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Abstract—We address the problem of uncoordinated massive
random-access in the Gaussian multiple access channel (MAC).
The performance of low-complexity T -fold irregular repetition
slotted ALOHA (IRSA) scheme is investigated and achievability
bounds are derived. The main difference of this scheme in
comparison to IRSA is as follows: any collisions of order up
to T can be resolved with some probability of error introduced
by noise. In order to optimize the parameters of the scheme we
combine the density evolution method (DE) proposed by G. Liva
and a finite length random coding bound for the Gaussian MAC
proposed by Y. Polyanskiy. As energy efficiency is of critical
importance for massive machine-type communication (mMTC),
then our main goal is to minimize the energy-per-bit required
to achieve the target packet loss ratio (PLR). We consider two
scenarios: (a) the number of active users is fixed; (b) the number
of active users is a Poisson random variable.

I. INTRODUCTION

Existing wireless networks are designed with the goal of

increasing a spectral efficiency in order to serve human users.

Next generation of wireless networks will face a new challenge

in the form of machine-type communication. The main chal-

lenges are as follows: (a) huge number of autonomous devices

connected to one access point, (b) low energy consumption,

(c) short data packets. This problem has attracted attention of

3GPP standardization committee under the name of mMTC

(massive machine-type communication). Numerous solutions

can be found in 3GPP proposals, we mention here only

three main candidates: multi-user shared access (MUSA, [1]),

sparse coded multiple access (SCMA, [2]) and resource shared

multiple access (RSMA, [3, 4]). Unfortunately, due to the lack

of implementation details it is difficult to answer, how good

these candidates are.

This paper deals with construction of low-complexity ran-

dom coding schemes for the Gaussian MAC with equal-power

users. In interest of reducing hardware complexity and im-

proving energy efficiency we focus on grant-free transmission

(3GPP terminology), which means that active users transmit

their data without any prior communication with the base

station. The main goal is to minimize the energy-per-bit spent

by each of the users.

We continue the line of work started in [5, 6]. In [5] the

bounds on the performance of finite-length codes for Gaussian

MAC are presented. In [6] Ordentlich and Polyanskiy describe
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the first low-complexity coding paradigm for Gaussian MAC.

The solution is based on T -fold slotted ALOHA (SA) and

carefully constructed concatenated codes, which are required

in order to resolve the collisions. Unfortunately, the required

energy-per-bit for this scheme is too far from the bound

[5]. We note, that T -fold SA is a compromise in between

conventional (1-fold) SA, in which only single-user decoding

is possible (and thus this scheme has the lowest complexity

possible), and joint decoding of all active users, which transmit

simultaneously with use of the same (randomly generated)

codebook (exponential in the codelength complexity). In T -

fold SA scheme the code is only required to resolve the

collisions of order up to T , where T is a relatively small

value.

In this paper we investigate the potential capabilities of T -

fold IRSA. 1-fold IRSA ([7, 8]) is known to significantly

outperform 1-fold SA for noiseless collision channel. We

note, that T -fold IRSA is also known in the literature under

the name IRSA with multipacket reception (IRSA-MPR). An

analysis of IRSA-MPR over the noiseless collision channel

was conducted in [9]. In [10] the converse bound was given.

We also note, that the problem considered here is close to so-

called IRSA with capture effect [11], when sufficiently strong

signals may be decoded in a slot (the authors assume, that

users have different path loss coefficients). In these papers

the authors aim to maximize the throughput of the resulting

scheme. Our main goal is to measure the energy efficiency

of T -fold IRSA in Gaussian MAC, as this parameter is of

critical importance for mMTC scenario. We were able to find

the only paper [12], in which this question was addresses.

Here we present the improvement of the bounds from [12]. In

order to optimize the parameters of the scheme we combine

the density evolution method (DE) proposed in [7] and a finite

length random coding bound for the Gaussian MAC proposed

in [5].

Our contribution is as follows. We derive achievability

bounds for T -Fold IRSA in the Gaussian MAC. We consider

two scenarios: (a) the number of active users is fixed; (b) the

number of active users is a Poisson random variable. To the

best of the authors’ knowledge, the bounds presented in this

paper are the best achievability bounds for low-complexity

random coding schemes for the Gaussian MAC.
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II. SYSTEM MODEL

Let us describe the system model. There are Ktot ≫ 1
users, of which only K are active in each time instant.

Communication proceeds in a frame-synchronized fashion

(this can be implemented with use of beacons). The length

of each frame is N . Each active user has k bits to transmit

during a frame.

Let us describe the channel model

y =

Ktot
∑

i=1

sixi + z,

where xi ∈ R
n is a codeword1 transmitted by the i-th user, si

is an activity indicator for the i-th user, i.e. si = 1 if the i-th
user is active and si = 0 otherwise. z ∼ N (0, I) is an additive

white Gaussian noise (AWGN). Following [5] we assume all

the users to use the same message set [M ] , {1, . . . ,M} and

the same codebook C = {x(ω)}Mω=1 of size M . Let ωi denote

the message of the i-th user. To transmit the message ωi the

user will use a codeword xi = x(ωi). We require in addition

that ||x(ω)||22 ≤ NP , which means a natural power constraint.

Decoding is done up to permutation of messages. We only

require the decoder to output a set L(y) = (ω1, ω2, . . . , ωK) ∈
[M ]K . Thus in accordance to [5] we decouple the user

identification problem and the data transmission problem. The

probability of error (per user) is defined as follows (see [6])

pe = max
|(s1,s2,...,sKtot)|=K

1

K

Ktot
∑

i=1

si Pr(Wi 6∈ L(y)).

It is clear, that the probability depends only on the messages,

that were sent to the channel. Thus we can calculate it as

follows

pe =
1

K

K
∑

i=1

Pr(Wi 6∈ L(y)),

where Wi is the i-th message.

Let us emphasize the main differences from the classical

setting. Almost all well-known low-complexity coding so-

lutions for the traditional MAC channel (e.g. [13]) assume

coordination between the users. Due to the gigantic number

of users we assume them to be symmetric, i.e. the users use

the same codes and equal powers.

A. Transmission

Let us list the main features of the transmission process:

• the frame is split into V slots of size n = N/V channel

uses;

• the user chooses a message ω, then encodes it and obtains

a codeword x(ω) of length n;

• users repeat their codewords in multiple slots. The repe-

tition count distribution is the same for all the users. By

D(r) we denote the probability, that r replicas will be

sent;

1We will make no difference between terms “codeword” and “packet”

• the number of repetitions r and the r slots in which to

send are chosen based on the message ω (see [12]): as ω
is distributed uniformly on [M ] the slots are chosen uni-

formly at random (without repetitions) from V existing

slots.

B. Joint decoding within a slot

Let us first note, that in order to obtain an achievability

bound for the whole scheme we do not restrict the complexity

of the slot decoding and want to use randomly generated

codebook from [5].

Consider a particular slot, w.l.o.g let it be the first slot. Let

y1 be the received signal of n channel uses. We also assume,

that K1 users transmit in the first slot. Recall, that k denotes

the number of information bits to be sent by each user and

P is the average transmit power. The random coding bound

[5] states, that in random Gaussian ensemble there exists a

codebook C′, such that

1

K

K
∑

i=1

Pr(Wi 6∈ L(y1)|C
′) = Pr(W1 6∈ L(y1)|C

′)

≤ p(n, k, P,K1) , EC [Pr(W1 6∈ L(y1)|C,K1)].

The first equality holds due to the symmetry of users (it

is enough to consider the probability that a particular user’s

message is not in the decoded list). The last expectation is

taken over the Gaussian ensemble.

Here we emphasize the main problem – the bound assumes

the number of active users (K1) to be known. Due to the

randomness of T -fold IRSA the number of users transmitting

in a particular slot is a random variable. We note, that due

to the short slot length it is not possible to estimate (e.g. by

energy) the number of users with satisfactory probability of

error. Thus we need to perform a blind decoding. One another

problem is that a codebook C′ is constructed for a particular

number of users, but we need a codebook, that can resolve

collisions of order K1 ∈ {1, . . . , T }.

To deal with these problems let us change the decoder. Let

S ⊂ [M ], |S| = K1, denote the set of messages, that were

transmitted. The decoding rule is as follows

Ŝ = argmin
Ŝ⊂[M ],|Ŝ|≤T

||y1 − c(Ŝ)||22,

where Ŝ is an estimate of S, c(Ŝ) =
∑

j∈Ŝ xj . Recall, that T
is the maximal collision order, that can be resolved.

Theorem 1: Fix P ′ < P and T , then the average (over

random Gaussian ensemble) per user error probabilities can

be calculated as follows (K1 = 1, . . . , T )

EC [Pr(W1 6∈ L(y1)|C,K1)] ≤
K1
∑

t=1

t

K1
pt(K1, T ) + p0(K1),



S Ŝ

S0 = S\Ŝ Ŝ0 = Ŝ\S

(transmitted codewords) (decoded codewords)
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Fig. 1: Notation

where

p0(K1) ≤

(

K1

2

)

M
+K1 Pr





1

n

n
∑

j=1

Z2
j >

P

P ′





pt(K1, T ) =

T−K1+t
∑

t̂=0

e−nE(t,t̂)

E(t, t̂) = max
0≤ρ,ρ1≤1,λ>0

−ρρ1tR1 − ρ1R2 + E0

E0 = ρ1a+
1

2
log(1− 2bρ1)

a =
ρ

2
log(1 + 2P ′t̂λ) +

1

2
log(1 + 2P ′tµ)

b = ρλ−
µ

1 + 2P ′tµ
, µ =

ρλ

1 + 2P ′t̂λ

R1 =
1

n
logM −

1

nt̂
log(t̂!)

R2 = log

(

K1

t

)

.

Proof:

In the proof we just emphasize the difference in comparison

to [5]. Let us first define the decoding error condition

‖y1 − c(S)‖22 > ‖y1 − c(Ŝ)‖22.

Let us introduce the additional notation. Let S0 = S\Ŝ and

Ŝ0 = Ŝ\S. We are interested in estimating the probability

Pr[|S0| = t]. In this case (due to the decoding rule) 0 ≤
|Ŝ0| ≤ T −K1 + t. The notation is illustrated in Fig. 1. We

can rewrite the error condition as follows

‖z1‖
2
2 > ‖c(S0)− c(Ŝ0) + z1‖

2
2,

where z1 is a noise vector.

Let |Ŝ0| = t̂, let us introduce the events

F (S0, Ŝ0) ,
{

‖z1‖
2
2 > ‖c(S0)− c(Ŝ0) + z1‖

2
2

}

,

and

F (S0) , ∪
Ŝ0

F (S0, Ŝ0).

Using Chernoff bound (let λ > 0)

Pr
[

F (S0, Ŝ0)|S0, Ŝ0, c(S0), z1

]

≤ A(t, t̂),

where

A(t, t̂) = eλ‖z1‖
2
2
e

−λ‖c(S0)+z1‖22
1+2t̂λP ′

(1 + 2t̂λP ′)n/2

Thus,

Pr [F (S0)|S0, c(S0), z1] ≤
T−K1+t
∑

t̂=0

(

M −K1

t̂

)

A(t, t̂).

Averaging over c(S0) and z1 is done exactly the same as

in [5].

We now only need to choose a codebook, that is good for

all the collision orders up to T . Let us formulate a statement.

Statement 1: Let us choose positive values αi, i = 1, . . . , T ,

such that
∑T

i=1 αi < 1. In a random Gaussian ensemble there

exists a codebook C∗, such that the following inequalities hold

for all K1 = 1, . . . , T

Pr(W1 6∈ L(y1)|C
∗,K1) ≤ p̃(n, k, P, T,K1)

,
1

αi
EC [Pr(W1 6∈ L(y)|C,K1)]

Proof: We need to estimate a probability of a bad code –

a code for which the inequalities does not hold at least for one

K1. By applying the Markov’s inequality and a union bound

we see, that this probability is upper bounded by
T
∑

i=1

αi < 1.

C. SIC decoder

Decoding algorithm is based on successive interference

cancellation approach. At each step the algorithm selects a

slot from the set of unresolved slots. Then a joint decoding

algorithm (see above) is applied for this slot to extract the

user’s messages from the received signal. As a result some

messages are decoded successfully, some of the messages are

decoded incorrectly. Then all successfully decoded messages

are removed from other slots (if the message was transmitted

by user more than once) and the slot itself is marked as

resolved. We note, that we can always find where the replicas

were transmitted as these positions are chosen based on the

data (so in contrast to [7] we do not need to store the pointers).

The algorithm stops when the set of unresolved slots is empty.

Remark 1: We note, that during the slot decoding the errors

may occur, i.e. some of the packets (codewords) may be

decoded incorrectly. In what follows we assume, that we can

always detect the error packets (the packets include control

information).

III. DENSITY EVOLUTION

The transmission and decoding processes can be described

with the use of a bipartite graph, which is called the Tanner

graph [14]. The vertex set of the graph consists of the set of

user nodes U = {u1, u2, . . . , uK} which correspond to the set

of users and the set of slot nodes C = {c1, c2, . . . , cV } which

correspond to signals received in slots. The user node ui and

the slot node cj are connected with an edge if and only if the

i-th users transmitted a packet in the j-th slot.



++++

users

slots

Fig. 2: Tanner graph representation

Let L(x) =
∑

i Lix
i and λ(x) =

∑

i λix
i−1 denote the

user node degree distributions from node and edge degree

perspective, respectively. We recall (see e.g. [15]), that Li and

λi denote respectively the fractions of user nodes of degree i
and the fraction of edges incident to user nodes of degree i.
Also recall, that λ(x) = L′(x)/L′(1). In our case Li = D(i).
Analogously, let R(x) =

∑

iRix
i and ρ(x) =

∑

i ρix
i−1

denote the slot node degree distributions from node and edge

degree perspective, respectively.

Let G = K/V . Let us consider the j-th slot. Each user

chooses this slot for transmission independently with probabil-

ity
L′(1)
V = GL′(1)

K . Thus, the slot node distribution (from node

perspective) is Bino
(

K, GL′(1)
K

)

. In the limit K → ∞ this

distribution becomes a Poisson distribution. In what follows

we use R(x) = ρ(x) = e−GL′(1)(1−x).

Similar to [7, 8] we consider the ensemble of Tanner

graphs G(K;V ;λ(x); ρ(x)) corresponding to the multiple-

access scheme with K users, V slots, and the degree dis-

tributions λ(x) and ρ(x). We are interested in the decoding

performance averaged over the ensemble G(K;V ;λ(x); ρ(x))
in the limit as K ,V → ∞.

Our main goal is to minimize the required energy-per-

bit Eb/N0. For this purpose we use a DE method, which

helps us to choose the system parameters. We note, that the

modification of DE for the case of multi-packet reception can

be found in [7] (see the appendix), but here we apply it for

the noisy channel and combined with a finite length random

coding bound. The major difference of our approach is that

we

• take into account a noisy channel (AWGN channel to be

precise);

• take into account finite length effect as the slots have

small length;

• take into account a transmit energy – energy efficiency is

our main optimization criterion. Assume we use a strategy

with L(x) = x2. In this case we spent 2 times more

energy while transmitting in comparison to L(x) = x
strategy;

Recall, that n is a slot length, k is the number of information

bits to be sent by each user, P is the average transmit power

(linear scale). Let us fix the maximal number of iterations ℓ
and L(x). Then the average energy per information bit can be

calculated as follows

Eb

N0
=

nPL′(1)

2k
,

we note, that L′(1) is actually the average number of trans-

missions and L′(x) means a derivative with respect to x.

Now let us write the density evolution rules. We assume,

that a code C∗ constructed in accordance to Statement 1 is

used in the system. By xl and yl we denote the probability

that an outgoing message from the user node and slot node,

respectively, are erased during the l-th iteration. We start with

initial condition x0 = 1, which means, that the user messages

are erased at the beginning and we observe only the noisy

signal sums in slots.

yl+1 = 1− ρ(1− xl)

T−1
∑

t=0

(1− p̃(n, k, P, T, t+ 1))

×
(GL′(1)xl)

t

t!
xl = λ(yl), 1 ≤ l < ℓ.

xℓ = L(yℓ).

Proof:

Consider the l-th iteration. We want to calculate the erasure

probability of the outgoing message yl+1 based on incoming

messages (with erasure probabilities xl). The probability can

be calculated as follows (recall, that ρr is the probability, that

the outgoing edge is connected to a slot node of degree r)

yl+1 = 1−
rmax
∑

r=1

ρr

[

min(r,T )−1
∑

t=0

(1− p̃(n, k, P, T, t+ 1))

×

(

r − 1

t

)

xt
l(1− xl)

r−1−t
]

By changing the summation order we obtain the needed

result.

Remark 2: We note, that

lim
ℓ→∞

xℓ > 0.

because of finite length effects in the slot. So in what follows

we do not consider infinite number of iterations and fix ℓ.

IV. NUMERICAL RESULTS

We choose the same system parameters as in [5, 6, 12] for

honest comparison, i.e. N = 30000, k = 100, p∗ = 0.05
(maximal allowed pe).

A. Optimization procedure

The goal is to find n and corresponding G = K/V =
nK/N as well as the polynomial L(x) in order to minimize

the Eb/N0 under the maximum allowed per user error proba-

bility pe.

{L (x) , n} = argmin
L(x),n

(

Eb

N0
: pe ≤ p∗

)

The optimization procedure is conducted separately for

every K and consists of two sub-procedures. The first one
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TABLE I: Optimal node degree distribution, slot count K/G
and Eb/N0 (dB) for T = 1, 10 iterations

K L(x) G K/G Eb/N0

25 0.0928x+ 0.9072x2 0.364 68.67 3.71

50 1.0000x2 0.455 109.90 4.48

100 1.0000x2 0.490 204.06 5.89

150 0.6211x2 + 0.3789x3 0.604 248.25 7.17

200 0.4781x2 + 0.5219x3 0.643 310.91 8.31

250 0.0706x+ 0.2011x2 + 0.7283x3 0.674 370.71 9.42

300 0.1297x+ 0.8703x3 0.693 432.89 10.52

350 0.1234x+ 0.8766x3 0.698 501.62 11.62

400 0.1184x+ 0.8816x3 0.702 570.22 12.76

450 0.1247x+ 0.7991x3 + 0.0763x4 0.710 633.93 13.90

500 0.1396x+ 0.6716x3 + 0.1889x4 0.720 694.53 15.05

550 0.1474x+ 0.5906x3 + 0.2620x4 0.726 757.85 16.20

600 0.1549x+ 0.5239x3 + 0.3212x4 0.730 821.46 17.37

is to find a local minimum of pe with respect to L(x) and n
under the following constraints.

L(1) = 1, n > 0, Li ≥ 0 ∀i = 1, . . . , dmax,

where dmax is the maximum polynomial degree allowed. This

sub-procedure is performed with fixed Eb/N0. In order to find

a global minimum of pe one need to run multiple optimization

procedures starting from different random initial points within

constraints.

We expect pe to be a monotonic function of Eb/N0 and use

a binary search procedure to find the minimal Eb/N0 where

the pe ≤ p⋆ holds.

Optimal node degree distribution, slot count K/G and

Eb/N0 are shown in tables I, II and III for T = 1, 2, 4
respectively for 10 DE iterations.

The numerical results show that L(x) behaves smoothly

when varying the number of users. This means that a global

minimum is found at every optimization point. Note, that the

error probability has multiple local minima, because the slot

count changes sharply at several points.

TABLE II: Optimal node degree distribution, slot count K/G
and Eb/N0 (dB) for T = 2, 10 iterations

K L(x) G K/G Eb/N0

25 1.0000x 0.317 78.85 1.63

50 0.4443x+ 0.5557x2 0.830 60.28 3.09

100 0.2099x+ 0.7901x2 1.283 77.95 4.00

150 0.1680x+ 0.8320x2 1.358 110.49 4.92

200 0.1382x+ 0.8618x2 1.395 143.38 5.88

250 0.1205x+ 0.8795x2 1.419 176.18 6.86

300 0.1008x+ 0.8992x2 1.435 209.06 7.86

350 0.0895x+ 0.9105x2 1.448 241.74 8.87

400 0.1206x+ 0.7609x2 + 0.1185x3 1.485 269.35 9.90

450 0.1609x+ 0.5953x2 + 0.2438x3 1.518 296.52 10.92

500 0.1867x+ 0.4916x2 + 0.3217x3 1.537 325.41 11.94

550 0.2061x+ 0.4160x2 + 0.3779x3 1.550 354.95 12.97

600 0.2184x+ 0.3639x2 + 0.4177x3 1.558 385.14 14.00

TABLE III: Optimal node degree distribution, slot count K/G
and Eb/N0 (dB) for T = 4, 10 iterations

K L(x) G K/G Eb/N0

25 1.0000x 1.017 24.59 0.53
50 1.0000x 1.218 41.04 1.10

100 0.5781x + 0.4219x2 2.317 43.16 2.84

150 0.3987x + 0.6013x2 3.053 49.14 3.54

200 0.3764x + 0.6236x2 3.126 63.99 4.31

250 0.3620x + 0.6380x2 3.165 78.98 5.13

300 0.3538x + 0.6462x2 3.194 93.93 5.97

350 0.3479x + 0.6521x2 3.216 108.84 6.83

400 0.3416x + 0.6584x2 3.232 123.75 7.71

450 0.3349x + 0.6651x2 3.245 138.69 8.60

500 0.3302x + 0.6698x2 3.255 153.60 9.52

550 0.3269x + 0.6731x2 3.265 168.48 10.45

600 0.3225x + 0.6775x2 3.271 183.42 11.40

B. Simulation results with fixed number of active users

Interference cancellation algorithm was tested via Gaussian

MAC Monte Carlo simulations. The result of a single run is a

set of slots and the number of simultaneous transmissions (or

collision index) for each slot. Each user selects the number of

transmissions in accordance to L(x) and then selects particular

non-coinciding slots from uniform distribution during each

run. The same Eb/N0 is assumed for all slots.

The decoding is done in accordance to SIC algorithm.

The only thing we need to explain is how we resolve the

collisions. Error probability is set to 1 if the number of simul-

taneous transmissions within some slot exceeds the threshold

(T ∈ {1, 2, 4}). If the order of collision is less or equal to T ,

then the error probability is calculated independently for each

transmitted message in a slot in accordance to finite length

random coding bound (see Statement 1).

Monte-Carlo validation shows that developed density evolu-

tion method with 10 iterations predicts the performance pretty

well, i.e. the simulated error rate does not exceed 5% if the

minimal Eb/N0 is increased by 0.15–0.2 dB.

C. Random number of users

For now, suppose the number of users to be a random value

and suppose that this random value has a Poisson distribution

with a mean value K . Let us solve the same task, i.e. find

minimal Eb/N0 which can guarantee the mean error rate
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(under Poisson distribution) to be not higher than p∗. In order

to choose optimized polynomial L(x) for this case we again

use density evolution method. The difference in comparison

to the previous case is as follows. We need to average the

probability of error over the number of users.

With the density evolution method described above we can

find optimized polynomials L(x) and minimal Eb/N0 values

(in order to guarantee pe ≤ p∗) for the random user count

case. In Fig. 4 we present the comparison of required Eb/N0

values for deterministic and random cases. As previously the

polynomials were optimized separately for different values of

K , so for each K we have different polynomial.

We see that the difference is not big. We also note, that the

polynomials L (x) do not differ significantly when shifting

between random and deterministic user count.

V. CONCLUSION

In this paper we derived and presented achievability bounds

for T-fold IRSA scheme in the Gaussian MAC. In order to do

this we used density evolution method in combination with

random coding bound proposed by Y. Polyanskiy. To the best

of the authors’ knowledge, the bounds presented in this paper

are the best achievability bounds for low-complexity random

coding schemes, which can be used in this channel.

In order to finalize the scheme it is important to construct

user codes with the performance close to the random coding

bound. Due to the fact that we want to construct the random

access scheme the users have to utilize the same codebook.

Thus, the task of constructing same codebook codes with low

complexity decoding (say, same codebook LDPC codes) is

very important. One another research direction is considering

of a fading MAC. It will be very interesting to generalize the

results presented here for the fading scenario.

REFERENCES

[1] Y. Yuan, Z. Yuan, G. Yu, C.-h. Hwang, P.-k. Liao, A. Li,

and K. Takeda, “Non-orthogonal transmission technol-

ogy in lte evolution,” IEEE Communications Magazine,

vol. 54, no. 7, pp. 68–74, 2016.

[2] H. Nikopour and H. Baligh, “Sparse code multiple

access,” in Personal Indoor and Mobile Radio Com-

munications (PIMRC), 2013 IEEE 24th International

Symposium on. IEEE, 2013, pp. 332–336.

[3] 3GPP R1-164688, “RSMA,” Qualcomm

Inc., Tech. Rep. [Online]. Available:

https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contributionId=703444

[4] 3GPP R1-164689, “RSMA,” Qualcomm

Inc., Tech. Rep. [Online]. Available:

https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contributionId=703445

[5] Y. Polyanskiy, “A perspective on massive random-

access,” in Information Theory (ISIT), 2017 IEEE Inter-

national Symposium on. IEEE, 2017, pp. 2523–2527.

[6] O. Ordentlich and Y. Polyanskiy, “Low complexity

schemes for the random access gaussian channel,” in

2017 IEEE International Symposium on Information The-

ory (ISIT), June 2017, pp. 2528–2532.

[7] G. Liva, “Graph-based analysis and optimization of con-

tention resolution diversity slotted aloha,” IEEE Trans-

actions on Communications, vol. 59, no. 2, pp. 477–487,

February 2011.

[8] K. R. Narayanan and H. D. Pfister, “Iterative collision

resolution for slotted aloha: An optimal uncoordinated

transmission policy,” in 2012 7th International Sympo-

sium on Turbo Codes and Iterative Information Process-

ing (ISTC), Aug 2012, pp. 136–139.

[9] M. Ghanbarinejad and C. Schlegel, “Irregular repetition

slotted aloha with multiuser detection,” in 2013 10th

Annual Conference on Wireless On-demand Network

Systems and Services (WONS), March 2013, pp. 201–

205.

[10] C. Stefanovic, E. Paolini, and G. Liva, “Asymptotic

performance of coded slotted aloha with multipacket

reception,” IEEE Communications Letters, vol. 22, no. 1,

pp. 105–108, Jan 2018.

[11] F. Clazzer, E. Paolini, I. Mambelli, and . Stefanovi,

“Irregular repetition slotted aloha over the rayleigh block

fading channel with capture,” in 2017 IEEE International

Conference on Communications (ICC), May 2017, pp. 1–

6.

[12] A. Vem, K. R. Narayanan, J. Cheng, and J.-F. Chamber-

land, “A user-independent serial interference cancellation

based coding scheme for the unsourced random access

gaussian channel,” in Proc. IEEE Information Theory

Workshop (ITW), 2017, pp. 1–5.

[13] B. Rimoldi and R. Urbanke, “A rate-splitting approach

to the gaussian multiple-access channel,” IEEE Transac-

tions on Information Theory, vol. 42, no. 2, pp. 364–375,

1996.

[14] R. Tanner, “A recursive approach to low complex-

ity codes,” IEEE Transactions on information theory,

vol. 27, no. 5, pp. 533–547, 1981.

[15] T. Richardson and R. Urbanke, Modern coding theory.

Cambridge university press, 2008.

https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contributionId=703444
https://portal.3gpp.org/ngppapp/CreateTdoc.aspx?mode=view&contributionId=703445

	I Introduction
	II System model
	II-A Transmission
	II-B Joint decoding within a slot
	II-C SIC decoder

	III Density evolution
	IV Numerical results
	IV-A Optimization procedure
	IV-B Simulation results with fixed number of active users
	IV-C Random number of users

	V Conclusion

