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Abstract—This paper studies the Multi-Input-Multi-Output
(MIMO) interference networks with arbitrary number of trans-
mitters and receivers, where both the transmitters and receivers
are equipped with caches. Our objective is to propose con-
tent placement and delivery schemes that minimize the worst
case normalized delivery time (NDT). First, we design a de-
livery scheme for the cache-aided Single-Input-Multiple-Output
(SIMO) interference networks. Then, we obtain the achievable
NDT of the cache-aided MIMO interference networks by using
the decomposition property. The numerical results show the
superiority of our proposed scheme over the state-of-the-art
schemes in the literature. Furthermore, we show that increasing
the receiver-cache sizes achieves a higher gain than increasing
the number of receive-antennas. In other words, the coded
caching gain has a more significant contribution in reducing the
transmission latency than the spatial multiplexing gain.

I. INTRODUCTION

Multiple antennas at both transmitters and receivers can be

used to send simultaneously different data streams over the

Multi-Input-Multi-Output (MIMO) wireless channel increas-

ing the capacity of the wireless networks (or equivalently

reducing the transmission latency). The gain from the multiple

antennas at the network nodes is referred to as the spatial

multiplexing gain measured by the number of independent data

streams multiplexed in space. Recently, caching systems have

received considerable attention due to the significant perfor-

mance gain obtained from the availability of caches at the

network nodes. In this work, we study the MIMO interference

network with caches at both transmitters and receivers. Our

main objective is to determine how the transmission latency

varies as a function of the system parameters. Furthermore,

we address the question which technique is more effective in

reducing the transmission latency of the MIMO interference

networks: the spatial multiplexing or the coded caching.

Cache-aided interference networks have been first studied

in [1], where the authors considered the 3 × 3 Single-Input-

Single-Output (SISO) interference network with transmitter-

side caches only. It has been shown that increasing the

transmitter-cache sizes leads to virtual cooperation among

transmitters which in turn increases the degrees of freedom

(DoF) of the interference networks. In [2], the authors have

defined the normalized delivery time (NDT) as a performance
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metric for the 2 × 2 fog radio access network (F-RAN)

with caches at transmitters only. In [3], the authors have

derived a lower bound on the NDT of the SISO cache-aided

interference networks. The authors in [4] have studied an F-

RAN with transmitters equipped with caches and multiple

antennas. The work in [5] has studied an F-RAN with caches

at both transmitters and receivers under the assumption that

the content placement is applied in a decentralized manner.

In [6], the authors have characterized both the peak NDT and

the expected NDT under uniform popularity distribution for F-

RAN with caches at transmitters and receivers. In addition, the

authors in [6] have proposed a coding scheme for the F-RAN

with caches only at the transmitters and shown that this scheme

is order optimal for any popularity distribution. The work

in [7]–[9] studied SISO interference networks with caches

at both transmitters and receivers. The work in [10] studied

MIMO interference networks with caches at both transmitters

and receivers; however, the authors considered only the case

of three transmitters and three receivers.

In this paper, we consider a KT × KR cache-aided inter-

ference network with a library of multiple files, where both

transmitters and receivers are equipped with an isolated cache

memory and multiple antennas. We study the fundamental

limits on the normalized delivery time (NDT) as a function

of the transmitter-cache size, receiver-cache size, the number

of transmit-antennas, and the number of receive-antennas.

Unlike [10], our work is general for arbitrary number of

transmitters and receivers. Our main contributions in this work

are as follows: We propose an achievable scheme to obtain

the NDT of the Single-Input-Multiple-Output (SIMO) cache-

aided interference network. We obtain the NDT of the MIMO

cache-aided interference networks by using the decomposition

property by splitting each multi-antenna transmitter into mul-

tiple single antenna transmitters. We show that our proposed

scheme achieves a lower NDT than the scheme proposed

in [10]. Our scheme demonstrates that increasing the receiver-

cache size achieves a gain higher than the gain obtained by

increasing the receive-antennas. Hence, caching is a more

effective tool than the spatial multiplexing in reducing the

transmission latency.

II. SYSTEM MODEL

A Multi-Input-Multi-Output (MIMO) interference network

comprising KT transmitters connected to KR receivers over a
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time-varying Gaussian channel is studied. There is a content

library of N files, W , {W1, . . . ,WN}, each of size F
bits, where each file Wn ∈ W is chosen independently and

uniformly from the set
[

2F
]

at random. Each transmitter

TXi, i ∈ [KT ], has AT antennas and a local cache memory

Vi of size MTF bits, where µT = MT /N refers to the

normalized transmitter-cache size. Moreover, each receiver

RXj , j ∈ [KR], has AR antennas and a local cache memory

Zj of size MRF bits, where µR = MR/N refers to the

normalized receiver-cache size in files.

The system consists of two separate phases: a placement

phase and a delivery phase. In the placement phase, each

network node fills its cache memory as an arbitrary function

of the content library W under its cache size constraint.

We emphasize that the caching decisions are taken without

any prior knowledge of the future receiver demands and

channel coefficients between the transmitters (TXs) and the

receivers (RXs). In the delivery phase, receiver RXj requests

a file Wdj
out of the N files of the library. We consider

d = [d1, . . . , dKR
] ∈ [N ]

KR as the vector of receiver

demands. The transmitters are aware of all receiver demands

d. Thus, transmitter TXi, i ∈ [KT ], responds by sending

a message Xi , (Xi (t))
T
t=1 of block length T over the

interference channel, where Xi (t) ∈ C
AT is the transmitted

vector of transmitter TXi at time t ∈ [T ]. We impose a transmit

power constraint over the channel input ||Xi (t) ||
2 ≤ P .

In this phase, each transmitter has only access to its own

cache content, so, codeword Xi is determined by an encoding

function of the receiver demands d, the cache contents Vi, and

the channel coefficients between TXs and RXs. Afterwards,

each receiver RXj implements a decoding function to estimate

the requested file Ŵdj
from its cache contents Zj , and the

received signal Yj , (Yj (t))
T
t=1 which is given by

Yj (t) =

KT
∑

i=1

Hji (t)Xi (t) +Nj (t) , (1)

where Yj (t) ∈ C
AR is the received signal by receiver RXj at

time t ∈ [T ], and Nj (t) ∈ C
AR is the complex Gaussian noise

vector at receiver RXj at time t ∈ [T ]. Let Hji (t) ∈ C
AR×AT

represent the channel matrix between transmitter TXi and

receiver RXj at time t. We assume that all channel coefficients

are drawn independently and identically distributed (i.i.d.)

from a continuous distribution. For a given caching, encoding,

and decoding functions, the probability of error is obtained by

Pe = max
d∈[N ]KR

max
j∈[KR]

P

(

Ŵdj
6= Wdj

)

, (2)

which is the worst-case probability of error over all possible

demands d ∈ [N ]
KR and over all receivers. The coding

scheme is said to be feasible if each receiver can decode its

requested file with vanishing probability of error Pe → 0 as

F → ∞. In the following, we define the normalized delivery

time (NDT) first discussed in [2] as a performance metric for

any coding scheme.
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Fig. 1: The achievable NDT of the 3× 3 cache-aided MIMO

interference network.

Definition 1. The normalized delivery time (NDT) for a given

feasible coding scheme with transmitter cache size MTF bits,

and receiver cache size MRF bits is defined as

τ (MT ,MR, AT , AR) = lim
P→∞

lim
F→∞

sup
max
d

T (d)

F/ log (P )
. (3)

Moreover, we define the minimum NDT for a given tuple

(MT ,MR, AT , AR) as

τ∗ (MT ,MR, AT , AR) , inf {τ : τ is feasible} . (4)

Note that the τ (MT ,MR, AT , AR) represents the delivery

time to serve the worst case user demands d ∈ [N ]
KR nor-

malized with respect to an interference-free baseline system,

where F/ log (P ) refers to the time for delivering F bits with

transmission rate log (P ) in the high signal-to-noise-ratio.

Remark 1. (The relation between the NDT and the DoF [9]):

Let Rj denote the number of bits normalized by file size

F that is required to be delivered for receiver RXj . Thus,

the degrees of freedom (DoF) for receiver RXj is defined as

dj = lim
P→∞

lim
F→∞

RjF
log(P ) T =

Rj

τ , where RjF/T represents the

transmission rate of receiver RXj . Furthermore, the sum-DoF

of the network is defined by

sDoF = lim
P→∞

lim
F→∞

RF

log (P ) T
=

R

τ
,

where R =
∑KR

j=1 Rj denotes the total number of bits delivered

for all receivers normalized by the file size F . The sum-DoF

is a performance metric that defines the pre-log capacity or the

multiplexing gain of the network. In other words, the capacity

can be expressed by sDoF log (P ) + o (log (P )) at the high

SNR regime, where the o (log (P )) term vanishes as P → ∞.

Therefore, the NDT is inversely proportional to the sum-DoF

for a fixed receiver cache size, and characterizing one of these

metrics leads to the other.

III. MAIN RESULTS

In this section, we introduce the main results and insights

of this paper.

Theorem 1. (Achievable NDT of SIMO interference net-

works): For the KT × KR cache-aided SIMO interference
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network with AR antennas at each receiver, transmitter-cache

size MT ∈ [N/KT : N ], receiver-cache size MR ∈ [0 : N ],
and parameter tR = KRMR/N , the achievable NDT is given

by

τ (MT ,MR, AR) =
KR (1− µR)

sDoF (tR, AR)
, (5)

for tR ∈ {0, · · · ,KR}, where sDoF (tR, AR) is the sum-DoF

given by

sDoF (tR, AR) =

{

KT (tR + 1) if KT ≤ AR
(tR+1)ARKTKR

(tR+1)KT+AR(KR−tR−1) if KT > AR
.

(6)

Moreover, the lower convex envelope of these integer points is

also achievable.

The proof of Theorem 1 is presented in Section V. To prove

this theorem, we define a new communication problem called

SIMO multicast X-channel which is a generalization of the

SISO multicast X-channel defined in [8] and the SIMO unicast

X-channel defined in [11]. In the SIMO multicast X-channel,

each transmitter has a dedicated message for each group of the

multi-antenna receivers. We can obtain the achievable NDT of

the cache-aided MIMO interference network from this theorem

as stated in the following corollary.

Corollary 1. The achievable NDT of the KT ×KR MIMO

interference channel with AT antennas at each transmitter, AR

antennas at each receiver, transmitter-cache size MTF bits,

receiver-cache size MRF bits, and parameter tR = KRMR/N
is obtained by

τ (MT ,MR, AR, AT ) =
KR (1− µR)

sDoF (tR, AT , AR)
, (7)

for tR ∈ {0, · · · ,KR}, where sDoF (tR, AT , AR) is the sum-

DoF given by

sDoF =

{

ATKT (tR + 1) if ATKT ≤ AR
(tR+1)ARATKTKR

(tR+1)ATKT+AR(KR−tR−1) if ATKT > AR
.

(8)

Moreover, the lower convex envelope of these integer points

is also achievable.

The proof of this corollary is obtained directly from Theo-

rem 1 by using the decomposition property, where each trans-

mitter with AT antennas is decomposed into AT distributed

transmitters with a single antenna. Note that the achievable

NDTs in Theorem 1 and Corollary 1 are not functions of

the transmitter-cache size, since our delivery scheme neglects

the gains obtained from increasing the transmitter-cache size.

However, increasing the transmitter-cache size can provide

a higher performance gain as we proposed in the extended

version in [12]. Now, we compare the achievable NDT of

our proposed scheme with the delivery scheme proposed

in [10] for the 3×3 cache-aided MIMO interference network.

In Figure 1, we plot the achievable NDT of our proposed

scheme and the delivery scheme in [10]. We can see that our

proposed scheme outperforms the delivery scheme in [10] for
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Fig. 2: The NDT of the MIMO interference network as a

function of AR and MR for KT = 5 transmitters, AT = 2
antennas, and KR = 20 receivers.

different system parameters. The main reason for this is that

the scheme of [10] is restricted to linear delivery schemes

with finite symbol extensions, while we do not impose any

restrictions on the delivery scheme. The achievable NDT is

a function of mainly two gains. The first one is the coded

caching gain that is obtained from the coding opportunities due

to the availability of caches at transmitters and/or receivers.

The second gain is the spatial multiplexing gain that is

obtained from the coding opportunities due to the availability

of multiple antennas at both transmitters and receivers. One

of the intriguing questions is to determine which one of these

two gains dominates performance in terms of reducing the

achievable NDT. Figure 2 depicts the achievable NDT of the

MIMO cache-aided interference network as a function of MR

and AR. From Figure 2, it is clear that increasing the receiver

cache with NF/KR bits achieves a higher gain than increasing

the number of the receive-antennas by one for KT ≤ KR.

Thus, the coded caching achieves a higher gain compared to

the gain attributed to the spatial multiplexing. Due to the space

limitations, we left the other comparisons and discussions to

the extended version in [12].

IV. CONTENT PLACEMENT

In this section, we present the content placement strategy for

cache-aided interference networks, where we follow the same

strategy as in [8]. Let tR = KRMR/N . In the following, we

focus on the cache placement and the delivery scheme for

integer points tR ∈ {0, · · · ,KR}. The achievable schemes for

general tR can be obtained by memory-time sharing between

these integer points, since the NDT is a convex function of

MR. In the placement phase, we split each file Wn ∈ W into

KT

(

KR

tR

)

disjoint subfiles, each of size F/KT

(

KR

tR

)

bits. As a

result, file Wn is represented by

Wn = {Wn,SR,i : SR ⊆ [KR] , |SR| = tR, i ∈ [KT ]} . (9)

For every file Wn ∈ W , the subfile Wn,SR,i is stored at the

cache of transmitter TXi, and at the cache of receiver RXj

if j ∈ SR. Thus, the cache content of transmitter TXi and

receiver RXj is expressed by Vi , {Wn,SR,i : n ∈ [N ]} and

Zj , {Wn,SR,i : j ∈ SR, n ∈ [N ]}. Therefore, each trans-

mitter stores N
(

KR

tR

)

subfiles, and each receiver stores the
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NKT

(

KR−1
tR−1

)

subfiles. Accordingly, the number of bits stored

at each transmitter is equal to N
(

KR

tR

)

F

KT (KR
tR
)
≤ MTF bits.

Similarly, the number of bits stored at each receiver is equal

to NKT

(

KR−1
tR−1

)

F

KT (KR
tR
)
= MRF bits. Thus, this placement

strategy satisfies the cache size constraint for each transmitter

and each receiver. Moreover, we emphasize that the content

placement is performed without any prior knowledge of the

receiver demands or channel gains in the delivery phase, which

is a practically relevant assumption, since there is a large time

separation between the placement and delivery phases.

Remark 2. Note that for a given demand d, receiver RXj

has subfiles {Wdj ,SR,i}j∈SR
. Hence, the transmitters have to

deliver the remaining subfiles {Wdj ,SR,i}j /∈SR
with a total of

KT

(

KR−1
tR

)

subfiles to receiver RXj , where each subfile has

a size of F/
(

KT

tT

)(

KR

tR

)

bits. Hence, the total number of bits

desired to be delivered to receiver RXj is given by RjF =
KR−tR

KR
F bits. Accordingly, the total number of bits required to

be delivered for all receivers is equal RF = (KR − tR)F =
KR (1−MR/N)F bits.

V. ACHIEVABLE SCHEME OF SIMO INTERFERENCE

NETWORKS

In this section, we prove the achievable scheme of the NDT

for SIMO interference networks introduced in Theorem 1. Let

receiver RXj request file Wdj
, and hence, the transmitters need

to deliver subfiles {Wdj ,SR,i:j /∈SR,i∈[KT ]} that are not stored

at the cache of receiver RXj .

A. When KT ≤ AR

In this case, the delivery is applied into
(

KR

tR+1

)

time

slots. At each time slot, the transmitters serve a set K ⊆
[KR] of |K| = tR + 1 receivers, in which the subfiles

{Wdj ,K\{j},i : j ∈ K, i ∈ [KT ]} would be delivered correctly

with interference-free to receivers K. We can easily verify

that each receiver RXj , j ∈ [KR], will receive all the required

subfiles {Wdj ,SR,i : j /∈ SR, i ∈ [KT ]} by the end of the

transmission. Consider an arbitrary time slot to serve a set K
of receivers. Each transmitter TXi broadcast the subfiles that

are available at its cache memory, i.e., Xi =
∑

l∈K Wdl,K\{l},i

for i ∈ [KT ]. Thus, the received signal at receiver RXj , j ∈ K,

can be expressed by

Yj =

KT
∑

i=1

HjiXi +Nj =

KT
∑

i=1

∑

l∈K

HjiWdl,K\{l},i +Nj

=

KT
∑

i=1

HjiWdj ,K\{j},i +

KT
∑

i=1

∑

l∈K
l 6=j

HjiWdl,K\{l},i +Nj ,

(10)

where Yj ∈ C
AR×1 denotes the received vector at receiver

RXj , and Hji ∈ C
AR×1 is the channel vector between

transmitter TXi and receiver RXj . Observe that the received

signal in (10) consists of two terms. The first term represents

the desired signals, while the second term denotes interference

signals. Since receiver RXj has subfiles {Wdl,K\{l},i : l ∈

K, i ∈ [KT ]} at its cache, receiver can subtract the interference

signals from the receiver signal Yj , and hence, the received

signal is given by

Ỹj =

KT
∑

i=1

HjiWdj ,K\{j},i +Nj . (11)

It remains to prove that receiver RXj can decode the desired

subfiles correctly. Note that the KT desired subfiles are re-

ceived with vectors [Hj1, · · · ,HjKT
] which has a full rank of

KT when AR ≥ KT almost surely. In other words, the desired

subfiles arrive at receiver RXj over linearly independent

directions. Therefore, receiver RXj can decode the desired

subfiles correctly from the received signal. As a result, each

receiver can decode KT

(

KR−1
tR

)

desired messages over
(

KR

tR+1

)

time slots. Thus, the DoF per-receiver and the sum-DoF are

given by

dj =
KT

(

KR−1
tR

)

(

KR

tR+1

) =
KT (tR + 1)

KR

sDoF =
KRKT

(

KR−1
tR

)

(

KR

tR+1

) = KT (tR + 1)

. (12)

From Remark 1, the NDT τ (MT ,MR, AR) =
(

1− MR

N

)

/dj = KR

(

1− MR

N

)

/sDoF is achievable.

B. When KT > AR

In this case, there are KRKT

(

KR−1
tR

)

subfiles required to be

delivered to receivers, where receiver RXj requires subfiles

{Wdj ,SR,i : i ∈ [KT ] , j /∈ SR}. First, we implement the

multicast coding scheme as in [13] at each transmitter. For

a given a subset K ⊆ [KR] of |K| = tR + 1 receivers, each

transmitter TXi generates a multicast message WK,i as follows

WK,i = ⊕
j∈K

Wdj ,K\{j},i, (13)

where the single message WK,i of size F/KT

(

KR

tR

)

bits

combines tR + 1 different subfiles, in which each subfile is

desired by a single receiver RXj , j ∈ K. Since receiver RXj ,

j ∈ K, has subfiles {Wdj′ ,K\{j′},i}j′∈K, it can recover its

desired subfile Wdj ,K\{j},i from the multicast message WK,i.

Therefore, there are KT

(

KR

tR+1

)

coded messages

{WK,i : i ∈ [KT ] , K ⊆ [KR] , |K| = tR + 1}

required to be delivered to receivers, where each transmitter

TXi has a dedicated message WK,i to every subset K of tR+1
receiver. In the following, we define a new communication

problem called SIMO multicast X-channel.

Definition 2. In the SIMO multicast X-channel, there are

KT single-antenna transmitters, KR receivers each with AR

antennas, and a total of KT

(

KR

σ

)

messages, where σ denotes

the multicast order. Each transmitter has a dedicated message

for every multicast group of σ receivers. The following lemma

provides the achievable DoF of the SIMO multicast X-channel.

Lemma 1. For a SIMO multicast X-channel with KT

transmitters, KR receivers, each equipped with AR antennas,
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and multicast order σ = tR+1, the DoF per message is given

by

d (tR, AR) =
AR

KT

(

KR−1
tR

)

+AR

(

KR−1
tR+1

) . (14)

Proof. The proof is presented in Subsection V-C. �

Remark 3. The SIMO multicast X-channel is a generalization

of the SIMO X-channel studied in [11] and a generalization of

the SISO multicast X-channel studied in [8]. When tR = 0,

Lemma 1 gives the DoF per message of SIMO X-channel

which is the same result as in [11, Theorem 2]. When AR = 1,

Lemma 1 gives the DoF per message for the SISO multicast

X-channel which is the same result as in [8, Theorem 2].

Note that there are a total of KT

(

KR

tR+1

)

messages, and

hence, the sum-DoF of the SIMO multicast X-channel is given

by

sDoFM−X (tR, AR) =
ARKT

(

KR

tR+1

)

KT

(

KR−1
tR

)

+AR

(

KR−1
tR+1

)

=
ARKTKR

(tR + 1)KT +AR (KR − tR − 1)
.

(15)

Moreover, each receiver RXj is interested in KT

(

KR−1
tR

)

messages out of the total KT

(

KR

tR+1

)

messages. Thus, the DoF

per receiver of the SIMO multicast X-channel is obtained

dj (tR, AR) =
ARKT

(

KR−1
tR

)

KT

(

KR−1
tR

)

+AR

(

KR−1
tR+1

)

=
(tR + 1)ARKT

(tR + 1)KT +AR (KR − tR − 1)
.

(16)

Observe that the sum-DoF for the SIMO multicast X-channel

is equal to the DoF per receiver multiplied by KR/ (tR + 1),
since each message is desired by tR + 1 receivers. However,

for the cache-aided SIMO interference network, each mes-

sage WK,i combines (tR + 1) different messages, a dedicated

message to every receiver RXj , j ∈ K. As a result, the sum-

DoF of the cache-aided SIMO interference network is equal

sDoF = KRdj = (tR + 1) sDoFM−X . Thus, we can obtain

the achievable NDT of the cache-aided SIMO interference

network from remark 1 as τ =

(

1−
MR
N

)

dj
=

KR

(

1−
MR
N

)

sDoF
. This

completes the proof of Theorem 1.

C. Proof of Lemma 1

In this Subsection, we introduce the achievable scheme of

the SIMO multicast X-channel. We propose an interference

alignment scheme which generalizes the idea of the many-

to-many alignment introduced in [11] for the SIMO X-

channel. The transmission occurs over Tn = KT

AR

(

KR−1
tR

)

Ln +
(

KR−1
tR+1

)

Ln+1 symbol extensions of the original channel1,

where Ln = nΓ for arbitrary n ∈ N
+ and Γ =

ARKT (KR − tR − 1). The input-output relation of the orig-

inal channel over Tn-symbol extensions can be expressed by

1In order to insure that Tn is integer, the element n is chosen as a multiple
of AR such that Ln/AR is integer.

Yj =

KT
∑

i=1

HjiXi +Nj

=

KT
∑

i=1







H
1
ji

...

H
AR
ji






Xi +Nj ,

(17)

where Yj and Nj are ARTn×1 column vectors of the received

signal and the Gaussian noise at the receiver RXj over Tn-

symbol extension, respectively. Xi is a Tn × 1 column vector

representing the transmitted vector of transmitter TXi. Hji

is the ARTn × Tn channel matrix from transmitter TXi to

RXj over Tn symbol extension, where Hr
ji is the Tn × Tn

diagonal channel matrix from transmitter TXi to the r-th

receive-antenna of receiver RXj .

H
r
ji =









hr
ji (1) 0 . . . 0
0 hr

ji (2) . . . 0
...

...
. . .

...
0 0 . . . hr

ji (Tn)









. (18)

Each message WK,i is encoded into Ln independent streams

represented by a Ln×1 column vector XK,i. We use the same

beamforming matrix VK to encode the vectors {XK,i} desired

by the set K receivers from all transmitters, where VK is a

Tn×Ln matrix. Hence, we can describe the transmitted vector

of transmitter TXi by

Xi =
∑

K⊆[KR]
|K|=tR+1

VKXK,i.

Furthermore, the received signal at receiver RXj is given by

Yj =

KT
∑

i=1

HjiXi +Nj =

KT
∑

i=1

Hji

∑

K⊆[KR]

VKXK,i +Nj

=

KT
∑

i=1

∑

K⊆[KR]
K∋j

HjiVKXK,i +

KT
∑

i=1

∑

K⊆[KR]
K6∋j

HjiVKXK,i +Nj ,

(19)

where the first term represents the desired signals, while the

second term represents the interference signals. Our objective

is to design the beamforming matrices {VK} to reduce the

dimensional space spanned by the interference signals at each

receiver. Note that each receiver is equipped with AR antennas.

Thus, the signals from any AR transmitters cannot be aligned

over each other at any receiver, since the channel matrix

between any AR transmitters and any receiver is invertible

almost surely. As a result, the precoder VK will occupy

a space of dimension ARLn at the unintended receivers

[KR]\K. Thus, we design precoders VK such that the signals

intended to receivers K from all transmitters are aligned into a

vector space of dimension ARLn+1 at the unintended receivers

[KR] \ K. More specific, we choose VK such that






H1
ki
...

HAR

ki






VK ≺







ṼK · · · 0
...

. . .
...

0 · · · ṼK






∀i ∈ [KT ] , ∀k ∈ [KR]\K,

(20)

2019 IEEE Wireless Communications and Networking Conference (WCNC)



where P ≺ Q means that the column space of matrix P is

a subspace of the column space of the matrix Q. In (20),

there are Γ = ARKT (KR − tR − 1) conditions between VK

and ṼK required to be satisfied. To achieve these conditions,

we generate a random vector aK = [aK (1) , · · · , aK (Tn)]
T

,

where its elements are drawn independently from a continuous

distribution bounded between a non-zero minimum value and

a finite maximum value. Then, we choose

VK =







KT
∏

i=1

AR
∏

r=1

∏

k∈[KR]\K

(Hr
ki)

αr
ki aK : 0 ≤ αki ≤ n− 1







ṼK =







KT
∏

i=1

AR
∏

r=1

∏

k∈[KR]\K

(Hr
ki)

αr
ki aK : 0 ≤ αki ≤ n







(21)

Thus, we can verify that the conditions in (20) are satisfied.

The received signal at receiver RXj after alignment design is

given by
Yj =

KT
∑

i=1

∑

K⊆[KR]
K∋j

HjiVKXK,i

+
∑

K⊆[KR]
K6∋j







ṼK · · · 0

...
. . .

...

0 · · · ṼK






X̃K +Nj

(22)

where X̃K is the sum of interference data streams received in

the same direction. We index the sets K ⊆ [KR] for j ∈ K
with Ks for s ∈ [̺], where ̺ =

(

KR−1
tR

)

. Furthermore, we

index the sets K ⊆ [KR] for j 6∈ K with Ks for s ∈ [̺+ 1 : γ],
where γ =

(

KR

tR+1

)

. The desired streams of receiver RXj arrive

with direction

Dj =







D1
j

...

DAR

j







Dr
j =

[

Hr
j1VK1

· · ·Hr
jKT

VK1
· · ·Hr

j1VK̺
· · ·Hr

jKT
VK̺

]

,
(23)

where j ∈ Ks for s ∈ [̺]. Meanwhile the interference signals

have arrived after alignment with directions.

Ij =
[

IK̺+1
· · · IKγ

]

IKs
=







ṼKs
· · · 0

...
. . .

...

0 · · · ṼKs







(24)

where j 6∈ Ks for s ∈ [̺+ 1 : γ]. To ensure that the receiver

RXj can decode the desired streams, we should maintain that

the directions of all desired streams are linearly independent on

each other and independent on all directions of the interference

streams. This can be ensured if the following matrix

Fj = [Dj Ij ]

has full rank of ARTn almost surely for almost all channel

realizations. The proof is skipped due to the space limitations,

but it can be found in [12]. As a result, each receiver RXj can

decode its desired data streams over Tn-symbol extensions.

Since each message WK,i is encoded into Ln data streams,

the achievable DoF per message is given by

d (tR, AR) = lim
n→∞

nΓ

KT

AR

(

KR−1
tR

)

nΓ +
(

KR−1
tR+1

)

(n+ 1)
Γ

=
AR

KT

(

KR−1
tR

)

+AR

(

KR−1
tR+1

)

This completes the proof of Lemma 1.

VI. CONCLUSION

We have studied the cache-aided interference networks,

where both transmitters and receivers are equipped with multi-

ple antennas. First, we proposed an achievable scheme for min-

imizing the normalized delivery time (NDT) of the cache-aided

SIMO interference network. Then, we obtain the NDT of the

MIMO cache interference network by using the decomposition

property. Our results show that the gain obtained from coded

caching is higher than that obtained from spatial multiplexing.

Hence, increasing the receiver-cache sizes achieves a higher

gain than increasing the receive antennas. Moreover, we have

shown that our proposed scheme outperforms the state-of-the-

art schemes in the literature.
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