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Abstract—The considerable growth in demands for wireless
services have led to spectrum scarcity challenge. Cognitive radio
came into practice to deal with the scarcity problem by granting
cognitive users access to the licensed spectrum. However, this
solution requires efficient power allocation strategies to guarantee
QoS for cognitive system, reduce power consumption, and protect
primary users from the cognitive users’ interference impact. In
this paper, we investigate the energy efficient power allocation
problem for cognitive radio networks in underlay mode. We
propose a novel approximated online Q-learning scheme for
power allocation in which cognitive users learn with conjecture
feature to select the most appropriate power level. The power
allocation problem is formulated as an optimization problem
with the goal to maximize energy efficiency under QoS and
interference constraints. The scheme is evaluated using software
defined radio testbed and simulations. The evaluation results
demonstrate the scheme capability to guarantee SINR for both
primary and cognitive systems and mitigate interference with
minimum power consumption in comparison with other schemes.

Index Terms—Energy Efficiency, Cognitive Radio, Power Al-
location, Online Q-Learning

I. INTRODUCTION

With the explosive growth of wireless networks, the radio
resources become scarce, which restricts the development
of wireless services and applications. On the other hand,
studies reveal that the licensed spectrum is underutilized since
70% of it is not used [1], while the unlicensed spectrum is
overwhelmed with communication devices [2]. Cognitive radio
(CR) is envisioned as the solution that improves spectrum
efficiency through appropriate spectrum resources allocation.
The spectrum resources allocation must not hamper the com-
munications of the primary network. Since CR network is
a highly dynamic, interference caused by the CR network
transmissions not only impact the primary users but also
compromise energy consumption of the cognitive networks. In
addition, the transmission of cognitive users over the allocated
spectrum should satisfy application QoS requirements. There-
fore, energy efficiency is a fundamental problem to consider in
the context of cognitive networks. Efficient power allocation
techniques are required to mitigate the interference impact of
the cognitive users on the primary network, maximize energy
efficiency, and maintain signal to interference and noise ratio

(SINR) for all users.
There were several proposals in the literature to study the

power allocation problem with system capacity maximization
goal. For example, the authors in [3] proposed a distributed
power allocation to maximize the system capacity, where
they consider cognitive Gaussian multiple access channels
on which the maximization is formulated as a standard non-
convex quadratically constrained quadratic problem. In [4], the
cognitive users’ throughput is maximized with assurance of
primary users data rate. A power control problem in cognitive
networks, which maximizes data rate under primary users’
interference power constraint is investigated in [5]. In [6],
power allocation scheme is proposed in underlay cognitive net-
works with arbitrary input distributions. Resource allocation
with energy consideration has been studies in [7], focusing
on the maximization of the system throughput for unit-energy
consumption of the transmission of second users while meet-
ing the interference constraints requirement. The authors in
[8] proposed multiple sub-algorithms to manage the cognitive
interference and improve both the spectrum efficiency and
the energy efficiency of cognitive users while maximizing the
sum effective capacity of the cognitive network. The power
control problem has also been studied in [9] using game
theory based on cost function, in which each user tries to
minimize its own cost to achieve the target SINR. The cost
function in [9] has been defined as a weighted sum of power
and square of SINR error. Most of the researchers focus on
the development of power control algorithms in the cognitive
network and neglect the interaction of primary network, which
makes power control techniques similar to ones applied to
non-cognitive networks. In addition, all the proposed resource
allocation schemes consider specific model of the network and
ignore the fact that the cognitive networks are dynamic and
unpredictable. Machine learning has been utilized for power
allocation in cognitive networks as in [10] and [11]. However,
these schemes targeted maximization of the data rate of the
cognitive users with relaxed constraints in which primary
users interference is not considered. In addition, they use
typical Q-learning without approximation which compromises
the convergence speed as the computation required increases.

To the best of our knowledge, our scheme is the first for



power allocation using approximated and conjecture based
online Q-learning with energy efficiency consideration. Ap-
proximated online Q-learning with conjecture feature allows
cognitive users to surmise the power allocation strategies of
each other without explicit cooperation.

In this paper, we propose a novel distributed power alloca-
tion scheme that aims to minimize power consumption of the
cognitive network with SINR efficiency tracking. It exploits
computation efficient approximated online Q-learning, where
each cognitive user conjectures other cognitive users’ strate-
gies for power allocation and the Q-value is approximated.
This enhances the scheme capability to determine the most
appropriate transmission power. The contributions of the paper
can be summarized as:
• Energy efficient power allocation scheme in CR with con-

sideration of interference to primary users, the maximum
allowed power for the cognitive users and QoS for all
systems.

• An approximated online Q-learning algorithm is devel-
oped to allocate transmission power in a distributive man-
ner. The approximation of Q-value in the learning reduces
the considered state space which minimizes the required
computation to reach the ultimate power allocation policy.

• A conjecture feature is developed in the proposed online
Q-learning which allows each cognitive user to conjecture
the power allocation policy of other cognitive users in the
network without explicit cooperation. This will enhance
the efficiency of the selected power allocation policy in
addition to elimination of the overhead of cooperation
among the cognitive users in such dynamic environment.

• The power allocation policy selection probability is de-
rived as a graded function of Q-value, where all the
allocation policies are ranked according to their Q-value.
Thus, the power allocation policy with the highest Q-
value will be selected.

The rest of the paper is organized as follows, the system
model and problem formulation are described in Section II.
Section III presents the online Q-learning mechanism for
power allocation. The evaluation results are discussed in
Section IV and the paper concludes in Section V.

II. SYSTEM DESCRIPTION

In this section, the system model of the considered cognitive
network and the energy efficiency optimization problem are
described.

A. System Model

We consider the infrastructure topology with orthogonal
frequency division multiple access (OFDMA to access the
shared spectrum, where there are multiple cognitive users
(CUs) associated with a cognitive base station (BS). This
cognitive BS operates under the coverage of a primary BS
with primary users (PUs) associated with it as in Fig. 1. The
focus of this work is on the uplink connection. There are N
CUs uniformly distributed and the channel state information is
assumed to be captured by cognitive receiver. The transmission
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Fig. 1. System Model

power and the channel gain (between CU and its cognitive BS)
for each CU i are denoted as Pi and Hi respectively. The SINR
at the cognitive BS communicating with ith CU is expressed
as follows,

γi(Pi) =
PiHi∑N

j=1,j 6=i PjHji +
∑K
k=1 PkHki + σ2

(1)

where Pj is the transmission power of other CUs, Hji is the
gain between CU j and CU i, Pk is the transmission power of
the primary user k, Hki is the gain between CU i and PU k,
and σ2 is the noise power. The SINR of the primary system
is given by,

γk(Pk) =
PkHk∑N

i=1 PiHik + σ2
(2)

where Hik is the gain between CU i and PU k
In this model, we aim to satisfy three objectives: (i)

maximize the energy efficiency of the cognitive network. (ii)
Limit the interference caused by the cognitive transmissions to
the primary network (denominator of (2)) to the interference
threshold ITh. (iii) Maintain SINR requirements for CUs and
PUs.

In CR networks, each CU transmits its information over
the air, which is a common medium for all transmitters and
this creates the interference between the CUs and other users.
The interference plus fading, multi-path and background noise
cause signal distortion as it is traveling from the source to
the destination. In addition, transmission power is an essential
commodity for the CUs as they are battery powered. Therefore,
user satisfaction in such network is determined according to
transmission power and SINR.

B. Problem Formulation

In order to achieve objectives stated in the system model,
the proposed objective function of the power allocation must
account for the following:
• The energy efficiency which is a function of CU’s trans-

mission power Pi, circuit power, and CU’s SINR. The
SINR is a function of CU i transmission power Pi and
the transmission power of other users P (−i).

• When CU i increases its transmission power, this in-
creases its SINR. However, this will decrease the SINR
for other CUs.

Information are sent in the cognitive networks in the form
of frames. The achieved throughput T with assumption that



all errors in the received signal can be detected by the system
and the incorrect data can be re-transmitted is evaluated as
follows,

T = R ∗ φ(γ) (3)

where R = B(1 + log2(γi(Pi))) is the data rate and φ(γ) is
the efficiency function of transmission, which depends on the
SINR and φ(γ) ∈ [0, 1]. The energy efficiency of CU i with
transmission power Pi is defined as the number of information
bits received successfully per joule of the energy consumed as
follows,

EEi(Pi, P−i) =
Rφ(γi)

Pi + Pc
(4)

where Pc is the circuit power consumption.
The efficiency function φ(γ) is defined as a sigmoid func-

tion, which is an exponential ratio of the targeted SINR and
the achieved SINR as follows,

φ(γi) = exp
(
− (

cΓi
γi

)v
)

(5)

where c and v are non-negative weighing factors. The ef-
ficiency function defined in (5) is sigmoidal function with
φ(∞) = 1 and φ(0) = 0 to maintain EEi = 0 when Pi = 0.
The energy efficiency function in (4) now is given as follows,

EEi(Pi, P−i) =
R

Pi + Pc
exp

(
− (

aΓi
γi

)b
)

(6)

The function in (6) shows a tradeoff between the throughput
and the power consumed. When the target SINR is fixed,
the energy efficiency function still can be tuned using the
weighing factor c. Consequently, CU i transmission power
is adjusted according to the maxima of the energy efficiency
function. The energy efficiency increases by decreasing c and
reducing the transmission power. However, this will reduce the
target SINR of the system. The primary system will broadcast
the best value of c to the cognitive network to tune the
target SINR according to the experienced interference (i.e. the
primary system will broadcast low value of c if the experienced
interference reaches the interference threshold.

The energy efficient power allocation problem is defined as
follows,

max
Pi∈P

EEi(Pi, P−i) =
R

Pi + Pc
exp

(
− (

aΓi
γi

)b
)
s.t (7)

C1 :

N∑
i=1

Pi ≤ Pmax

C2 :

N∑
i=1

PiHik + σ2 ≤ ITh

C3 : γi(Pi) ≥ Γi, γk(Pk) ≥ Γk

The constraint C1 ensures the total transmit power of each
cognitive user is lower than its corresponding power budget.
Constraint C2 guarantees that the permissible interference
power and noise level generated by cognitive transmission
do not exceed the tolerance interference ITh for the primary

system. The QoS requirements of cognitive system and pri-
mary system are represented by their achieved SINRs that are
maintained through C3, where Γ is the SINR threshold.

III. ONLINE Q-LEARNING ENERGY EFFICIENT POWER
ALLOCATION MECHANISM

In this section, we assume that all CUs learn in team
game with a common goal of finding a power allocation
policy to maximize the objective function given in (7) using
approximated online Q-learning [12]. Online Q-learning is a
model-free reinforcement learning technique. Specifically, it
can be used to find an optimal action-selection policy. It works
by learning an action-value function that ultimately gives the
expected utility of taking a given action in a given state
and following the optimal policy thereafter. The considered
network environment includes a discrete set of states X and a
discrete set of actions A. At each time step t, the learning agent
acquires network state information X and selects certain action
to perform. Consequently, the environment makes a transition
to state X ′ at time step t + 1 with probability TXX′(a) and
receive certain reward RW = RW (X, a). This process is
iterative and repeated infinitely to converge to an optimal
decision-making policy π that maximizes the total received
reward. This policy is a mapping from environment states to
probability distributions over actions.

Each CU has the role of a learning agent, which aims to
reach optimal power allocation strategy for different network
states. The online learning parameters are defined as follows:
• State since there is no cooperation among the competing

CUs, they only rely on the local observation to define
their environment state at certain time instant t. The state
observed by CU i is defined as,

Xt
i = (i, Pi, γi,Γi,Γk) (8)

• Action: the action is defined as the CU i transmission
power (Pi).

• Reward: the reward function is defined for the
state/action pair as the energy efficiency objective func-
tion RWi(Xi, Pi, P−i) = EEi(Pi, P−i).

We evaluate the optimal Q-value of CU i as the current
expected reward plus a future discounted reward when all other
CUs follow the optimal strategy as follows,

Q∗i (Xi, Pi) = E[RWi(Xi, Pi, P−i(Xi))]

+β
∑
X′i∈Xi

TXi,X′i
(Pi, P

′
−i(Xi)) max

P ′i∈Pi

Q∗i (X
′
i, P
′
i ) (9)

where TXi,X′i
(.) is the state transition probability, P ′i is the

action associated with state X ′i , and β is the discount factor.
The employed online Q-learning scheme aims to reach the
optimal Q-value defined in (9) in a recursive way using the
information (Pi, Xi, X

′
i) with the two states Xi = Xt

i and
X ′i = Xt+1

i observed at the time instant t and t + 1 respec-
tively. The update rule for the online Q-learning employed to
reach the optimal Q-value is given by,

Qt+1
i (Xi, Pi) = (1− ζt)Qti(Xi, Pi) + ζt



{ ∑
P−i∈P−i

[RWi(Xi, Pi, P−i) + β max
P∗i ∈Pi

Qti(X
′
i, P
′
i )
}

(10)

where ζ ∈ [0, 1) is the learning rate. The considered online Q-
learning model here is a stochastic approximation method that
solves the Bellman’s optimality equation associated with the
discrete time environment. Online Q-learning does not require
explicit state transition probability model and it converges with
probability one to an optimal solution if

∑∞
t=1 ζ

t is infinite,∑∞
t=1(ζt)2 is finite, and all state action pairs are visited in-

finitely often [13]. Balancing exploration and exploitation is an
essential issue in the stochastic learning process. Exploration
aims to try new allocation strategies so it does not only apply
the strategies it already knows to be good but also explore
new ones. Exploitation is the process of using well-established
strategies. The most common technique to achieve exploration
vs exploitation balance is to use the ε-greedy selection [14],
where ε is the percent of the time that an agent takes a
randomly selected action rather than taking the action that is
most likely to maximize its reward given what it knows so far.
It usually starts with a lot of exploration (i.e. a higher value for
ε). Over time, as the agent learns more about the environment
and which actions yield the most long-term reward, it steadily
reduce ε as it settles into exploiting what it knows. However,
ε-greedy selects equally among the available actions i.e. ( the
worst action is likely to be chosen as the best one). In order to
overcome this drawback, the action selection probabilities are
varied as a graded function of the Q-value. The best power
level is given the highest selection probability, while all other
levels are ranked according to their Q-values. The learning
algorithm exploits Boltzmann probability distribution [15] to
determine the probability of the resource allocation action that
fulfills the energy efficiency maximization constraints in C1 to
C3. Thus, the action Pi in state Xi is selected at t with the
following probability,

πti(Xi, Pi) =
eQ

t(Xi,Pi)/τ∑
P ′i∈Pi

eQ
t(Xi,P ′i )/τ

(11)

where τ is a positive integer that controls the selection
probability. With high value of τ , the action probabilities
become nearly equal. However, low value of τ causes big
difference in selection probabilities for actions with different
Q-values. One issue to report is that the CR environment has
a large space. Therefore, the curse of dimensionality increases
the required computations and makes it unfeasible to use the
typical online Q-learning methodology to maintain the Q-value
for each state/action pair, which slows the system convergence.
Therefore, we propose a brief representation for the Q-values
in which they are approximated as a function of much smaller
set of variables to account for the curse of dimensionality. The
brief representation of Q-value focuses on a countable state
space X∗ using the function Q′ : X∗×Y , which is referred as
a function approximator. The parameter vector ξ = {ξz}Zz=1 is
adopted to approximate the Q-value by minimizing the metric
of difference between Q∗(Xi, Pi) and Q′(Xi, Pi, ξ) for all
(Xi, Pi) ∈ X∗ × Pi. Thus, the approximated Q′ value is

formalized as follows,

Q′(Xi, Pi, ξ) =

Z∑
z=1

ξzψz(Xi, Pi) = ξψT (Xi, Pi) (12)

where T denotes the transpose operator and the vec-
tor ψ(Xi, Pi) = [ψz(Xi, Pi)

Z
z=1] with a scalar function

ψz(Xi, Pi) defined as the basis function (BF) over X∗ × Pi,
and ξz(z = 1, ...., Z) are the associated weights. A gradient
function ψ(Xi, Pi), which is a vector of partial derivative with
respect to the elements of ξt, is used to combine the typical
online Q-learning model defined in (10) with the linearly
parametrized approximated online learning proposed.

The Q-value update rule in (10) is reconstructed to include
the parameter vector updates as follows,

ξt+1ψT (Xi, Pi) =
{

(1− αt)ξtψT (Xi, Pi)+

αt
[
RWi(Xi, Pi, P−i) + β max

P ′i∈Pi

ξtψT (X ′i, P
′
i )
]}
ψ(Xi, Pi)

(13)
The probability of selecting certain action presented in (11) is
updated with the Q-value approximation as follows,

πt(Xi, Pi) =
eξ

tψT (Xi,Pi)/τ∑
P ′i∈Pi

eξtψT (Xi,Pi)/τ
(14)

The optimal Q-function, Q∗i (Xi, Pi) for all (Xi, Pi) ∈
X×Pi, defines the optimal joint power allocation strategy and
captures the team game structure. For each network state Xi ∈
X, the CUs play a team stage game Ψx = [N, {Pi}, Q∗(X, .)]
and consider Q∗(X, .) to be independent. Note that the action
in the game is jointly generated by the N independent CUs
in a distributed manner. A joint power allocation action Pi
is optimal if Q∗i (Xi, Pi) ≥ Q∗i (Xi, P

′
i ) for all P ′i ∈ Pi. We

assume that the power allocation strategies of different CUs do
not change significantly in the same network states. The initial
network state process {Xi(t)} evolves following irreducible
and Harris recurrent Markov chain [16].

The similarity between two network states Xi and X ′i can
be determined in term of Hamming distance [17], which
is denoted by D(X,X ′). Thus, each CU can conjecture
the power allocation strategies employed by other CUs for
the current network state through making use of historical
knowledge. This knowledge up to time instant t is given by,

F (t) = ({Xi(b), Pi(b)}tb=1, {RWi(Xi(bz), Pi(b))}t−1b=1)
(15)

In each time instant t, every CU checks the Hamming dis-
tance between the current state Xi(t) and the state Xi(b)
in F (t) and obtains a set X∗F (Xi(t), F (t)), which includes
the F most recent observations from F (t) that minimizes∑F
f=1D(Xi(t), Xi(b)). Let us define E(Xi(t), .) as the com-

mon reward that all CUs receive after they perform the joint
power allocation action Pi ∈ Pi and is set to be 1 if
Pi = maxP ′i∈Pi

Qi(Xi(t), P
′
i ) and 0 otherwise. Since the

CUs learn in a distributed manner, we choose P”
i (Xi(t)) for

each CU i to denote the set of joint actions that output the
payoff 1 in state Xi(t). The mechanism of power allocation



for CU i that maximizes its energy efficiency is illustrated
in Algorithm 1. We assume that each CU i updates its
transmission power at time instances Ti = {t, t + 1, ....}|
where t < t + 1. Suppose two integers l and q that satisfy
1 ≤ l ≤ F ≤ q. The algorithm starts by checking the learning

Algorithm 1 Energy Efficient Power Allocation Algorithm
Require: CU i, t = 1, power vector P = [P1, .....PN ], Network

state Xi(t)
Ensure: proper Pi(t) that maximizes the function in (7)

1: BEGIN
2: initialization of Learning
3: for each(Xi, Pi ∈ Pi) do
4: initialize power allocation strategy πt(Xi, Pi);
5: initialize approximated Q-value ξtψT (Xi, Pi);
6: end for
7: if (t < q + 1) then
8: Select action Pi according to πt(Xi, Pi) in (14);
9: if (C1 to C3 are satisfied ) then

10: RWi(Xi, Pi) is achieved
11: else
12: RWi(Xi, Pi) = 0
13: end if
14: else
15: Update P”

i (Xi(t)) = {Pi|E(Xi(t), Pi) = 1} for Xi(t)
16: Randomly select PF (X∗(Xt

i , F (t))) out of F joint actions
associated with X∗(Xt

i , F (t))
17: Calculate E′(Xi(t), P

′
i )} according to (16) and populate

Po
i (X(t))

18: if (i.1) and (i.2) are satisfied then
19: select action from

Pi ∈ PF (X∗F (Xi(t), F (t))) ∩ P”
i (Xi(t))

20: else
21: select action from Po

i (Xi(t))
22: end if
23: end if
24: Update ξt+1

i ψT (Xi, Pi) according to (13)
25: Update πt+1

i (Xi, Pi) according to (14)
26: Xi = Xt+1

i

27: t = t+ 1
28: END

condition, if t < q + 1, all CUs select their transmission
power according to the probability in (14). From t = q + 1,
each CU i selects l records PF (X∗F (Xi(t), F (t))) from the
F joint actions with respect to X∗F (Xi(t), F (t)). If (i.1)
there is a joint power allocation action P = (Pi, P−i) ∈
P”
i (X(t)) such that P ′−i = P−i for all P ′ = (P ′i , P

′
−i) ∈

PF (X∗F (Xi(t), F (t))). (i.2) there exists at least one joint
action Pi such that Pi ∈ PF (X∗F (Xi(t), F (t))) ∩ P”

i (X(t)),
then, CU i selects the power allocation action Pi(b

∗) where
b∗ = maxb{b|Pi(b) ∈ PF (X∗F (Xi(t), F (t))) ∩ P”

i (X(t))}. If
the conditions (i) and (ii) are not met, CU i selects the action
from Poi (X(t)) = {Pi|Pi = maxP ′i E

′(Xi(t), P
′
i )}, where,

E′(Xi(t), P
′
i ) =

∑
P−i

E(Xi(t), Pi)
Ati(Xi(t), P−i)

q
(16)

The expected value in (16) is calculated using the q
records selected from F most recently performed actions.
Ati(Xi(t), P−i) denotes the number of times the other CUs
perform the joint action P−i in state Xi(t).

IV. PERFORMANCE EVALUATION

In this section, we demonstrate the performance of our pro-
posed power allocation scheme. The performance is evaluated
using simulation and testbed implementation using Software
Defined Radio (SDR).

A. Simulation Results

We consider a system that comprises a single-cell cognitive
radio and a single primary BS with 15 cognitive users asso-
ciated with the cognitive BS and uniformly distributed. The
system assumes fixed frame size and no coding for forward
error correction. The propagation model considered in the
simulation includes path gains with deterministic function and
path loss component κ with the distance between the CU i
and the cognitive BS as follows,

Hi =
K

dκi
(17)

where di is the distance between the CU i and the cognitive
BS, κ = 4, and K = 0.097 is a constant. This value of K =
0.097 is selected to establish a transmit power of 0.5 W for a
CR terminal operating at 1140 meters from the cognitive BS.
All CUs start with initial transmission power Pi = 2.2×10−16

W and τ = 10−5. The weighing factors are tuned according to
the primary system feedback to achieve the target SINR. The
rest of simulation parameters are stated in Table I. The results

Parameter Value
Pmax
i 0.5 W

Number of bits per frame L 80
Cognitive system SINR threshold Γi 10 dB
number of primary users 3
Noise power (N0) -86 dBm
Data rate 10 Kbps
Discount factor β 0.7
Learning rate ζ 0.3

TABLE I
SIMULATION PARAMETERS

obtained are compared with the performance of the OFDMA
power allocation scheme (OFPA) proposed in [8], the machine
learning power allocation scheme (MLPA) proposed in [10],
and the fair power control algorithm using game theory (F-
NPG) proposed in [18]. In this simulation, we evaluate the
performance of the power allocation scheme in terms of the
average SINR achieved for the cognitive system, its average
power consumption, the average SINR of the primary system,
and the average energy efficiency of the cognitive system.

The average cognitive users SINR is plotted as a function
of the number of iterations in Fig. 2 (a). The figure shows
that the proposed algorithm maintains the average SINR of
the cognitive system at 12 dB, which is above the threshold.
In addition, it shows that our proposed scheme is the fastest
in convergence compared to other competing algorithms in-
cluding the legacy Q-learning. Fig. 2 (b) presents the power
consumed for transmission for the proposed scheme compared
to other algorithms. We can observe that it has a significant
saving in the power consumed. The result obtained from Fig.
2 (b) indicates that the amount of interference measured at
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the primary system for the proposed algorithm is the lowest.
This feature makes our scheme the best for maximizing the
spectrum sharing and QoS guarantees in both primary and
cognitive systems. The QoS of the primary system is evaluated
as the average SINR against the transmission power of the
cognitive users. The primary system SINR threshold is chosen
to be 14dB. Fig. 2 (c) shows the average primary SINR
achieved by our scheme compared to other algorithms. We
notice that the SINR is kept above the threshold regardless
of the increase of the average cognitive user transmission
power, which is not the case for other algorithms. Fig. 3
presents the achieved energy efficiency of the cognitive system
comparing our proposed scheme with the machine learning
scheme (MLPA). The figure shows that our proposed scheme
outperforms MLPA not only in the achieved energy efficiency
but also in the convergence speed.

As a result, the proposed online Q-learning power allocation
scheme shows tremendous performance improvement in terms
of SINR, power consumption, and interference mitigation. The
use of the conjecture feature in online Q-learning allows the
system to be aware of other cognitive users power allocation
strategies and supports the appropriate selection of the trans-
mission power.

B. Testbed Implementation

The testbed is implemented using GNU Radio and USRP-
N210 SDR platform [19]. The USRP-N210 is employed to
obtain spectrum occupancy information represented by the

power level of the primary users. This information is sent
from the SDR platform to the GNU blocks for processing via
Ethernet interface. Data transmission and information acqui-
sition is processed separately. Therefore, GNU time frame is
divided into two periods: one for data processing and one for
data transmission. The network model comprises primary and
cognitive users transmit in the same band, which is 2.4 GHz
ISM band. The number of available channels is assumed to be
equal to the number of primary users. The frequency starts at
2.404GHz, which is channel 1 and ends at 2.444 GHz, which is
channel 11. The optimization part from game theory functions
to adapt transmission power in order to allocate channels with
minimum interference. The bitrate of the primary system is
500kb/s with 1 MHz bandwidth. The size of the transmitted
frames is 1500 bytes. The traffic of primary users is based on
ON-OFF mechanism as in [20] where frames are generated
every 30ms within the ON time.

The implementation setup incorporates four USRP-N210,
they are labeled as A, B, C and D. USRP A acts as a cognitive
transmitter, B as a spectrum monitor, C as a cognitive receiver
and D as a primary transmitter. Daughter board used in this
implementation is RFX2400, which covers frequencies from
2.3GHz to 2.9GHz. As we follow the underlay spectrum access
paradigm, we have only one channel for testing and it was
channel 2. The testing was conducted in isolated area where
there is no external interference. The spectrum information is
collected via USRP B, which represents the spectral occupancy
of the primary system and the corresponding power level.
Cognitive users with their resource allocation scheme are
capable to adapt their radio transmission parameters according
to the information obtained from USRP B. We demonstrate
the capability of our scheme through the obtained results in
this implementation. The evaluation aims to demonstrate the
scheme capability to maintain the average SINR for both cog-
nitive and primary systems with variable transmission power
of both. As we can see in Fig. 4, The SINR achieved at the
cognitive receiver remains above the threshold regardless of
the primary user transmission power even at low transmission
power level where primary detection is difficult. Moreover,
when primary user power is high, the cognitive user increases
its power as the primary user can tolerate more interference.
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Fig. 5 presents the average SINR of the primary system as a
function of the cognitive user transmission power. The primary
SINR is maintained above the threshold. Due to the hardware
resources limitation, the figure focus is on the area below the
cognitive user power threshold. The reason is that cognitive
user transmission power cannot exceed the threshold which
is 0.5 W. Otherwise, it will interfere with the primary user
transmission.

V. CONCLUSION

We presented in this paper an online Q-learning based
power allocation scheme that is non-cooperative in an underlay
spectrum sharing paradigm, where primary user and cognitive
user can share the spectrum with the constraint of minimum
interference to primary users. The scheme not only considers
power allocation that assures protection to primary users
activities, but also addresses QoS issues when cognitive users
access the spectrum. In addition, the scheme exploits online Q-
learning to conjecture the power allocation of other cognitive
users in the system, which brought significant improvement in
the achieved performance. The performance of the scheme is
demonstrated by both simulation and testbed implementation.
The results show that our scheme achieved the maximum
SINR, and minimum power consumption compared to other
schemes.
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