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Abstract—We consider the problem of channel estimation in
hybrid transceiver architectures operating in millimeter wave
(mmWave) band. Due to the dynamic features of the environment
and the sensitivity of mmWave bands to blockage and deafness, it
is important to estimate mmWave channels with a low complexity
and high performance algorithm. In this regard, we exploit the
sparse structure of the frequency-selective mmWave channels and
formulate the channel estimation problem as a sparse signal
reconstruction in frequency domain. In order to solve the esti-
mation problem, we propose a multi-stage based low complexity
algorithm. Simulation results show that the proposed algorithm
significantly reduces the computational complexity while preserv-
ing the quality of the estimation.
Index Terms– Millimeter waves, channel estimation, compressed
sensing.

I. INTRODUCTION

Due to the explosive growth of high data rate services,
scarcity of bandwidth is one the main challenges in the
upcoming generation of wireless networks. Millimeter-wave
(mmWave) band contains a huge unlicensed bandwidths which
can be used to provide the high data rate services [1]. MmWave
bands have directional feature which make them sparse in
the spatial domain [2]. In addition, compressed sensing (CS)
is a signal processing technique for efficiently acquiring and
reconstructing a sparse signal. Therefore, CS is an appropriate
tool to study the channel estimation problem in the mmWave
based systems [2].

Multiple-input multiple-output (MIMO) architectures with
large antenna arrays are practical in mmWave systems. Thanks
to the small wavelength of mmWave, it is feasible to accommo-
date a large number of antenna elements in a physically limited
space and reach gigabit-per-second data rates [1]. Due to the
high path loss experienced in the mmWave frequencies, MIMO
architectures with large array gain are needed to ensure that
sufficiently high signal power can be received for successful
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signal detection. Hybrid MIMO structure turns out to be a more
feasible solution because the cost and power consumption of a
fully digital implementation is prohibitive at these frequencies.
In the hybrid MIMO structure, antenna elements are grouped
into analog subarrays and only a phase shifter is dedicated to a
single antenna element and all the rest of the components are
shared by all antenna elements in a subarray. Such a structure
can largely reduce the cost and complexity with a significantly
reduced number of hardware components [2]–[4].

Channel estimation, a critical task in any coherent commu-
nication system, is of a paramount importance in the mmWave
band [5]. We need to acquire accurate mmWave channel state
information (CSI) to fully exploit the potential advantages
of hybrid mmWave systems, which is a challenging problem
[6]. This problem was investigated in a significant number
of papers; however, most of them, see, e.g., [5], [7]–[11],
assumed a narrowband channel model and it is the main
limitation of these works. However, since mmWave systems
have wide bandwidth, developing efficient mmWave channel
estimation for frequency-selective channels is essential. In [12],
a distributed grid matching algorithm was proposed to estimate
the frequency selective mmWave channels. Also, authors in
[13], develop a sparse formulation and CS-based solution for
the wideband mmWave channel estimation problem for hybrid
architectures. However, the high computational complexity is
the main drawback of these works.

In this paper, we develop a CS-based channel estimation for
frequency-selective mmWave hybrid MIMO-OFDM systems
exploiting the sparse nature of mmWave channels. Additionally,
we formulate a sparse signal recovery problem in frequency
domain for channel estimation. The main contributions of this
paper is developing a multi-stage solution for the proposed
optimization problem which considerably decreases the com-
putational complexity while preserving the quality of recovery.

Notations: We use A∗, Ā and AT to denote the conjugate
transpose, conjugate and transpose of a matrix A, respectively.
The (m,n)-th entry of a matrix A is denoted using [A]m,n.
Similarly, [a]m denotes the m-th entry of a column vector a.
Also, [A]r,: and [A]:,c are the rth row and cth column of the
matrix A, respectively and [A]:,I is a sub-matrix of a matrix
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Fig. 1: Illustration of the OFDM based hybrid MIMO architec-
ture with analog/digital precoding and combining.

A that only contains the columns whose elements are included
in a set of column indices I. The ceiling operator is denoted
by d·e and mod(a, b) is the remainder of a when divided by b.

II. SYSTEM MODEL

Consider the mmWave MIMO-OFDM system in Fig.1,
where the the base station (BS) employs Nt antennas and
NRF RF chains with NRF ≤ Nt to communicate with a user
equipment (UE) with Nr antennas and NRF RF chains with
NRF ≤ Nr. The number of RF chains at the UE is usually
less than that of the BS’s, however, for simplicity of exposition
we assume that they are equal. In order to realize the spatial
multiplexing with low energy consumption and hardware cost,
the hybrid analog-digital architecture is exploited at both the BS
and the UE. At the BS, the training sequence s[k] ∈ CNRF×1

is first precoded using a digital precoding matrix FBB[k] ∈
CNRF×NRF at each subcarrier k = 1, . . . ,K. After that, the
symbol blocks are transformed into the time domain using NRF

K-point IFFT’s. Then, a cyclic prefix is added to the symbol
blocks before applying RF precoding matrix FRF ∈ CNt×NRF .
Note that the RF precoding matrix FRF is assumed to be
frequency-flat, while the digital precoder is different for every
subcarrier [14]. At the UE, applying RF combining matrix
WRF ∈ CNr×NRF , the received signal is combined in the
analog domain. After the cyclic prefix removal, the symbols
are transformed to the frequency domain using NRF K-point
FFT’s. Then, digital combining matrix WBB[k] ∈ CNRF×NRF is
applied to the symbols at each subcarrier k. The received signal
after processing at the kth subcarrier can be expressed as [14]

y[k] = W∗
BB[k]W∗

RFH[k]FRFFBB[k]s[k] + W∗
BB[k]W∗

RFn[k],

(1)
where H[k] ∈ CNr×Nt denotes the channel matrix at subcarrier
k, and n[k] ∼ N (0, σ2I) is the circularly symmetric complex
Gaussian distributed additive noise vector.

We consider geometric wideband mmWave channel model
with L paths to include the limited scattering characteristics
of mmWave channels [2], [13], [15]. The dth delay tap of the
MIMO channel (for d = 0, 1, . . . , D) can be written as [14]

Hd =
L∑
`=1

α`prc(dT S − τ`)ar(φ`)a
∗
t (θ`), (2)

where α` ∈ C is the complex gain of the `th channel path,
prc(τ) denotes the band-limited pulse shaping filter response
evaluated at time τ , and TS is the sampling time. Also, each

cluster ` has a time delay τ`, and angles of arrival and departure
(AoA/AoD), φ`, θ` ∈ [0, π), and ar(φ) ∈ CNr×1

and at(θ) ∈
CNt×1

denote the antenna array response vectors of the UE and
BS, respectively.

Given the geometric channel model in (2), the complex
channel matrix at subcarrier k can be written as [14], [13],
[16]

H[k] =
D−1∑
d=0

Hde
−j 2πk

K d

=
L∑
`=1

α`ar(φ`)a
∗
t (θ`)

D−1∑
d=0

prc(dT S − τ`)e−j
2πk
K d,

(3)

where d is the delay tap index and Hd is given by (2). We can
rewrite (3) as

H[k] =
L∑
`=1

α`βk,`ar(φ`)a
∗
t (θ`), (4)

where βk,` =
D−1∑
d=0

prc(dT S − τ`)e−j
2πk
K d. The channel model

in (4) can be written in matrix form as

H[k] = ArHa[k]A∗t , (5)

where Ha[k] = diag(α1βk,1, . . . , αLβk,L) is a diagonal ma-
trix, Ar = [ar(φ1), . . . ,ar(φL)] ∈ CNr×L, and At =

[at(θ1), . . . ,at(θL)] ∈ CNt×L. Further, we can rewrite (5) in
vector form as

vec(H[k]) = (Āt ⊗Ar)vec(Ha[k]), (6)

where (6) follows from the identity, vec(ABC) = (CT ⊗
A)vec(B), and ⊗ denotes the Kronecker product.

III. SPARSE FORMULATION IN THE FREQUENCY DOMAIN

By leveraging the sparse AoAs/AoDs of mmWave mas-
sive MIMO channels in the angular domain, we aim
to formulate the compressed sensing problem in the fre-
quency domain [6]. Accordingly, we define the matrices
Arq = [ar(φ̄1), . . . ,ar(φ̄Gr)] ∈ CNr×Gr and Atq =

[at(θ̄1), . . . ,at(θ̄Gt)] ∈ CNt×Gt , assuming that AoAs (φ̄j , j =

1, . . . , Gr) and AoDs (θ̄k, k = 1, . . . , Gt) are drawn from
uniform grids of size Gr and Gt, respectively, with Gr, Gt ≥ L.
By ignoring the grid quantization error, the channel matrix
model in (5) can be expressed using the extended virtual
channel model defined in [2] as

H[k] = ArqHaq[k]A∗tq, (7)

where Haq[k] ∈ CGr×Gt is an L-sparse matrix, that is, most
elements of Haq[k] are zero, and only L elements associated
with the AoAs and AoDs are non-zero. Note that unlike
Ha[k] ∈ CL×L in (5) which is diagonal, Haq[k] ∈ CGr×Gt



is not a diagonal matrix but a sparse matrix. By vectorizing
H[k], we can further obtain

h[k] = vec(H[k]) = (Ātq ⊗Arq)haq[k], (8)

where haq[k] = vec(Haq[k]) ∈ CGrGt×1 is an L-sparse vector.
Similar to the general expression in (1), we can write the

received signal at the kth subcarrier of the mth OFDM symbol
during the training phase as

ym[k] = W∗
BB,m[k]W∗

RF,mH[k]FRF,mFBB,m[k]sm[k]

+W∗
BB,m[k]W∗

RF,mnm[k],
(9)

We assume that the channel coherence time is large and the
channel can be considered constant for several consecutive
OFDM symbols. Using (8) in (9), we have

ym[k] = (fTm[k]⊗W∗
m[k]).vec(H[k]) + n̄m[k]

= (fTm[k]⊗W∗
m[k])(Ātq ⊗Arq)haq[k] + n̄m[k]

(a)
= (fTm[k]Ātq ⊗W∗

m[k]Arq)haq[k] + n̄m[k]

= Ψm[k]haq[k] + n̄m[k],

(10)

where

fm[k] = FRF,mFBB,m[k]sm[k] ∈ CNt×1,

Wm[k] = WRF,mWBB,m[k] ∈ CNr×NRF ,

n̄m[k] = W∗
BB,m[k]W∗

RF,mnm[k] ∈ CNRF×1,

Ψm[k] = (fTm[k]Ātq ⊗W∗
m[k]Arq) ∈ CNRF×GrGt ,

(11)

and the equality (a) holds because (A⊗B)(C⊗D) = AC⊗
BD [17].

Additionally, by stacking the received training signals of M
successive OFDM symbols, each with different precoders and
combiners, we can write the following sparse formulation for
the kth subcarrier

ỹ[k] = Ψ̃[k]haq[k] + ñ[k], (12)

where ỹ[k] = [yT1 [k],yT2 [k], · · · ,yTM [k]]T ∈ CMNRF×1

denotes the aggregate measurement signal, Ψ̃[k] =

[ΨT
1 [k],ΨT

2 [k], · · · ,ΨT
M [k]]T ∈ CMNRF×GrGt is the aggregate

sensing matrix, and ñ[k] = [n̄T1 [k], n̄T2 [k], · · · , n̄TM [k]]T ∈
CMNRF×1 denotes the aggregate additive white Gaussian noise
(AWGN) signal.

IV. MULTI-STAGE BASED COMPRESSED SENSING

CHANNEL ESTIMATION

In conventional algorithms, in order to precisely estimate the
mmWave channels from (12), the number of training OFDM
symbols, M , should be large enough to provide sufficiently
many independent equations and enable one to solve the esti-
mation problem [5], [12]. Luckily, we can use the compressed
sensing theory to estimate channels at each subcarrier with
much reduced pilot overhead due to the sparsity of mmWave

AoA/AoD exists

M
ulti-stage

Single-stage

Fig. 2: The multi-stage and single-stage approaches. (Up): A
multi-stage approach with two stages. Stage (1) is a coarse
grid with 5 equal segments. At stage (2), the grid refines only
around the regions that the AoAs/AoDs exist, in this example
we divide them into 4 equal segments. (Down): Single-stage
approach whit the same final resolution which searches through
the whole segments.

channels. We can find the estimated channel vector ĥaq[k] by
solving the following sparse reconstruction problem

min ||ĥaq[k]||0 subject to ||ỹ[k]− Ψ̃[k]ĥaq[k]||22 ≤ δ, (13)

where ||·||0 denotes the number of nonzero entries in a vector,
and ||·||2 is the `2 norm. Also, δ is an adjustable threshold
defining the maximum error between the measurement and the
received signal assuming the reconstructed channel between the
BS and the UE. From (13), the estimated channel for the kth
subcarrier is given by

Ĥ[k] = ArqĤaq[k]A∗tq, (14)

where Ĥaq[k] = vec−1(ĥaq[k]).
There are a great variety of algorithms to find approximate

solutions for (13). However, since the AoAs and AoDs are
generated from the continuous uniform distribution, we need
to increase the number of grid points Gr and Gt to improve
the estimation performance which leads to heavy computational
load. Therefore, we adopt a multi-stage approach to reduce
the computational complexity of the reconstruction algorithm.
To this end, we start with a coarse grid (or coarse resolution
to estimate AoAs and AoDs) and only increase the resolution
around the regions where the AoAs and AoDs are present. An
example of this procedure is shown in Fig. 2.

A. Case Study: MS-OMP

The proposed multi-stage approach is a general approach and
can be applied to different CS reconstruction algorithms. Here,
we apply this approach to the well known Orthogonal Matching
Pursuit (OMP) algorithm to solve (13). The multi-stage (MS)-
OMP algorithm is summarized in Algorithm 1, where, for



simplicity of exposition, we assume that Gr = Gt = Gs,
where Gs denotes the size of grids at the stage s. At each
iteration t, this algorithm adaptively refines the grid to achieve
better precision. The initial sensing matrix for each subcarrier
and the grid size are set to Ψ̃0[k] ∈ CMNRF×G2

0 and G0,
respectively. Also, the index of the stage is set to s = 1. Then,
the column of Ψ̃0[k] which is most strongly correlated with
the residual rt−1[k] is chosen (step 8). In step 9, the indices
of AoD and AoA corresponding to the selected column in
previous step are obtained. Next, the grid size is set to Gs and
the matrices Atq,s and Arq,s are updated so that increase the
angular resolution only around the regions where the AoDs and
AoAs are present (steps 10-12). After forming the new sensing
matrix Ψ̃s[k], the fine AoD and AoA pair index is obtained
(steps 13-14). Then, we set s = s + 1 and return to step 9
until the desired resolution is reached. The fine AoD/AoA pair
set, It, is updated in step 17 and in the next step, the channel
gains are obtained by evaluating the least square solution of
ỹ[k] = [Ψ̃[k]]:,Ith[k]. In step 19, the residual is updated by
subtracting the contributions of the chosen column vectors to
ỹ[k]. This procedure is repeated until meet the criteria in step
5, i.e., ||rt−1[k] − rt−2[k]||22 falls below the predetermined
threshold δ. Next, the algorithm constructs the vector ĥaq[k] so
that [ĥaq[k]]i = [ht−1[k]]i for i ∈ It−1 and [ĥaq[k]]i = 0, oth-
erwise (step 22). Finally, the desired estimation for subcarrier
k is given by Ĥaq[k] = vec−1(ĥaq[k]), and the corresponding
channel estimation is obtained according to (14).

B. Designing the Training Signals, Precoding and Combining
Matrices

As stated in [18], a sensing matrix can achieve the good
performance for sparse signal recovery if its elements follow
an independent identically distributed (i.i.d.) Gaussian distribu-
tion. This help us to design the OFDM training signals and
the precoding/combing matrices, appropriately. As discussed
above, we assume that for 1 ≤ m ≤ M and 1 ≤ k ≤ K,
we have

[WRF,m]p1,q1 = ejφ
1
p1,q1,m , 1 ≤ p1 ≤ Nr, 1 ≤ q1 ≤ NRF,

[WBB,m[k]]p2,q2 = ejφ
2
p2,q2,m,k , 1 ≤ p2 ≤ NRF, 1 ≤ q2 ≤ NRF,

[FRF,m]p3,q3 = ejφ
3
p3,q3,m , 1 ≤ p3 ≤ Nt, 1 ≤ q3 ≤ NRF,

[̃sm[k]]p4 = ejφ
4
p4,q4,m,k , 1 ≤ p4 ≤ NRF,

(15)
where φ1p1,q1,m, φ2p2,q2,m,k, φ3p3,q3,m, and φ4p4,q4,m,k fol-
low the i.i.d. uniform distribution U [0, 2π). Also, s̃m[k] =

FBB,m[k]sm[k] (1 ≤ m ≤ M , 1 ≤ k ≤ K ). Note that
as we assumed before, different subcarriers have the same RF
precoding/combining. Also, RF precoding/combining matrices
should meet the constant modulus property [12].

V. NUMERICAL RESULTS

In this section, in addition to complexity discussion of
the proposed algorithm, we examine the performance of the

Algorithm 1 MS-OMP based wideband mmWave channel
estimator

1: Input: Measurement signals ỹ[k] and sensing matrices
Ψ̃[k] in (12) ∀k, the number of total stages S, and a
threshold δ

2: I0 = ∅; . Empty set
3: r−1[k] = 0, r0[k] = ỹ[k]; . Set the residuals
4: t = 1; . Set the index of iteration
5: While ||rt−1[k]− rt−2[k]||22 > δ do
6: s = 1; . Set the index of stage
7: While s ≤ S
8: j = arg max

n=1,...,G2
s−1

|([Ψ̃s−1[k]]:,n)∗rt−1[k]|; .

Find AoA/AoD pair
9: gAoD

s−1 =
⌈

j
Gs−1

⌉
, gAoA

s−1 = mod(j − 1, Gs−1) + 1; .
Obtain the indices of AoD and AoA corresponding to j

10: Set Gs at the stage s
11: Atq,s = [at(θ̄1), . . .at(θ̄gAoD

s
), . . . ,at(θ̄Gs)] . update

the transformation matrix where θ̄gAoD
s
∈ [θ̄gAoD

s−1−1, θ̄gAoD
s−1+1]

with gAoD
s = 1, . . . , Gs.

12: Arq,s = [ar(φ̄1), . . . ,ar(φ̄gAoA
s

), . . . ,ar(φ̄Gs)] .
update the transformation matrix where φ̄gAoA

s
∈

[φ̄gAoA
s−1−1, φ̄gAoA

s−1+1] with gAoA
s = 1, . . . , Gs.

13: Form the sensing matrix Ψ̃s[k] using Arq,s and Atq,s

14: j = arg max
n=1,...,G2

s

|([Ψ̃s[k]]:,n)∗rt−1[k]|; . Finding

the fine AoA/AoD pair index
15: Set s = s+ 1 and return to step 9
16: End While
17: It = It−1 ∪ {j}; . Updating AoA/AoD pair set
18: ht[k] = arg min

h[k]
||ỹ[k] − [Ψ̃[k]]:,Ith[k]||2 . Channel

gains estimation
19: rt = ỹ[k]− [Ψ̃[k]]:,Itht[k] . Update the residual
20: t = t+ 1; . Update the index of iterations
21: End While
22: [ĥaq[k]]i = [ht−1[k]]i for i ∈ It−1 and [ĥaq[k]]i = 0

otherwise
23: Output: The estimated channel vector ĥaq[k], ∀k

proposed channel estimation respect to different parameters
through computer simulations.

A. Parameters

We summarize the typical parameters for our systems as
follows. Both the BS and the UE are assumed to use uniform
linear arrays, hence, at(θ) is defined as

at(θ) =
1√
Nt

[1, ej
2π
λ ds sin(θ), . . . , ej(Nt−1) 2π

λ ds sin(θ)]T , (16)

where λ is the wavelength of the signal, and ds denotes the
physical separation of antennas with ds = λ/2. For ar(φ), we
have the similar expression. The number of antennas is set to
Nt = 32 at the BS and Nr = 16 at the UE. Both the BS
and the UE have NRF = 4 RF chains. For the purpose of



simulation, the number of OFDM subcarriers is set to K = 8,
and the threshold is set to δ = 10−4. Additionally, following
parameters are assumed in generating the channels. The number
of channel paths is assumed to be L = 2, with delay τ` chosen
uniformly from [0, (D − 1)TS], with TS = 1

1760 s, which is
similar to 802.11ad wireless standard, and the AoAs/AoDs
are assumed to be uniformly distributed in [0, π). For the
pulse shaping function, prc(t), raised-cosine filter with roll-
off factor β = 0.8 is adopted [14], and the number of delay
taps is assumed to be D = 5. We assume that the MS-OMP
algorithm has two stages with (G0, G1) = (30, 5). The grid
points are uniformly distributed over [0, π), thus, the MS-OMP
algorithm has angular resolutions of 3◦. Also, for the purpose
of comparison, we consider an OMP algorithm which has the
same angular resolutions, we do this by considering single-stage
OMP with a uniformly distributed grid points with G = 60.
For performance evaluation of channel estimation we use the
Normalized Mean Squared Error (NMSE) metric defined as

NMSE =

∑K−1
k=0 ||Ĥ[k]−H[k]||2F∑K−1

k=0 ||H[k]||2F
, (17)

which will be averaged over multiple channel realizations.

B. Complexity Discussion

In this subsection, we evaluate the complexity of the pro-
posed MS-OMP method. We compare the order of complexity
of the MS-OMP algorithm with the conventional OMP algo-
rithm with the same final resolution. The complexity of two
algorithms for each subcarrier are summarized in Table I.

Fig. 3 depicts the complexity of the proposed MS-OMP
and conventional methods. As it is observed, by increasing
the number of stages, for the same resolution, the complexity
reduces surprisingly. For example, by increasing the number
of stages from 1 to 2, the order of complexity decreases by
approximately 75%.

C. Performance Discussion

Fig. 4 compares the NMSE of the proposed MS-OMP
algorithm and the conventional OMP. As we can see, the two
algorithms show similar performance characteristics but the
former requires much less computation than the latter. Also, as
we can see, the gap between the obtained NMSE for M = 10

and M = 15 for a given algorithm, increases as increasing
the SNR. Fig. 5 shows the average NMSE of MS-OMP
and OMP algorithms versus the number of training frames
M . The number of training frames M is increased from 2

to 20. Comparisons are provided for SNR = 5 dB and 15

dB. As we can see from the figure, both of the algorithms
have almost similar performance but the MS-OMP algorithm
is much less computationally complex. Also, more number of
training frames lead to better estimation error performance at
the expense of higher signaling overhead. In Fig. 6, we see
employing multiple RF chains at the BS and the UE can give
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TABLE I: Order of complexity with respect to different parameters

Parameters L M NRF G0 G1 G Total order of complexity
MS-OMP 1 1 1 2 2 - O(LMNRF(G2

0 +G2
1))

OMP 1 1 1 - - 2 O(LMNRFG
2)
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Fig. 6: Average NMSE as a function of SNR for different
numbers of RF chains used at both the BS and the UE with
M = 15 and using MS-OMP algorithm.

good improvement in the estimation performance. In this figure
we assume that M = 15 frames are transmitted for training.
The improvement in NMSE performance occurs thanks to
a larger number of measurements per training frame which
results in smaller estimation error via compressed sensing. So,
by employing larger NRF at the BS and the UE, the NMSE
performance is improved and it is preferred to decrease the
estimation error and to fully leverage the hybrid architecture in
wideband mmWave systems.

VI. CONCLUSION

In this paper, we proposed a sparse channel estimation
algorithm for wideband mmWave systems with a hybrid ar-
chitecture. Exploiting the sparsity of mmWave channels in
angular domain, we formulated a compressed sensing problem
that estimates the AoA, AoD, and the corresponding channel
gain of each path in the frequency domain. In order to reduce
the computational complexity of the spare recovery algorithm,
we employed multi-stage approach. This algorithm starts with
a coarse step and increases the resolution around the regions
where the AoAs and AoDs are present. We applied our pro-
posed method to the OMP reconstruction algorithm. Simulation
results showed that the proposed MS-OMP algorithm has a
very low complexity compare to the conventional OMP with
the same resolution, while its performance is sufficiently closed
to the conventional one.
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