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Abstract—Internet of Things (IoT) has been emerging as one of
the use cases permeating our daily lives in 5th Generation wireless
networks, where status update packages are usually required to
be timely delivered for many IoT based intelligent applications.
Enabling the collected raw data to be preprocessed before trans-
mitted to the destination can provider users with better context-
aware services and lighten the transmission burden. However,
the effect from data preprocessing on the overall information
freshness is an essential yet unrevealed issue. In this work we
study the joint effects of data preprocessing and transmission
procedures on information freshness measured by peak age of
information (PAoI). Particularity, we formulate the considered
multi-source preprocessing and transmission enabled IoT system
as a tandem queue where a priority M/G/1 queue is followed by a
G/G/1 queue. Then, we respectively derive the closed-form and an
information theoretic approximation of the expectation of waiting
time for the formulated processing queue and transmission queue,
and further get the analytical expressions of the average PAoI
for packages from different sources. Finally, the accuracy of our
analysis is verified with simulation results.

I. INTRODUCTION

As one of the promising technologies for the 5th Generation

(5G) wireless networks, Internet of Things (IoT) has attracted

significant attention from both academia and industry in recent

years [1], [2]. With the help of IoT, devices can sense and even

interact with the physical surrounding environment, thereby

providing us with many valuable and remarkable context-

aware applications to improve the quality of our lives at an

efficient cost [3]. Limited by the resource for data trans-

mission, the collected raw data in IoT networks are usually

preprocessed before transmitted to the final destination (e.g.,

actuator or monitor) to provide users with better context-aware

services [4], which may be enabled, for instance, by resorting

to the new emerging edge/fog computing technology [5].

Wherein, many IoT based intelligent applications, including

the automatic control of electric appliance [6], intelligent trans-

portation network [7], and event monitoring and predication

for health safety [8], require fresh information for devices to

response with adequate action.

In order to quantify the level of “freshness” from the

information delivered, age of information (AoI) [9] and peak

age of information (PAoI) [10] have been recently introduced.

Particularly, AoI measures the time elapsed since the latest

received update package was generated, while PAoI provides

information about the maximum value of AoI for each update.

Since PAoI captures the extent to which the update information

is stale, it has been regarded as an efficient new metric to

investigate the freshness of the delivered information in IoT

networks with a single data source [10], [11] and multiple data

sources [12]–[14]. Considering the system with a single source

and one destination, authors in [10] and its journal version

[11] analyzed the effects of different data management policies

(discard or replacement in the buffer) on PAoI by modeling

distinct queueing models, and meanwhile analyzed their effec-

tiveness on performance improvement in different scenarios.

Focusing the IoT networks with multiple data sources, work

[12] analyzed the system performance by considering general

service time distributions, and tried to optimizing the packages

arrival rates to minimize its defined average PAoI-related

system cost. In [13] the serving policies of preemption and

package discard were allowed for the first-come-first-served

(FCFS) based transmission when the transmitter was busy,

and expressions of the average PAoI were derived. Authors

in [14] considered the interactions among distinct transmission

links and proposed link scheduling algorithms to minimize the

maximum PAoI of packages from different sources.

While good studies on PAoI have been presented for IoT

networks with multiple data sources [12]–[14], these work

treated the data aggregator purely as a transmitter and thus do

not apply to cases where the data shall be preprocessed (e.g.,

data compression and aggregation) to filter out the redundancy

or even extract the “intrinsic content” from collected raw data

before any transmission procedure begins. As such, it calls for

a focus on investigating the joint effect of data preprocessing

and transmission on PAoI. The most related work to this

topic comes from [15], which studied the wireless camera

networks consisting of multiple sources and fog nodes, and

proposed a modular optimization algorithm to minimize the

achieved maximum PAoI by optimally assigning processing

nodes and scheduling transmission links. However, the effect

of the processing procedure (e.g., processing policy and time)

and update package arrival rate on information freshness has

not been jointly investigated in [15] nor, to the best of our

knowledge, in other existing researches.

In this paper, we consider an IoT network that consists of

a data aggregator and a destination. The aggregator will first

preprocess the status update packages generated from multiple

sources with different priorities and then forward the processed
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Fig. 1. Illustration of the tandem queueing model for the considered IoT
network.

data to the destination node (e.g., actuator or monitor) via

a wireless channel according to the FCFS discipline. We

establish a tandem queue to model the joint effect from data

preprocessing and transmission, which is general and captures

all the key features in an IoT network, including the priori-

tized data processing, queueing, and wireless channel fading.

Moreover, we respectively derive a closed-form expression

and an information theoretic approximation of the expectation

of waiting time for the processing queue and transmission

queue, and further get the analytical expressions of the average

PAoI for packages from different sources. Simulation results

show that it’s plausible to qualitatively capture the variation

trend of the average PAoI with our theoretical analysis, when

the processing time is dominating or comparable with the

transmission time, e.g., for computation intensive applications.

II. SYSTEM MODEL

A. Network Model

We consider an IoT system which consists of J data sources,

denoted by S = {S1, S2, · · · , SJ}, a data aggregator that is

able to perform data preprocessing as well as transmission,

and a destination node, as depicted in Fig. 1. Each source

keeps collecting information from the ambient environment

and periodically updates the status to the aggregator, whereas

the data packages from source Sj arrive at the aggregator

according to an independent Poisson distribution with param-

eter λj , ∀j ∈ J = {1, 2, · · · , J}. Upon receiving the status

information, the aggregator conducts a preprocessing to the

data packages before forwarding them to the destination node.

As significance of information from each source can vary with

respect to the content, we allow the aggregator to process the

incoming packages with different priorities. Without loss of

generality, we assume the data from Si has a higher priority

than that from Sj if i ≤ j. In this regard, a generic data

package can only be processed if there is no data package with

a higher priority waiting to be processed. For an income data

package with the j-th priority, we denote Cj and C̃j (C̃j < Cj )

as the size before and after data processing, respectively, and
Cj−C̃j

τj
represents the corresponding processing time, where τj

is the equivalent processing rate of the aggregator related to the

Fig. 2. Example of the AoI evolution process for the j-th source at the
destination node. The time instant of package arrival at the aggregator and
the destination node are marked as N and •, respectively.

specific operation made on the data. As such, the preprocessing

subsystem is formulated as a priority M/G/1 queue where the

size of buffer is infinite.1

Once a data package finishes preprocessing, it will be

pushed into an infinite-size queue at the transmitter according

to the first-come-first-served (FCFS) discipline. We term this

buffer the transmission queue. At the transmitter side, we

consider each package is sent with constant power pA, and

the propagation channel is subjected to small scale Rayleigh

fading with unit mean and large scale path loss that follows

power law, with path loss exponent α > 2. In addition, the

spectrum for data transmission occupies a bandwidth of B Hz.

B. Age of Information

We denote tj,n the time instant when the n-th package

from Sj arriving at the aggregator, and denote with t̂j,n the

time instant that this package arrived at the destination node.

Meanwhile, the age of information (AoI) of source Sj is

defined as ∆j(t) = t − uj(t), where uj(t) is the generation

time of the most recently received package from Sj until time

instant t [9]–[14]. An example of the AoI evolution process

∆j(t) for the j-th source is illustrated in Fig. 2.2 It can be seen

that the n-th peak value of ∆j(t) is achieved just before the

n-th package arrives at the destination node, which is defined

as the peak age of information (PAoI) corresponding to the

(n− 1)-th received package and denoted by ∆j,n, i.e.,

∆j,n =

{

∆j (0) + t̂j,n, n = 1

Xj,n + Yj,n, n > 1
(1)

where ∆j(0) denotes the initial age of the last received data at

the start time, Xj,n represents the time interval between tj,n

1We note that the following analysis also holds when we consider another
function mapping from each (Cj , C̃j) to a positive real number (i.e., the
processing time), since a priority M/G/1 queue can also be formulated in that
scenario.

2Similar as previous studies [12], [13], we consider the time spent on the
transmission from sources to the aggregator negligible since they are generally
integrated as a complete system and connected via high speed wired links.



and tj,(n−1), and Yj,n represents the time interval between

t̂j,n and tj,n, i.e., Xj,n = tj,n − tj,(n−1) and Yj,n = t̂j,n −
tj,n. Next, we provide detailed analyses for the joint effects of

the preprocessing and transmission procedures on the achieved

average PAoI for packages from different sources.

III. AVERAGE PEAK AGE OF INFORMATION

To start with, the following lemma presents a general form

of the average PAoI for each source.

Lemma 1: The average PAoI attained for source Sj is

∆j =
1

λj

+ τj
Cj − C̃j

r
+ E

[

WP
j

]

+ E
[

ZT
j

]

+ E
[

WT
j

]

(2)

where E[WP
j ], E[ZT

j ], and E[WT
j ] represent the expected time

spent in the preprocessing queue, the transmission stage, and

the transmission queue, respectively.

Proof: By ergodicity, the average PAoI for source Sj can

be calculated as

∆j = lim
t→∞

1

Nj (t)

(

∆j (0) + t̂j,1 +
∑Nj(t)

n=2
(Xj,n + Yj,n)

)

(a)
= E [Xj + Yj ] = E

[

Xj

]

+ E
[

Y P
j

]

+ E
[

Y T
j

]

(3)

where Nj(t) denotes the number of concerned packages until

time instant t, Yj,n is the sum of the time a package spent

in the processing subsystem Y P
j,n and that in the transmission

stage Y T
j,n, and (a) follows from the fact that the effect of

Fj,1 = ∆j(0) + t̂j,1 vanishes as t goes to infinity.

Recalling that the package arrival from source Sj follows

exponential distribution with parameter λj , we thus have

E
[

Xj

]

= 1/λj . Moreover, for each package, the sojourn time

spent in the aggregator consists of the queueing time and

serving time. Hence, Eq. (3) can be written as

∆j = 1/λj + E
[

ZP
j

]

+ E
[

WP
j

]

+ E
[

ZT
j

]

+ E
[

WT
j

]

(4)

= 1/λj + (Cj − C̃j)/τj + E
[

WP
j

]

+ E
[

ZT
j

]

+ E
[

WT
j

]

where E[ZP
j ] is the average time spent for data preprocessing

and is given as E[ZP
j ] = (Cj − C̃j)/τj .

In the following, we detail the analysis to each individual

elements, i.e., E[WP
j ], E[ZT

j ], and E[WT
j ], in (2).

A. Computing the Expectation E
[

WP
j

]

Due to prioritized processing, a newly arriving package

with priority j will have to wait till the completion of data

processing for the following packages:

1) The package that is currently occupying the processor.

2) The packages with priorities from 1 to j in the process-

ing queue when the package arrives.

3) The packages with priorities from 1 to j − 1 that arrive

while the typical package is waiting for its service.

We denote by PAP ,B the probability that the processor is

busy. Using the Little’s law [16], we have the following3

PAP ,B =
∑J

j=1
λjE

[

ZP
j

]

=
∑J

j=1
λj

Cj − C̃j

τj
. (5)

3Note that Little’s Law makes no assumptions on the concerned system
except for the ergodicity which is a common assumption for stable systems.

Then, we can derive E[WP
j ] as shown in Theorem 1.

Theorem 1: For packages from source Sj , the expected

waiting time in the processing queue is given by

E
[

WP
j

]

=

∑J
j=1 ρj

2/λj

2
(

1−
∑j

i=1 ρi

)(

1− χ{j>1}

∑j−1
i=1 ρi

) (6)

where ρj = λjE[Z
P
j ] denotes the load contributed by the data

packages from source Sj , and χ{·} is the indicator function.

Proof: The proof is given in Appendix A.

B. Computing the Expectation E
[

ZT
j

]

During the transmission stage, the time interval for de-

livering the data package is directly related to both the file

size and the transmission rate. In particular, the instantaneous

transmission rate is given by

RD = Blog2 (1 + γD) (8)

where γD = pAhd
−α/σ2 is the signal-to-noise ratio (SNR)

at destination node, with h and σ2 representing the effect of

Rayleigh fading and background noise, respectively. In addi-

tion, d is the distance between the aggregator and destination

node. We note that the transmission rate RD is a random

variable under the effect of Rayleigh fading. As such, the

expectation of transmission time for the package originally

generated by source Sj is as shown in Theorem 2.

Theorem 2: The expected transmission time for delivering

a data package from source Sj is given as

E
[

ZT
j

]

=
ξjσ

2dα

pA

∫ ∞

0

exp





ξj
t
+

1− exp
(

ξj
t

)

pAσ−2d−α





dt

t
(9)

where ξj = C̃j ln 2/B.

Proof: The proof is given in Appendix B.

C. Computing the Expectation E
[

WT
j

]

For the transmission subsystem, we can model it with a

G/G/1 FCFS queueing system by considering that the inter-

arrival time and service time follow different general distribu-

tions. The exact analytical results (closed-form or numerical)

are usually unavailable for the G/G/1 queue, especially for the

case where the distribution about the arrival or departure is

unknown [17]. For our formulated transmission queue follow-

ing a priority M/G/1 processing queue, it is impracticable to

obtain the distribution of the inter-arrival and directly analyze

the expectation of the waiting time for packages. In this light,

we resort to implementing the principle of maximum entropy

and get an information theoretic approximation of E
[

WT
j

]

.

Theorem 3: In the transmission queue, the expectation

E
[

WT
j

]

can be mathematically approximated by the following

E
[

WT
j

]

≈

µj

(

∑J
j=1 λjE

[

ZT
j

]

)2

∑J
i=1 λiµi

(

1−
∑J

j=1 λjE
[

ZT
j

]

) (10)

where µ1 = 1 and µj is given in (7), ∀j ∈ {2, 3, · · · , J},

which represents the ratio of the expectation of waiting time



µj≈λj

(

PAP ,BE
[

ZT
]

+λjE
[

WP
j

]

E
[

ZT
j

]

+
∑j−1

i=1
λi

(

E
[

WP
i

]

+E
[

WP
j

])

E
[

ZT
i

]

)

/λ1(PAP ,BE
[

ZT
]

+λ1E
[

WP
1

]

E
[

ZT
1

]

) (7)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

50

100

150

200

250

λ 
b

P
ea

k 
A

ge
 o

f 
In

fo
rm

at
io

n 
(s

)

 

 

Simulation Results S1
Simulation Results S2
Simulation Results S3
Theoretical Results S1
Theoretical Results S2
Theoretical Results S3

Optimal λ 
b

(b)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

20

40

60

80

100

120

λ 
b

P
ea

k 
A

ge
 o

f 
In

fo
rm

at
io

n 
(s

)

 

 

Simulation Results S1
Simulation Results S2
Simulation Results S3
Theoretical Results S1
Theoretical Results S1
Theoretical Results S2

Optimal λ 
b

Fig. 3. Average PAoI for packages from different sources, where the
equivalent processing rate is: (a) 50 Mbits/s; (b) 150 Mbits/s.

for packages from source Sj to that for packages from source

1 in the transmission queue, i.e., µj = E
[

WT
j

]

/E
[

WT
1

]

.

Proof: The proof is given in Appendix C.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we verify the accuracy of our analysis via

simulations. Specifically, we consider there are three sources

and set the arrival rate of data packages from source Sj

to be jλb, i.e., λj = jλb, where λb can be regarded as

the “basic" arrival rate belonging to [0.005, 0.14] with the

units packages/second. The sizes of original and processed

packages are set as {C1, C2, C3} = {120, 35, 30} Mbits and

{C̃1, C̃2, C̃3} = {20, 20, 20} Mbits, respectively. For wireless

transmission, the transmission power pA is 100 mW, distance

d is 200 m, transmission bandwidth B is 1 MHz, and AWGN

power density is -174 dBm/Hz. Meanwhile, each individual

simulation result is obtained by averaging over PAoI for totally

106 data packages.

Fig. 3 (a) compares the simulation and theoretical results on

the average PAoI for different sources, where the equivalent

processing rate is τ1 = τ2 = τ2 = 50 Mbits/s, and the data

processing time dominates transmission time, i.e., E
[

ZP
]

=
1.13 s and E

[

ZT
]

= 0.371 s. The results show a close match

for all sources, which validate the our mathematical analysis.

We note that even in the high traffic load region, e.g., λb ≥
0.13, the average PAoI for packages from source 1 is still

kept low, i.e., about 8.1 s, while that for source 2 and 3 are

about 22.3 s and 38.1 s, respectively. This is due to the fact

that the priority based processing subsystem will try its best

to first provide required service to packages with the highest

priority even in the case where the resource is not enough

to provide good service to all packages. In other words, the

average PAoI for the packages with the lowest priority will first

suffer significant performance degradation as the traffic load

becomes heavy, while the state corresponding to packages with

the highest priority is always kept in a stable region. Hence, to

make the whole system working in a stable state it is necessary

to properly control the package arrival rates for all sources.

To see what happens when the data transmission time is

comparable to processing time, we set the equivalent process-

ing rate to 150 Mbits/s for all packages, i.e., E
[

ZP
]

= 0.378
and E

[

ZT
]

= 0.371. The simulation and theoretical results

are illustrated in Fig. 3 (b) where the similar observation can

also be made as shown in Fig. 3 (a). While we note that

the difference between the simulation results and theoretical

results is higher than that in Fig. 3 (a), the shape of the

average PAoI and the optimal basic arrival rate λ∗
b can still

be well captured by our theoretical analysis. Particularly,

in Fig. 3 (b), for both the obtained simulation results and

theoretical results, the optimal basic arrival rates for each

individual source is identical, i.e., λ∗
b,1 = 0.26, λ∗

b,2 = 0.22,

and λ∗
b,3 = 0.24.4 Therefore, it’s plausible to qualitatively

obtain the optimal data arrival rates for distinct resources

with our theoretical analysis presented in this section, when

the processing time is dominating or comparable with the

transmission time. However, the accurate analysis for more

general cases is essentially complicated and hence left for our

future work.

V. CONCLUSION

In this article, we took a fresh look at studying the infor-

mation freshness in IoT networks with multiple data sources.

Employing a realistic system model that allows the collected

raw data to be preprocessed before being forwarded to the

destination node, we modeled the system as a tandem queue

and derived an analytical expression for the peak age of

information. Simulations showed that our analyses are accurate

4According to the theoretical results, ∆1 first decreases with respect to
the basic arrival rate λb and then increases. The minimal of ∆1 is 3.12 for
λ∗

b,1
= 0.26 while ∆1 = 4.28 when λb,1 is 0.42.



when the processing time is dominating or comparable with

the transmission time. There are many interesting extensions

for this work, one of which is further investigating the optimal

strategy on controlling the update frequency to make the

delivered information as fresh as possible.

APPENDIX A

PROOF OF THEOREM 1

Proof: We denote the average number of packages with

priority j in processing queue by E[NP
j,Q] and the expectation

of the remaining processing time of a package in service by

E[ZP
R ]. The expectation E[WP

1 ] can be expressed as

E
[

WP
1

]

= PAP ,BE
[

ZP
R

]

+ (1−PAP ,B)· 0+E
[

NP
1,Q

]

E
[

ZP
1

]

=
PAP ,BE

[

ZP
R

]

1−λ1E
[

ZP
1

] =
PAP ,BE

[

ZP
R

]

1−ρ1
(11)

where PAP ,B is expressed in Eq. (5) and ρ1 denotes the load

in the processing subsystem caused by packages with priority

1. Similarly, for j > 1 we have

E
[

WP
j

]

=PAP ,BE
[

ZP
R

]

+(1−PAP ,B) · 0+
∑j

i=1
E
[

NP
i,Q

]

E
[

ZP
i

]

+
∑j−1

i=1
λiE

[

WP
j

]

E
[

ZP
i

]

=
PAP ,BE

[

ZP
R

]

+
∑j−1

i=1 ρiE
[

WP
i

]

1−
∑j

i=1 ρi
(12)

Based on Eq. (11) and (12) we have

E
[

WP
2

]

=
PAP ,BE

[

ZP
R

]

+ ρi
PAP ,BE[ZP

R ]

1−ρ1

1−
∑2

i=1 ρi

=
PAP ,BE

[

ZP
R

]

(

1−
∑2

i=1 ρi

)

(1−ρ1)
(13)

and, for ∀j > 2,
(

1−
∑j

i=1
ρi

)

E
[

WP
j

]

=PAP ,BE
[

ZP
R

]

+
∑j−1

i=1
ρiE

[

WP
i

]

= PAP ,BE
[

ZP
R

]

+
∑j−2

i=1
ρiE

[

WP
i

]

+ ρj−1E
[

WP
j−1

]

=

(

1−
∑j−2

i=1
ρi

)

E
[

WP
j−1

]

. (14)

Substituting (13) into the recursion formula in (14), we can

express the expectation E
[

WP
j

]

as

E
[

WP
j

]

=







PAP ,BE[ZP
R ]

1−ρ1

, j = 1

PAP ,BE[ZP
R ]

(1−
∑

J
j=1

ρi)(1−
∑J−1

j=1
ρi)

, j > 1
(15)

where E
[

ZP
R

]

is the expectation of the remaining processing

time of a package in service. By applying the renewal-reward

theory [16], we have

E
[

ZP
R

]

= E

[

(

ZP
)2

]

/2E
[

ZP
]

(16)

where

E
[

ZP
]

=
∑J

j=1

λj
∑J

i=1 λi

E
[

ZP
j

]

=

∑J
j=1 ρj

∑J
j=1 λi

(17)

and

E

[

(

ZP
)2
]

=
∑J

j=1

λj
∑J

i=1 λi

(

E
[

ZP
j

])2
=

∑J
j=1ρ

2
j/λj

∑J
j=1λi

. (18)

Finally, combining from Eq. (15) to (18), we can draw the

conclusion shown in Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

Proof: According to (8), the transmission time of one

package from the aggregator to destination node is

ZT
C̃
=

C̃

RD

=
C̃ ln 2

B

1

ln
(

1 + pAhd−α

σ2

) (19)

where C̃ ∈ {C̃1, C̃2, · · · , C̃J} denotes the size of the con-

cerned package. Note that ZT
C̃

is a random variable due to the

random channel gain. Moreover, ZT
C̃

monotonically decreases

with respect to the channel gain h with the expression as

h =
σ2(exp( C̃ ln 2

B
1

ZT

C̃

)− 1)

pAd−α
= f(ZT

C̃
) (20)

where f(ZT
C̃
) is the function inversely mapping from ZT

C̃
to

h. Then, we obtain the probability density function of ZT
C̃

as

fZT

C̃

(t) = − exp (−f (t))
df (t)

dt
(21)

=
C̃ ln 2σ2

BpAd−α

exp

(

C̃ ln 2
Bt

+
σ2

(

1−exp
(

C̃ ln 2

Bt

))

pAd−α

)

t2
.

As such, for packages originally generated from source Sj ,

the expectation of transmission time can be attained as

E
[

ZT
j

]

= E

[

ZT
C̃

∣

∣

∣C̃=C̃j

]

=

∫ ∞

0

tf
ZT

C̃
|C̃=C̃j

(t)dt. (22)

Finally, by substituting (21) into (22) we can draw the con-

clusion in Theorem 2.

APPENDIX C

PROOF OF THEOREM 3

Proof: We adopt the principle of maximum entropy

(PME) to derive an approximation of the expectation E
[

WT
j

]

.

The interested readers are suggested to refer [18], [19] for

more details about PME and its applications for performance

analysis in various types of queueing systems.

In the transmission queue, the expectation of the waiting

time for a typical data package in the queue can be expressed

E
[

WT
]

=
∑J

j=1
PT
j E

[

WT
j

](a)
=
∑J

j=1

λj
∑J

j=1λj

E
[

WT
j

]

(23)

where PT
j denotes the probability that there is one package

arriving at the transmission queue originally from source Sj ,

E
[

WT
j

]

is the expectation of its waiting time, and (a) holds

under the condition that the previous processing subsystem is

stable, i.e., the arrivals are all processed on average. Moreover,



from Theorem 2 we have that for a typical package, the

average time spent in the transmission subsystem can be

expressed as

E
[

ZT
]

=
∑J

j=1
E

[

ZT
C̃

∣

∣

∣
C̃=C̃j

]

P
(

C̃=C̃j

)

(24)

(a)
=

∑J

j=1

λj
∑J

i=1 λi

E

[

ZT
C̃

∣

∣

∣
C̃=C̃j

]

=

∑J
j=1 λjE

[

ZT
j

]

∑J
j=1 λj

where (a) holds under the condition that the previous process-

ing subsystem is stable, and E
[

ZT
j

]

is given in (9). Applying

Little’s law and combing the result with (23) we furtjer have

E
[

WT
]

=
E
[

NT
]

∑J
j=1 λj

− E
[

ZT
]

(25)

=
∑J

j=1

λj
∑J

j=1 λj

E
[

WT
j

]

=
∑J

j=1

λjµj
∑J

j=1 λj

E
[

WT
1

]

where E
[

NT
]

denotes the expectation of the total number

of packages in the transmission subsystem, E
[

ZT
]

is given

by (24), and µj represents the ratio E
[

WT
j

]

/E
[

WT
1

]

, ∀j ∈
{1, 2, · · · , J}. According to Eq. (25), we can obtain E

[

WT
j

]

if E
[

NT
]

and µj , ∀j ∈ {2, · · · , J}, are derived.

As NT is an integer-value random variable, we use the PME

to express its probability mass function as follows [18]

P
(

NT = n
)

=
1

G
exp

(

−
∑M

m=1
βm(n)

m

)

(26)

(a)
≈

1

G
exp (−β1n) , ∀n ∈ {0, 1, 2, · · · }

where

G =
∑∞

n=0

(

−
∑M

m=1
βm(n)

m

)

(27)

(b)
≈

∑∞

n=0
exp (−β1n) = (1− exp (−β1))

−1.

Wherein, βm is the introduced Lagrangian multiplier associ-

ated with the m-th moment of the random variable NT , while

(a) and (b) hold due to the first moment approximation5.

By applying Little’s law to the transmission queue and

combining the result with (26) and (27) we have the following

P
(

NT = 0
)

= 1− ρT ≈ (1− exp (−β1)) (28)

where ρT =
∑J

j=1 λjE
[

ZT
j

]

denotes the probability that the

server is busy. Using the PME for another time, we have [18]

E
[

NT
]

≈
∂ ln (1−exp (−β1))

∂β1
=

∑J
j=1 λjE

[

ZT
j

]

1−
∑J

j=1 λjE
[

ZT
j

]
. (29)

Next, we analyze the ratio µj . In the transmission queue,

the waiting time of one arriving data package is related to the

number and kinds of packages waiting in front of it, which

are determined by the output of the previous processing queue

and are extremely difficult to obtain. Recalling the analysis for

E
[

WP
j

]

in Appendix A, we can derive an approximation of

5Note that the accuracy of the approximation improves when more moments
of NT are incorporated, giving rise to higher complexity.

ratio µj , ∀j ∈ {2, 3, · · · , J}, by considering that the packages

in front of an arriving package in the transmission queue are

proximately proportional to those in the processing queue, i.e.,

as shown in Eq. (7). Finally, substituting (29) and (7) into (25)

we can draw the conclusion.
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