of Crescendo. The full

system architecture and evaluation of the system are presented

in Sections III and IV, respectively. Section V concludes the

paper.

II. Crescendo BASIC IDEA

A. Background

As shown in Fig. 1 the cellular network consists of multiple

sites, which are distinct physical locations - also called towers.

Each tower covers an area around it divided into multiple

physical sectors. A sector represents a certain “slice” of the

circle centered around the site, and is represented by two

straight lines emanating from the site location at a specific

inclination from north. Theoretically, the sector area can be

considered extending to infinity. However, in practice due to

signal attenuation it is finite as shown in Fig. 1. Multiple cells

operating at different frequencies cover the same sector. A

mobile unit (MU), i.e. a phone, can detect up to seven different

cells at the same time instant and is associated to only one of

them. The different visible cells can be from the same site or

from different sites, and can be even covering the same sector.

Information about the RSS of visible cells is available at the

provider-side as well as at the device-side.

B. Basic Idea

In this section we start by explaining the basic idea of the

proposed algorithm and how it works under “ideal” conditions

(Sections II-B1 and II-B2). Here, we assume a hypothetical

ideal environment and cellular network, where a) the propa-

gation environment is ideal, i.e. a cell is visible only within

the area defined by its sector. Therefore, if a MU detects a

cell c, it has to be located within the area defined by its

sector r. Users outside r cannot hear any cells covering r;

and b) a MU can detect up to seven cells but only one cell

per physical site/tower, i.e. cells visible in a single scan are

located at distinct sites.

We relax these assumptions later in Section III.

1) Incremental Voronoi Tessellation: Crescendo starts by

building the Voronoi diagram [30] of the area of interest with

sites as seeds as shown in the example in Fig. 2a, where

the Voronoi diagram is built for the three towers A, B, and

C. A Voronoi diagram splits the area into n non-overlapping

polygons, where n is the number of sites/seeds. Each Voronoi

polygon is associated with a site/seed s and contains all points

in the area that are closer to s than to any other site/seed.

Since the general trend for RSS is to increase as distance

decreases and vice versa, Crescendo initially places the user in

the Voronoi polygon of the site with the strongest signal, which

represents the points that are closest to this site compared to

any other site. In our example cell B 3 is the strongest cell

with −59dBm, and hence the Voronoi polygon of site B is the

initial ambiguity area as shown in Fig. 2b. However, this initial

area can be very large, especially for a sparse cellular network

where the sites/seeds are separated by larger distances. To

refine this initial area the first step is to use Pairwise Site/Cell

Constraints. For every pair of secondary sites, i.e. sites other

than the strongest site, the area of interest can be split into

two half-planes as shown in Fig. 4. Points in the half-plane of

site X are closer to site X or receive a higher RSS from cells

located at site X as compared to site Y , and vice versa. This

relation can be leveraged to reduce the ambiguity area. First

of all, for every pair of visible sites/cells, their corresponding

RSS can be used to determine in which half-planes the MU

is situated. In total o(
(

v

2

)

) pairwise comparisons indicate in

which half-planes the MU is located, where v is the number

of visible sites/cells. The intersections between the initial

ambiguity area (the Voronoi polygon of the strongest site) and

the half-planes resulting from pairwise comparisons of other

different sites reduces the ambiguity area significantly. In our

example v = 3, and only one half-plane resulting from the

comparison between sites C and A can be used to refine the

area as indicated by the arrow in Fig. 2c. Specifically, since

the RSS from cell C is stronger than the RSS from cell A, the

MU is placed in the half-plane of site C. Intersection with the

initial Voronoi polygon results in the reduced area highlighted

in Fig. 2c.

2) Leveraging Cell Information: The second step to further

refine the remaining ambiguity area incorporates cell and

sector information. Since a cell is only visible within its sector,

the MU should be contained within sectors of all visible cells.

Therefore, by calculating the intersection area between the

remaining ambiguity area and sectors of all visible cells, the

ambiguity area can be further reduced significantly. This is

illustrated in Fig. 3, where intersection calculation between

the ambiguity area after applying Pairwise Site Constraints,

and sector areas of the three visible cells B 3, C 3 and A 1
results in the reduced area shaded in Fig. 3c, whose center of

mass is deemed the location estimate.

3) Discussion: Note that Crescendo does not depend on

any propagation model but leverages only the relative RSS

information between each pair of cells as well as the sector-

ization to obtain a tight ambiguity area for the user’s location.

The only information required by Crescendo to function

is the location of the different cell towers and the sectoriza-

tion information. This is readily available if the system is

implemented at the provider side or can be calculated from

crowdsourced data [31], [32].



(a) Voronoi diagram with sites as seeds. (b) Initial ambiguity area. (c) Pairwise Site/Cell Constraint.

Fig. 2: Step 1: Initial location estimation based on Voronoi diagram of strongest site and pairwise site comparisons.

(a) Cell B 3 contains the location. (b) Cell C 3 contains the location. (c) Cell A 1 contains the location.

Fig. 3: Step 2: Applying cell constraints. Sequential intersections of visible cell sectors’ areas further reduce the ambiguity

region.

Fig. 4: For any pair of sites: if the RSS from site X at the

device is greater than the RSS from site Y , then the device

must be closer to X than Y . This maps to placing the device

in the half-plane defined by the bisector line between X and

Y and containing site X .

Area calculations are computationally expensive and might

adversely affect the real-time response of the system. In the

next section, we provide the details of the Crescendo system,

relaxing the ideal assumptions and handling the computational

efficiency aspects.

III. THE Crescendo SYSTEM

In this section, we provide the Crescendo system archi-

tecture followed by the details of its modules that provide

a calibration/infrastructure-free and ubiquitous localization

system. We assume a network structure similar to that pre-

sented in Section II-A with the typical noisy RF propagation

characteristics, therefore relaxing the ideal assumptions of

the previous section. Specifically, the heard cells by the MU

might be located at the same site or covering the same sector.

Additionally, due to noise, cells might be visible outside

their ideal sector area. We also describe how Crescendo can

compute the area intersections efficiently.

A. Overview

Fig. 5 shows the system architecture. The system works in

two phases: an offline phase and an online tracking phase.

1) Offline Phase: During the offline phase, the system

administrator uses the User Interface module to import/enter

the required network information (e.g. site IDs and locations,

cell and sector information, etc.) A virtual grid is generated

and superimposed over the area of interest during this phase

using the Grid Generator module. This virtual grid is used

to speed up calculations as well as handling the inherent

noise in RF propagation. The Pre-Computation module finally

calculates the “discrete” Voronoi diagram of the area of

interest, which is used to determine the initial user ambiguity



Fig. 5: Crescendo system architecture.

area. It also pre-calculates associated parameters with each

grid point (e.g. Pairwise Site Constraints and Containing Cell

Set). This information is used during the online phase by the

Online Constraint Evaluator module to reduce the running

time and handle noise.

2) Online Tracking Phase: This is the main operational

phase of Crescendo, where location estimates are generated

based on the visible network cells. The Cell Clustering

module starts by clustering visible cells based on their tower

locations and using the strongest cell from each tower to

represent this tower. In the Online Constraint Evaluator

module, representative site RSS values obtained from the Cell

Clustering module are used to create online Pairwise Site

Constraints. Additionally, all visible cells are included in the

online Containing Cell Set. Based on these constraints, it

also assigns scores to the different grid points based on their

likelihood of being the points where the MU is located. Finally,

the Location Estimator module uses the grid points scores to

estimate the final MU location.

B. Virtual Gridding

Area calculations are computationally expensive and might

adversely affect the real-time response of the system. To over-

come this issue, we use a grid-based discretization approach.

First, a discrete grid with a certain step size (e.g. 50m) is

super-imposed on the area of interest as shown in Fig. 6.

Then, instead of performing area intersection computations,

we compare the expected constraints at each location (based

on the location of the grid point relative to each cell) with the

actual constraint state at each location (based on the signal

heard from the different cells).

Fig. 6: The proposed gridding approach. Grid points repre-

senting the “discrete” Voronoi polygon of each cell have the

same color.

In particular, Offline Pairwise Site Constraints are calculated

for each grid point by comparing the distance of the grid point

to each pair of sites and creating a constraint that indicates

that e.g. “Site A is closer than site B” if the distance of

the grid point to site A is less than that to site B. For n

sites a total of
(

n

2

)

constraints is created for each grid point.

Additionally, the Containing Cell Set is calculated for each

grid point. A cell is added to the Containing Cell Set of a

grid point if the grid point lies within the area defined by the

sector of the cell assuming the sector area extends to infinity.

If a cell belongs to the Containing Cell Set of a grid point,

then all cells covering the same sector also belong to this

containing set. A grid point can naturally be contained in cells

from different sites. These distance-based calculations are pre-

calculated offline and stored to speed up computations during

the online phase.

While the system is running in real-time, grid points are

scanned and the actual constraint value based on the RSS by

the user device from the two sites is compared to the expected

constraint value stored for each grid point by the Online

Constraint Evaluator module. Additionally, visible cells are

compared to cells in the Containing Cell Set of the grid point.

All grid points start with a score of zero and each matching

constraint leads to increasing the grid point’s score by 1.

C. Location Estimator

The Location Estimator module extracts the grid points

with maximum matching scores. Then it calculates the final

location estimate as the center of mass of these grid points.

D. Discussion

Note that the virtual gridding approach allows us to replace

the expensive area computations by evaluations at discrete

samples. These evaluations can be calculated offline and

stored, significantly speeding up the online phase as we

quantify in the evaluation section. This is further enhanced

by the clustering performed by the strongest site/tower during

the online phase.



In addition to reducing the computational complexity, the

virtual gridding also allows us to better handle the noise in

the RF signal. For example, in reality, when a cell is visible

outside its sector area, this can lead to contradictions leading

to an empty intersection when applying the basic idea without

modification. The proposed virtual gridding approach solves

this problem by assigning a score to each grid point based on

its matching constraints. The MU estimated location is now

based on the grid points that match the largest number of

actual and expected constraints.

IV. EVALUATION

In this section, we evaluate the proposed algorithm in two

testbeds; an urban area of 0.507km2 with a dense cellular

network and a rural area of 0.723km2 with a relatively sparse

cellular network; using 22953 samples. Testbed properties are

summarized in Table I. We first start by examining the effect

of the different parameters on accuracy. Then, we compare our

proposed algorithm to two of the most commonly used low-

overhead outdoor localization algorithms, the Cell ID method

and the Centroid method.

TABLE I: Testbed Properties

Property Testbed

Urban Rural

Area (km2) 0.507 0.723

Cell density (cells/km2) 224 100

Crescendo median error (m) 152 224

Cell ID median error (m) 187(-23%) 545(-143%)

Centroid median error (m) 214(-40.7%) 264(-17.8%)

TABLE II: Default parameter values used in evaluation

Parameter Range Default value

Grid size (m) 25-200 50

Cell density(cells/km2) 21-224 224

Testbed Urban, rural Urban

A. Parameters Effect

We evaluate the effect of grid size and cell density on system

performance. Table II shows the default parameter values used

in evaluation.

1) Grid Size: Fig. 7 shows the effect of changing the virtual

grid size on system performance. The figure shows that in-

creasing the grid size reduces the accuracy while significantly

reducing the time required per location estimate due to the

reduced number of virtual grid points.

2) Cellular Network Density: Fig. 8 shows the effect of

changing the cells density. This was obtained by uniformly

dropping cells. The figure shows that, as expected, reducing

the cells density leads to reducing the system’s accuracy due to

the reduction of the available information. Nonetheless, using

the default cell density, Crescendo can achieve accuracy of

152m. This also explains the higher accuracy of the system in

urban areas compared to rural ones.
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B. Comparison to Other Systems

We compare our proposed technique to two of the most

commonly used infrastructure-free techniques: the Cell ID [29]

and the Centroid method. In the Cell ID method, the location

of the MU is estimated as the location of the strongest visible

cell while in the Centroid method, the location is estimated

as the center of mass of all visible sites. As shown in Fig. 9,

Crescendo outperforms both methods by at least 18% and 15%

in the urban and rural area, respectively. This is due to its

novel incremental Voronoi tessellation technique and the use

of sector information in addition to RSS.

V. CONCLUSION

In this paper, we presented Crescendo, a ubiquitous low-

overhead outdoor localization technique that works for all cell

phones with no calibration and no additional infrastructure

support. Crescendo depends on the Voronoi diagram of net-

work sites, pairwise comparison between sites, as well as cell

sector information to incrementally improve the localization
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Fig. 9: Comparison to other techniques.

accuracy without the need for data collection or special

sensors.

We implemented and tested Crescendo in an urban and

a rural area and compared its performance against existing

techniques. Results show median accuracies of 152m and

224m in the urban and rural area, respectively, and an im-

provement over classical techniques of at least 18% and 15%,

respectively.
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