
PoliFi: Airtime Policy Enforcement for WiFi
Toke Høiland-Jørgensen
Dept. of Computer Science
Karlstad University, Sweden

toke.hoiland-jorgensen@kau.se

Per Hurtig
Dept. of Computer Science
Karlstad University, Sweden

per.hurtig@kau.se

Anna Brunstrom
Dept. of Computer Science
Karlstad University, Sweden

anna.brunstrom@kau.se

Abstract—As WiFi grows ever more popular, airtime con-
tention becomes an increasing problem. One way to alleviate
this is through network policy enforcement. Unfortunately, WiFi
lacks protocol support for configuring policies for its usage, and
since network-wide coordination cannot generally be ensured,
enforcing policy is challenging.

However, as we have shown in previous work, an access point
can influence the behaviour of connected devices by changing
its scheduling of transmission opportunities, which can be used
to achieve airtime fairness. In this work, we show that this
mechanism can be extended to successfully enforce airtime usage
policies in WiFi networks. We implement this as an extension our
previous airtime fairness work, and present PoliFi, the resulting
policy enforcement system.

Our evaluation shows that PoliFi makes it possible to express
a range of useful policies. These include prioritisation of specific
devices; balancing groups of devices for sharing between different
logical networks or network slices; and limiting groups of devices
to implement guest networks or other low-priority services. We
also show how these can be used to improve the performance of
a real-world DASH video streaming application.

I. INTRODUCTION

WiFi is increasingly becoming the ubiquitous connectivity
technology in homes as well as in enterprises. The ability for
anyone to set up an access point and connect any device to
it is one of the driving factors behind this increase of pop-
ularity. However, increased popularity also means increased
contention for resources as more devices are deployed.

Since no two devices can transmit at the same time on a
given frequency, the sparse resource that determines perfor-
mance in WiFi networks is the time spent transmitting, also
known as airtime usage. The 802.11 Media Access Control
(MAC) protocol used in WiFi networks does not, in itself,
guarantee a fair usage of this sparse resource. In fact it is well
known that devices transmitting at lower rates can use more
than their fair share of the airtime [1].

One way to improve performance of a network under
contention is to apply different policies to different devices on
the network, which works best if applied directly to the sparse
resource instead of a proxy such as byte-level throughput.
However, WiFi is decentralised at the protocol level, and thus
lacks protocol support for enforcing policies on airtime usage.
Fortunately, it turns out that in the common infrastructure
deployment scenario, the access point can exert quite a bit of
influence on the transmission behaviour of clients, or stations,
as they are commonly called. In previous work, we have
shown that this makes it possible to achieve airtime fairness

between stations in a WiFi network by making appropriate
scheduling decisions at the AP [2]. Given such a mechanism
to enforce fairness, a natural question is whether it can be
extended to express different capacity sharing policies. In this
work we answer this question in the affirmative, in the form
of a workable solution to airtime policy enforcement in WiFi,
which we have named PoliFi.

The number of possible policies one might want to express
is all but infinite. Therefore, to focus our discussion, we define
the following three representative policy use cases:

1) Prioritising devices. It should be possible to configure
one or more devices to receive a higher share of network
resources than other devices on the network.

2) Balancing device groups. In this use case, the network
should be configured to share the available resources
between groups of devices in a given way. For instance,
this could be used to implement the “network slicing”
concept often seen in 5G architectures [3].

3) Limiting groups of devices to a maximum capacity share,
in order to implement a lower-priority service, such as
a guest network.

PoliFi makes it possible for the user to express all of these
policies. Our design builds on our previous airtime scheduler
for the Linux kernel, but extends it by (a) generalising the
implementation from a specific driver to the common kernel
WiFi stack, (b) extending the kernel scheduler to support
weighted scheduling of stations, and (c) adding a userspace
policy daemon that transforms the higher-level policy deci-
sions into configuration of the kernel scheduling mechanism.

The rest of this paper presents PoliFi in detail, and is
structured as follows: Section II summarises related work.
Section III describes our design, with a performance analysis
presented in Section IV. Finally, Section V concludes.

II. RELATED WORK

Network policies are, in general, nothing new. For instance,
standardisation of different traffic classes has occurred in the
form of the DiffServ framework [4]. In the WiFi world, the
802.11e standard defines different priority levels, which can be
mapped to DiffServ code points [5]. However, this is all related
to applying policies to different types of traffic, whereas PoliFi
deals with realising different capacity sharing policies between
devices on the same network at the airtime usage level. As
such, PoliFi is orthogonal so DiffServ, 802.11e and other
traffic class policy mechanisms.

ar
X

iv
:1

90
2.

03
43

9v
1

 [
cs

.N
I]

 9
 F

eb
 2

01
9

As mentioned above, PoliFi is an extension of our previous
work implementing an airtime fairness enforcement mecha-
nism in Linux [2]. Compared to this previous work, PoliFi
adds the policy enforcement component, and also generalises
the mechanism by moving it out of the device drivers and
into the common WiFi subsystem in Linux, thus making it
applicable to more device drivers.

The concept of airtime policy enforcement appears in the
concept of network slicing, which is an important part of the
upcoming 5G mobile network architecture [3]. Network slicing
involves splitting up a network into several virtual parts that
are conceptually isolated from one another, which is a form of
policy enforcement. A description of how to achieve network
slicing in WiFi networks is given in [6], which corresponds
roughly to our second use-case. The authors implement a
prototype in simulation. Our mechanism builds on the same
basic concept of computing per-device weights from group
weights, but we solve a number of issues that prevent it from
being implemented on real hardware. In addition, [6] only
covers the second of our three policy use-cases.

Another approach to splitting a wireless network into multi-
ple parts is presented in [7], which describes a scheme where
a separate software router is installed in the access point.
This software router queues packets and enforces capacity
sharing. However, the capacity sharing is implemented at the
bandwidth level which, as mentioned above, is not the sparse
resource in a WiFi network.

A description of a scheme for network slicing in a home
network is described in [8]. The authors describe a design
that uses Software Defined Networking (SDN) to split a home
network into different parts, but do not discuss any mechanism
for how the sharing is achieved.

Finally, some enterprise APs offer features related to airtime
fairness and policy configuration, e.g., [9]. Unfortunately, no
technical description of how these policies are enforced is
generally available, which prevents us from comparing them
to our solution.

III. THE POLIFI DESIGN

We have designed PoliFi as a two-part solution, where a
user-space daemon is configured by the user, and in turn
configures a scheduling mechanism in the kernel. In this
section, we describe our design in detail. A diagram of the
design is shown in Figure 1. We begin by describing the
user space daemon that configures the policies. Following this,
we describe how the weighted Deficit Round-Robin (DRR)
scheduling mechanism is used to achieve the desired policies,
and finally we describe how the mechanism is integrated into
the Linux kernel WiFi stack.

A. Userspace Policy Daemon

We implement the userspace policy daemon as part of the
hostapd access point management daemon. This is the daemon
responsible for configuring wireless devices in access point
mode in Linux. This means it already implements policies
for other aspects of client behaviour (such as authentication),

Kernel

mac80211 subsystem

Weighted DRR
scheduler

WiFi hardware

Device driver

Userspace

Policy
daemon

A
ss

oc
 /

 d
is

as
so

c
no

ti
fi

ca
ti

on
s

St
at

io
n

qu
eu

e
st

at
eSet station w

eights

A
ir

ti
m

e
us

ag
e

Station

Weight

Deficits

Station

Weight

Deficits

Station

Weight

Deficits

User
configuration

Station
state tracker

Fig. 1: The high-level design of PoliFi. The kernel maintains
data structures for every station, containing its current airtime
deficits and configured weight. The scheduler uses this to
decide which station to transmit to next. The hardware reports
airtime usage on TX completion. The userspace daemon tracks
the associated stations and their queue state, and updates the
weights in the kernel based on user policy preferences.

which makes it a natural place to implement airtime policy as
well.

The module we have added to hostapd can be configured in
three modes, corresponding to the three use cases described in
the introduction: static mode, dynamic mode and limit mode.
The user can configure each of these modes per physical WiFi
domain, and assign parameters for individual stations (based
on their MAC addresses), or for entire Basic Service Sets
(BSSes). The latter is a natural grouping mechanism, since this
corresponds to logical networks configured on the same device
(e.g., a primary and a guest network). However, extending the
design to any other logical grouping mechanism is straight
forward.

In static mode, the daemon will simply assign static weights
to stations when they associate to the access point. Weights can
be configured for individual stations, while a default weight
can be set for each BSS, which will be applied to all stations
that do not have an explicit value configured. This implements
the basic use case of assigning higher priorities to specific
devices, but does not guarantee any specific total share.

The dynamic and limit modes work by assigning weights

to each BSS, which are interpreted as their relative shares of
the total airtime, regardless of how many stations they each
have associated. Additionally, in limit mode, one or more
BSSes can be marked as limited. BBSes that are marked
as limited are not allowed to exceed their configured share,
whereas no limitations are imposed on unmarked BSSes. Thus,
dynamic mode implements the second use case, while limit
mode implements the third.

For both dynamic mode and limit mode, the daemon period-
ically polls the kernel to discover which stations are currently
active, using the queue backlog as a measure of activity, as
discussed below. After each polling event, per-station weights
are computed based on the number of active stations in each
BSS, and these weights are configured in the kernel. The
details of the weight computation, and how this is used to
achieve the desired policy, is discussed in the next section.
Selecting the polling frequency is a tradeoff between reaction
time and system load overhead. The polling interval defaults
to 100 ms, which we have found to offer good reaction times
(see Section IV-B), while having a negligible overhead on our
test system.

While our implementation is focused on the single access
point case, where the access point enforces a single configured
policy, the userspace daemon could just as well pull its policy
configuration from a central cloud-based management service,
while retaining the same policy enforcement mechanism.

B. Weighted Airtime DRR

The fairness mechanism that we are starting from (described
in detail in [2]) is a Deficit Round-Robin scheduler, which
operates by accounting airtime usage as reported by the WiFi
hardware after a transmission has completed, and scheduling
transmissions to ensure that the aggregate usage over time is
the same for all active stations. Using the airtime information
provided after transmission completes means that retrans-
missions can be accounted for, which improves accuracy
especially for stations with low signal quality. Furthermore,
as we have shown in our previous work, for TCP traffic we
can provide fairness even for transmissions transfers coming
from each station. This is achieved by accounting the airtime
of received packets, which causes the scheduler to throttle the
rate of TCP ACKs going back to the station.

1) Adding Weighted Scheduling: Given this effective air-
time fairness scheduler, we can realise arbitrary division of
the available capacity between different stations, by simply
assigning them different scheduling weights. For the DRR
scheduling algorithm employed by our scheduler, this is
achieved by using different quantums per station. Thus, to
apply this to airtime policy enforcement, we need to express
the desired policy as a number of different service weights for
each of the active devices.

The first use case is trivially expressed in terms of weights:
simply assign the prioritised device a higher weight; for
instance, to double its priority, assign it a weight of 2. The
second use case, where capacity should be split between
groups of devices has been covered in the network slicing

use case described in [6]: each group is assigned a weight
signifying its share relative to the other groups; from these
group weights, each device in that group is assigned a weight
computed by dividing the group weight with the number of
active devices in that group.

The final use case requires limiting one or more groups of
stations to a fixed share of the available capacity. This can be
illustrated with the guest network use case, where an example
policy could be that a guest network is not allowed to exceed
50% of the available capacity. If this policy is implemented
as a fixed share between groups, however, a single station on
the guest network would be able to get the same capacity
as, say, five users of the regular network, which is not what
we want. Thus, a different policy is needed: a group can be
limited, and should have its weight adjusted only if it would
get more than the configured share, not if it gets less. Thus, this
becomes a two-step procedure that first assigns unit weights
to all devices (which is the default when no policy is applied),
and calculates whether or not this results in the limited group
using more than its configured share of the airtime. If it does,
a policy is computed in the same way as for the dynamic use
case, which results in the limited group being assigned exactly
its configured airtime share.

2) Computing the Weights: Having established that our
desired policies can be expressed in terms of weights, we turn
to the practical difficulties of applying this to a real WiFi
system.

First, the approach outlined above assumes that we have
knowledge of which stations are active at any given time. This
might look trivial at first glance, since an access point needs
to maintain some amount of state for all currently associated
clients in any case. However, clients can be associated to an
access point without sending or receiving any data, and thus
without consuming any airtime. This means that association
state in itself is not sufficient to ascertain the set of currently
active clients. Fortunately, we have another piece of data:
The queue backlog for each device. Monitoring the backlog
gives us a straight-forward indicator for activity without hav-
ing to monitor actual packet flows; we can simply consider
any device that has had a non-zero queue backlog within a
suitably short time span as active, and use that number in our
calculations.

The second difficulty lies in the fact that we need to
transform the total weights between groups of stations into
weights for each individual station. As shown in [6], this is
conceptually just a simple division. However, when imple-
menting this in an operating system kernel, we are limited to
integer arithmetic, which means that to get accurate weights,
we need to ensure that the division works when confined to
the integers. To achieve this, we first limit our configuration
language to be expressed as integer weights between groups.
Then, to ensure that we can divide these weights with the
number of active stations, we multiply them by a suitable
constant, chosen as follows:

We are given the set of groups I , where each group i has a
configured group weight Wi and Ni active stations. We then

define the multiplication constant C =
∏

i∈I Ni. Multiplying
all group weights by this same constant maintains their relative
ratio, and the choice of constant ensures that each group’s
weight can be divided by the number of active stations in
that group. This gives us the following expression for the per-
station weight for group i:

W s
i =

WiC

Ni
(1)

The third issue we need to deal with is converting the
weights to the per-station time quantums that are used in the
scheduler, and which are expressed in microseconds. These
should be kept at a reasonable absolute size, because larger
weights result in coarser time granularity of the scheduler,
making each scheduler round take longer and impacting la-
tency of all devices in the network. We convert the calculated
weights into final quantums by normalising them so they fall
within a range of 100−1000µs, but preferring smaller values
if the ratio between the smallest and largest weight is more
than 10×.

C. Kernel Airtime Scheduler

We implement the kernel part of PoliFi in the WiFi protocol
subsystem of the Linux kernel (called mac80211). Our imple-
mentation builds on our previous airtime fairness scheduler,
described in [2], which implemented a queueing system in this
layer. In this queueing system, packets are assigned a Traffic
ID (TID) before enqueue, and a separate queueing structure
is created for each TID, of which there are 16 per station.
These per-TID queues then form the basis of the scheduling
of different stations. The queueing structure itself is based on
the FQ-CoDel queue management scheme [10] and ensures
flow isolation and low queueing latency.

While our previous implementation implemented queueing
in the general WiFi layer, scheduling and tracking of each
active station’s airtime usage was still the responsibility of
the driver. In PoliFi, we move the scheduling decisions into
mac80211, where it can be leveraged by all device drivers.
In addition, we modify the scheduler to support the weight-
based policy enforcement capability described above. The
weights can be set by userspace through the standard nl80211
configuration API.

In order to move the scheduling decision out of the drivers,
we define a new driver API, shown in Algorithm 1. The
device driver runs the schedule() function, and asks
mac80211 for the next TID queue to schedule, using the
get_next_tid() API function. The driver then services
this queue until no more packets can be scheduled (typically
because the hardware queue is full, or the TID queue runs
empty). After this, the driver uses the return_tid() API
function to return the TID queue to the scheduler. A third
API function, account_airtime(), allows the driver to
register airtime usage for each station, which is typically done
asynchronously as packets are completed or received.

Using this API, mac80211 has enough information to
implement airtime policy enforcement using the weighted

Algorithm 1 Airtime fairness scheduler. The schedule function
is part of the device driver and is called on packet arrival and
on transmission completion. The account_airtime function is called
by the driver when it receives airtime usage information on TX
completion or packet reception.

1: function SCHEDULE(qoslvl)
2: tid← GET_NEXT_TID(qoslvl)
3: BUILD_AGGREGATE(tid)
4: RETURN_TID(tid)
5: function GET_NEXT_TID(qoslvl)
6: tid ← FIND_FIRST(active_tids, qoslvl)
7: stn ← tid.station
8: deficit← stn.deficit[qoslvl]
9: if deficit ≤ 0 then

10: stn.deficit[qoslvl]← deficit + stn.weight
11: LIST_MOVE_TAIL(tid, active_tids)
12: restart
13: LIST_REMOVE(tid, active_tids)
14: return tid
15: function RETURN_TID(tid)
16: if tid.queue is not empty then
17: LIST_ADD_HEAD(tid, active_tids)
18:
19: function ACCOUNT_AIRTIME(tid, airtime)
20: stn ← tid.station
21: qoslvl ← tid.qoslvl
22: stn.deficit[qoslvl]← stn.deficit[qoslvl]− airtime

deficit scheduler approach described above. As for the previous
airtime fairness scheduler in the driver, airtime deficits are kept
separately for each of the four hardware QoS levels, to match
the split of the hardware transmission queue scheduling. The
algorithm is implemented as part of the get_next_tid()
function as shown in Algorithm 1. The PoliFi scheduler has
been accepted into the upstream Linux kernel and will appear
in Linux 5.1 with support for the ath9k and ath10k drivers for
Qualcomm Atheros 802.11n and 802.11ac hardware.

IV. EVALUATION

In this section we evaluate how effectively PoliFi is able
to implement the desired policies. We examine steady state
behaviour as well as the reaction time of the dynamic and
limit modes with a changing number of active stations. To
show how airtime policies can provide benefits for specific
applications, we also include an DASH video streaming use
case in our evaluations. We perform the experiments on our
testbed with four WiFi devices. The details of our setup are
omitted here due to space constraints, but are available in an
online appendix [11].

A. Steady state measurements

The steady state tests consist of running a bulk flow (either
UDP or TCP) to each of four stations associated to the access
point running PoliFi. Three of the stations are associated to one
BSS on the access point, while the fourth is on a separate BSS.
These two BSSes are the groups the algorithm balances in
dynamic and limit mode. Both groups are given equal weights,
meaning that they should receive the same total airtime share.
When testing the limit mode use case, the BSS with only

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
40.0

0.1

0.2

0.3

0.4

0.5

A
ir

ti
m

e
sh

ar
e

No policy Static Dynamic Limit

(a) UDP traffic

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
4

St
at

io
n

1
St

at
io

n
2

St
at

io
n

3
St

at
io

n
40.0

0.1

0.2

0.3

0.4

0.5

A
ir

ti
m

e
sh

ar
e

No policy Static Dynamic Limit

(b) TCP traffic

Fig. 2: Aggregate airtime usage share of four stations, over
a 30-second bulk transfer. Graph columns correspond to the
different policy modes. In static mode stations 2 and 3 are
assigned weights of 3 and 4, respectively. In dynamic and
limit mode, stations 1-3 are on one BSS while station 4 is on
another; both BSSes have the same weight, and the second
BSS is set to limited. The plots are box plots of 30 test runs,
but look like lines due to the low variation between runs.

BS
S

1

BS
S

2

BS
S

1

BS
S

20.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
sh

ar
e

Dynamic Limit

(a) UDP traffic

BS
S

1

BS
S

2

BS
S

1

BS
S

20.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
sh

ar
e

Dynamic Limit

(b) TCP traffic

Fig. 3: Aggregate airtime usage of the two BSSes, for the same
test as that shown in Figure 2.

0 10 20 30 40
Time (s)

0.00

0.25

0.50

0.75

1.00

A
ir

ti
m

e
sh

ar
e

(a) Dynamic mode

0 10 20 30 40
Time (s)

0.00

0.25

0.50

0.75

1.00

A
ir

ti
m

e
sh

ar
e

(b) Limit mode

Fig. 4: Airtime usage over time with changing number of
active stations, in dynamic and limit mode. UDP flows to each
station start 5 seconds apart. The purple station (starting first)
is on one BSS, while the remaining three stations are on the
other BSS.

a single station in it is set to limited, which in this case
means that its natural airtime share is less than the configured
share, and thus that no limiting is necessary to enforce the
configured policy. We test this to ensure that the algorithm
correctly allows the group that is not marked as limited to
exceed its configured airtime share.

The aggregate airtime usage of the stations and BSSes
is seen in figures 2 and 3, respectively. With no policy
configured, the scheduler simply enforces fairness between the
active stations. In the static policy mode, relative weights of
3 and 4 are assigned to stations 2 and 3, respectively. These
weights are clearly reflected in the airtime shares achieved by
each station in the second column of the graphs in Figure 2,
showing that static policy assignment works as designed.

Turning to the group modes, Figure 3 shows the aggregate
airtime for each of the two configured BSSes. In dynamic
mode, the scheduler enforces equal sharing between the two
BSSes, which translates to the single station in BSS 2 getting
three times as much airtime as the other three, as is seen in
the third column of Figure 2. In limit mode, BSS 2 is limited
to at most half of the airtime, but because there is only one
station connected to it, its fair share is already less than the
limit, and so this corresponds to the case where no policy is
enforced. Thus, the tests show that the scheduler successfully
enforces the configured policies for all three use cases.

B. Dynamic measurements

To evaluate the reaction time of the scheduler as station
activity varies, we perform another set of UDP tests where

we start the flows to each of the stations five seconds apart.
We perform this test for the dynamic and limit modes, as these
are the cases where the scheduler needs to react to changes in
station activity.

The results of this dynamic test is shown in Figure 4 as time
series graphs of airtime share in each 200 ms measurement
interval. The station that starts first is Station 4 from the
previous graphs, i.e., the station that is on BSS 2. In dynamic
mode, as seen in Figure 4a, the first station is limited to
half the available airtime as soon as the second station starts
transmitting. And because the two groups are set to share the
airtime evenly, as more stations are added, the first station
keeps using half the available airtime, while the others share
the remaining half.

In limit mode, as we saw before, the airtime shares of each
of the four stations correspond to their fair share. This is also
seen in Figure 4b, where all stations share the airtime equally
as new stations are added.

These dynamic results show that PoliFi has a short reaction
time, and can continuously enforce airtime usage policies as
station activity changes. This is important for deployment in
a real network with varying activity levels.

C. DASH Traffic Test

To showcase an example real-world use case that can
be improved by airtime policy enforcement, we examine a
DASH video streaming application. In this scenario, we add
a station with poor signal quality to the network, representing
a streaming device that is connected to the wireless network
at a location where signal quality is poor. Moving the device
is not an option, so other measures are necessary to improve
the video quality. We stream the Big Buck Bunny [12] video
using the dash.js [13] player running in the Chromium browser
on the slow station. We determine that the maximum video
bitrate the device can reliably achieve in this scenario (with
no competing traffic) is 2 Mbps. However, when the other
devices are active, the video bitrate drops to 1 Mbps because
of contention.

Figure 5 shows the achieved video bitrate along with the
data goodput of the video flow, while three other stations are
simultaneously receiving bulk data. With no policy set, the
video bitrate drops to 1 Mbps, as described above. However,
when we prioritise the station (to half the available airtime
in this case), the achieved bitrate stays at 2 Mbps throughout
the 10-minute video. This shows how PoliFi can improve the
performance of a specific real-world application.

V. CONCLUSION

We have presented PoliFi, a solution for enforcing airtime
usage policies in WiFi networks. Our evaluation shows that
PoliFi makes it possible to express a range of useful policies,
including prioritisation of specific devices, and balancing or
limiting of groups of devices. We have also shown how the
policy enforcement can improve the performance of a real-
world DASH video streaming application.

0 100 200 300 400 500 600
Time (s)

0

2

4

M
bi

ts
/s

Fig. 5: DASH video throughput with prioritisation (solid lines)
and without (dashed lines). The straight lines (orange) show
the video bitrate picked by the player, while the others show
the actual data stream goodput.

PoliFi can improve performance of WiFi networks with high
airtime contention, and enables novel network usages such
as network slicing. For this reason we believe it to be an
important addition to modern WiFi networks, which is made
widely available through its inclusion in the upstream Linux
WiFi stack.

REFERENCES

[1] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Perfor-
mance anomaly of 802.11 b,” in IEEE INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 2. IEEE, 2003, pp. 836–843.

[2] T. Høiland-Jørgensen, M. Kazior, D. Täht, P. Hurtig, and A. Brunstrom,
“Ending the anomaly: Achieving low latency and airtime fairness in
wifi,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17), 2017.

[3] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5g: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94–100, 2017.

[4] J. Babiarz, K. Chan, and F. Baker, “Configuration Guidelines for
DiffServ Service Classes,” RFC 4594 (Informational), RFC Editor, Aug.
2006, updated by RFC 5865. https://www.rfc-editor.org/rfc/rfc4594.txt

[5] T. Szigeti, J. Henry, and F. Baker, “Mapping Diffserv to IEEE 802.11,”
RFC 8325 (Proposed Standard), RFC Editor, Feb. 2018. https://www.
rfc-editor.org/rfc/rfc8325.txt

[6] M. Richart, J. Baliosian, J. Serrat, J.-L. Gorricho, R. Agüero, and
N. Agoulmine, “Resource allocation for network slicing in WiFi access
points,” in 13th International Conference on Network and Service
Management, CNSM, 2017, 2017.

[7] K. Katsalis, K. Choumas, T. Korakis, and L. Tassiulas, “Virtual 802.11
wireless networks with guaranteed throughout sharing,” in 2015 IEEE
Symposium on Computers and Communication (ISCC), Jul 2015.

[8] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown,
“Slicing home networks,” in Proceedings of the 2Nd ACM SIGCOMM
Workshop on Home Networks, ser. HomeNets ’11. ACM, 2011.

[9] “Air Time Fairness (ATF) Phase1 and Phase 2 Deployment Guide,”
Cisco systems, 2015. https://www.cisco.com/c/en/us/td/docs/wireless/
technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_
Deployment_Guide.html

[10] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Du-
mazet, “The Flow Queue CoDel Packet Scheduler and Active Queue
Management Algorithm,” RFC 8290 (Experimental), RFC Editor, Jan.
2018. https://www.rfc-editor.org/rfc/rfc8290.txt

[11] T. Høiland-Jørgensen, P. Hurtig, and A. Brunstrom, “PoliFi: Airtime Pol-
icy Enforcement for WiFi,” Feb. 2019. https://doi.org/10.5281/zenodo.
2556784

[12] “Big Buck Bunny,” Blender Foundation, 2018. https://peach.blender.org/
[13] “dash.js reference DASH player,” Dash Industry Forum, 2018. https:

//github.com/Dash-Industry-Forum/dash.js/wiki

https://www.rfc-editor.org/rfc/rfc4594.txt
https://www.rfc-editor.org/rfc/rfc8325.txt
https://www.rfc-editor.org/rfc/rfc8325.txt
https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_Deployment_Guide.html
https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_Deployment_Guide.html
https://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/8-2/b_Air_Time_Fairness_Phase1_and_Phase2_Deployment_Guide.html
https://www.rfc-editor.org/rfc/rfc8290.txt
https://doi.org/10.5281/zenodo.2556784
https://doi.org/10.5281/zenodo.2556784
https://peach.blender.org/
https://github.com/Dash-Industry-Forum/dash.js/wiki
https://github.com/Dash-Industry-Forum/dash.js/wiki

	I Introduction
	II Related work
	III The PoliFi Design
	III-A Userspace Policy Daemon
	III-B Weighted Airtime DRR
	III-C Kernel Airtime Scheduler

	IV Evaluation
	IV-A Steady state measurements
	IV-B Dynamic measurements
	IV-C DASH Traffic Test

	V Conclusion
	References

