
Blockchain-based Firmware Update Scheme
Tailored for Autonomous Vehicles

Mohamed Baza∗, Mahmoud Nabil∗, Noureddine Lasla§, Kemal Fidan‡,
Mohamed Mahmoud∗, Mohamed Abdallah§

∗Department of Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, USA
§Division of Information and Computing Technology, College of Science and Engineering, HBKU, Doha, Qatar
‡Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA

Abstract—Recently, Autonomous Vehicles (AVs) have gained
extensive attention from both academia and industry. AVs are a
complex system composed of many subsystems, making them a
typical target for attackers. Therefore, the firmware of the differ-
ent subsystems needs to be updated to the latest version by the
manufacturer to fix bugs and introduce new features, e.g., using
security patches. In this paper, we propose a distributed firmware
update scheme for the AVs’ subsystems, leveraging blockchain
and smart contract technology. A consortium blockchain made
of different AVs manufacturers is used to ensure the authenticity
and integrity of firmware updates. Instead of depending on
centralized third parties to distribute the new updates, we
enable AVs, namely distributors, to participate in the distribution
process and we take advantage of their mobility to guarantee
high availability and fast delivery of the updates. To incentivize
AVs to distribute the updates, a reward system is established that
maintains a credit reputation for each distributor account in the
blockchain. A zero-knowledge proof protocol is used to exchange
the update in return for a proof of distribution in a trust-
less environment. Moreover, we use attribute-based encryption
(ABE) scheme to ensure that only authorized AVs will be able to
download and use a new update. Our analysis indicates that the
additional cryptography primitives and exchanged transactions
do not affect the operation of the AVs network. Also, our security
analysis demonstrates that our scheme is efficient and secure
against different attacks.

Index Terms—Firmware update, Blockchain, Smart contracts,
Autonomous Vehicles, Attribute based encryption (ABE), Zero-
knowledge proof.

I. INTRODUCTION

A. Motivation

Over the last few years, the automobile industry has
achieved a notable leap towards the realization of practi-
cal Autonomous Vehicles (AVs). AVs are equipped with
sophisticated systems and subsystems to provide vehicles
with advanced communication capabilities, computer vision,
autonomous decision-making capability, etc., to enable them
to autonomously drive without any human intervention [1].
AVs have the potential to enhance our current transportation
system by reducing congestion and travel time, increasing fuel
efficiency, and improving road safety [2].

AVs are composed of many subsystems running specific
firmware programs that enable performing all control, mon-
itoring, and data manipulation operations. However, by con-
trolling the functionality of the subsystems through the instal-
lation of infected versions of the corresponding firmwares, an

attacker can successfully hack AVs and fully/partially access
them, e.g., to involve the vehicle in accidents deliberately,
which may lead to dramatic damages and kill people. As
an example of this attack, Chrysler company announced a
recall for 1.4 million vehicles after hackers have managed
to turn-off the engine remotely while the vehicles were on
motion by exploiting a hackable software vulnerability via the
internet-connected entertainment system [3]. Therefore, ensur-
ing the integrity and authenticity of AVs’ firmware update is
primordial and must be carefully addressed. In addition, it
may happen that multiple AVs with their various subsystems
need to be updates urgently and simultaneously, e.g., to fix
newly discovered bugs, thus a high availability of the updates
is required.

Most of the existing solutions for firmware update depends
on the client-server model in which a manufacturer delegates
the process of firmware distribution to trusted cloud providers,
such as Microsoft Azure and IBM Cloud [4]. However, this
central client-server architecture has the single point of failure
problem. In case the server is not available, the clients (AVs)
cannot access the resources (updates) no matter how powerful
the server is. For AVs, there are several factors that make the
availability and security of the firmware updates challenging
tasks. To elaborate, the number of autonomous vehicles on
roads is expected to reach 20.8 million in the U.S. alone
[4]. Also, each AV has many subsystems that run different
programs designed to accomplish specific functions. This
creates tremendous load on the server side and can broaden
the sources of cyberattacks. Moreover, AVs are designed to
last for many years (15 to 20 years); thus the integrity and
authenticity of the firmware should be guaranteed throughout
the years of service.

Recently, blockchain with its capability to provide a ver-
ified, transparent and distributed ledger without a need of a
trusted third party, has drawn the attention of both academia
and industry across a wide range of domains, including health-
care, finance, and energy [5]. Moreover, blockchain paved
the way to build smart contracts, which serve as a piece
of code on the blockchain that can perform an action once
specific criteria are satisfied. More importantly, self-enforcing
smart contracts can be executed without the need for trusted
intermediaries [6].

ar
X

iv
:1

81
1.

05
90

5v
1

 [
cs

.C
Y

]
 1

4
N

ov
 2

01
8

B. Contribution

In this paper, we propose a blockchain-based firmware
update scheme tailored for AVs. We use blockchain and smart-
contract technology to guarantee the authenticity and integrity
of new updates. We also exploit the AVs’ inter-communication
capability and incetivize AVs to particiapte in the distribution
and transfer of new firmware updates from one to another
therefore ensuring, high availability and fast delivery of the
updates. The main contributions of the proposed scheme are
outlined as follows:
• A consortium blockchain created by multiple manufac-

turer organizations is proposed. Each consortium member
has the permission to write a smart contract that handle
the logic ensuring the authenticity and integrity of its
firmware updates without the need for a trusted third
party.

• A high availability and reliability is ensured by incen-
tivizing AVs to participate in the distribution of the
firmware updates. Distributor AVs are rewarded for their
honest participation and the smart contract is used to
manages the reward system and keeps track of the
reputation credit of each AV.

• Attribute-based encryption (ABE) technique is used to
allow manufacturers to set a policy about who have the
rights to download and use an update. The access policy
is defined on the smart contract that enforces its execution
without an intermediary, so only authorized AVs can
request and receive the update.

• Since AVs do not mutually trust each other, a Zero-
Knowledge Proof protocol is employed. Each distributor
can exchange an encrypted version of the update in return
for proofs of distribution from receiver AVs. The delivery
of the decryption key is guaranteed by the smart contract
which will reveal the key once the proofs are collected.
The smart contract also increment the distributor’s repu-
tation based on the received proofs.

The rest of this paper is organized as follows. In Section II,
we discuss some preliminaries. Then, our proposed scheme is
presented in details in Section III. Performance evaluations
are provided in Section IV. Section V discusses the related
work. Finally, we give concluding remarks in Section VI.

II. PRELIMINARIES

In this section, we present the necessary background on
blockchain, smart contracts and some cryptographic tools that
we have used for this research, as well as the notation used
along this paper.

A. Blockchain and Smart Contracts

Blockchain was first introduced in 2008 as the underline
technology behind the cryptocurrency known as Bitcoin [7]
to help make peer-to-peer exchange of value without a cen-
tralized third party. A blockchain is a distributed, immutable,
and append-only data structure formed by a sequence of
blocks that are chronologically and cryptographically linked
togather [6]. Fundamentally, a network composed of a set of

nodes called miners or validators are responsible of keeping
a trustworthy record of all transactions through a consensus
algorithm in a trust-less environment. To exchange some coins
from one account to another, for instance, a new transaction is
generated and broadcast to the network. Each user is identified
by a pseudonym address, usually generated from its public
key, and the transaction is authenticated through a digital
signatures computed using the user’s private key. One of the
exciting applications of blockchains is smart contracts, which
are defined as computer codes running on top of a blockchain
and is correctly executed without fraud or any interference
from a third party [8]. Each contract has a unique address
on the blockchain to identify itself and to allow users or
other contracts to interact with it. The most popular smart
contracts platform is Ethereum [9], and the de-facto language
for creating contracts in Ethereum is Solidity1.

Table I: System Notations.

Symbol Description
Mθ A manufacturer company for AVs.
PKθ/SKθ Public/ Private key pair for manufacturer Mθ .
PKVj

/SKVj
Public/ Private key pair for vehicle Vj .

PKUi
/VKUi

zk-SNARK proving/verifying key pair for update (Ui).
Ui i th firmware update version.
Pi Access policy defined by the manufacturer for Ui .
ACi Authentication code of update Ui and policy (Pi).
Vj A responder vehicle j that receives an update Ui .
kj Encryption Key for Ui of vehicle Vj .
hi Hash of kj .
Ûi The firmware update (Ui) encrypted with kj .
CVj

A concatenation of ACi and hj .
σj A signature of receiving update Ui from vehicle Vj .

B. Cryptographic Tools

The notation details used in the remaining paper are listed
in Table. I.

1) Attribute Based Encryption: Attribute based encryption
(ABE) is an encryption scheme that allows access control
over encrypted data. In ABE, each user is assigned a set of
secret keys corresponding to his/her set of attributes. Then, a
message is encrypted under an access policy formed from the
system’s set of attributes. The message can only be decrypted
by the users who have the attributes that can satisfy the
policy. In our scheme, we use the attribute based encryption
scheme proposed in [10] to enable the distributor AV to
identify the neighbouring AVs who have the required features
to download a firmware update. This scheme is a ciphertext-
policy attribute-based encryption (CP-ABE), where the access
policy is embedded in the ciphertext.

2) Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge (zk-SNARK):: zk-SNARK is a proof construction
in which one, called the prover, can prove possession of
a specific information, called a witness (w), e.g., a secret
key, to someone else, called the verifier, without revealing
that information. zk-SNARK does not require any interaction
between the prover and verifier. Moreover, these schemes are

1https://solidity.readthedocs.io/en/develop/

distributor AV distributor AV

Blockchain Net.

Update Update

Vehicle to Vehicle (V2V) Comm.

Vehicle to Blockchain (V2B) Comm.

Vehicle to Manufacturer (V2M) Comm.
Vehicle to Manufacture (V2M) Comm.

1

2

33

4

55

Figure 1: System architecture: (1) The manufacturer creates a smart-contract for a new firmware update by including its hash
code for authenticity checking by AVs. (2) The manufacturer sends the new update to top-reputation AVs (distributors). (3) A
distributor exchanges an encrypted version of the update in return for proof of reception of the update by a responder AV. (4)
A redeem transaction, containing multiple proofs, is sent to the smart contract to update the distributor’s reputation. (5) The
responder AV receives the decryption key of the firmware update from the smart contract.

efficient in the sense that the zero-knowledge proof can be
verified quickly.

We adopt the zk-SNARK scheme in [11]. Formally speak-
ing, let L be an NP language with C as its decision circuit. Two
keys play an essential role, namely, the proving key (PK) and
the verifying key (VK). The proving key allows any prover
to compute a proof π for a statement y ∈ L with a witness
w . Typically, a zk-SNARK scheme consists of the following
three polynomial-time algorithms:

1) Gen(1λ,C) −→ (PK,VK). Given a security parameter λ
and C as a decision circuit, the Gen algorithm generates
two public keys, including PK and VK, that are used to
prove/verify the membership in L.

2) Prove(PK, y ,w) −→ π: Given PK, instance y , and
witness for a NP statement w , the Prove algorithm
generates a proof π for the statement x ∈ Lc .

3) Verify(VK, y ,π) −→ {0, 1}. Given VK, instance y , and
the proof π, the Verify algorithm outputs 1 if y ∈ Lc ,
allowing the verifier to verify the instance y .

3) Aggregate Signatures: Given n signatures (σ1, ... ,σn)
on n distinct messages from n users, aggregate signature
scheme can be used to aggregate all these signatures into
a single short signature (σagg). Then, given σagg and the
n messages, a verifier can efficiently ascertain that the n
users indeed signed the messages. In our scheme, we use
the aggregate signature scheme proposed in [12] to reduce
computations overhead on the blockchain. The idea is that
instead of sending a transaction to the blockchain each time a
distributor AV distributes a firmware update and gets a proof
from other AV, it can aggregate several proofs to create one
short aggregated proof to reduce the number of transactions
sent to the blockchain.

III. SECURE AND SCALABLE FIRMWARE UPDATE SCHEME

In this section, we present our scheme that aims to en-
sure secure and scalable delivery of firmware updates from
automobile manufacturers to AVs. We first present a general
architecture for the system, followed by system initialization,
the smart contract creation, firmware update dissemination,
and rewarding.

A. System Architecture

Fig. 1 shows the system architecture, which is comprised
of two manufacturers with their AVs, two smart contracts
for firmware updates of each manufacturer, and a consortium
blockchain. A sketch of the possible interactions between the
different system entities is shown in Fig. 2. The role of each
entity in the system is discussed in the following paragraphs.

Manufacturer. The manufacturer is responsible for keeping
its manufactured AVs updated with the latest versions of the
different firmware updates for the subsystems that control
the AVs. During the manufacturing of AVs, the manufacturer
uploads each AV with a set of cryptographic keys and public
parameters that will be used to ensure secure distribution of
firmware updates. Also, each time a new update is released, a
corresponding smart contract is deployed by the manufacturer
to allow AVs to check the integrity and authenticity of
the update. In addition, to attract AVs to participate in the
distribution of an update, the manufacturer compensates the
participants through a rewarding mechanism, e.g., momentary
rewards and free or reduced-price maintenance services.

Autonomous Vehicles. We distinguish between two types of
AVs, distributors and responders. The distributor AV dissem-
inates a new firmware update to other AVs (responders) in
its vicinity. Each responder AV that receives an update can
also act as a distributor of that update. By this way, we can

Manufacturer (Mθ) Blockchain Distributor AV Responder AV

[for each firmware
update (Ui)]

ACi = H(Ui||Pi)
(PKUi ,VKUi) = Gen(Iλ, C)

Deploy/update a contract for (Ui)

[PKU i,VKU i, Policy]C
on

tr
ac
t
cr
ea
ti
on

Send the update [Ui]

get [ACi,PKU , policy]

get [ACi,VKU , policy]

C0, C1,x, C2,x, C3,x, C4,x

Mc

V2B Comm.

Common
features
check

F
ir
m
w
ar
e
u
p
d
at
e
d
is
se
m
in
at
io
n

kj ∈ Zp
hj = H(kj)

Ûi = Enckj (Ui)

yj = (Ûi, hj)
πj = Prove(PKU i, yi, kj)

yj , πj

V erify(VKU i, yj , πj)
CVj := (ACi||hj)
σj = [H(CVj)]SKVj(σj , PKV j , C

Mθ

PKV j
)

R
ew

ar
d
in
g

σagg =
∏
∀j
σj

(σagg||PKV1 , . . . , PKVm ||CMθ
PKV 1

, . . . , C
Mθ
PKV m

||k1, . . . , km)

Contract check (σagg) and
if it is valid, distributor’s

reputation is updated
get [PKVj]

kj

Figure 2: Firmware update scheme sketch.

ensure the large-scale dissemination of the update quickly.
Initial distributors are selected by the manufacturer based on
their reputations which are recorded in a smart-contract.

Smart Contract. For each new firmware update, a smart con-
tract is created. The contract contains the necessary credentials
allowing any receiver of the update to authenticate it and
verify its integrity. In addition, the contract implements the
reputation logic that evaluates and keeps track of the AVs’
activities in the distribution of the firmware update. More
specifically, the contract increases the reputation of a distrib-
utor AV after receiving proofs of the firmware distributions
from responder AVs.

Blockchain Network. Blockchain network is at the center of

our system and it executes the smart contracts in a distributed
manner without relying on a central party. This is mandatory
to ensure a scalable and secure firmware update dissemination.
Moreover, to improve the efficiency of the system, we opt for
a consortium blockchain, where the validators, i.e., nodes with
write permission on the shared ledger, are known and trusted
entities. In our case, the validators can be the manufacturers
of the different automobile brands.

B. System Initialization

A multi-authority attribute based encryption scheme is used,
where each manufacturer is considered as an authority that
decides a set of attributes (or features) for its AVs. M is the set
of all available manufacturers and a manufacturer Mθ ∈ M.
Let A be the set of all attributes (or features) in the system,

an access policy (A, δ) on A with A ∈ Zl×n
p , called the share

generating matrix in the field Zp of prime order p with l
rows and n columns, and a function δ that labels the rows of
A with attributes from A, i.e., δ : [l]→ A. In addition, let ρ be
a function that maps attributes in rows to its manufacturers,
where ρ : [l] →Mθ. Consider e : G1 × G2 → GT a crypto-
graphic bilinear map with generators g1 ∈ G1 and g2 ∈ G2,
where G1 and G2 are multiplicative group. Each manufacturer
Mθ ∈ M should select two random elements (αθ, yθ)

R← Z∗p
as its secret keys, and then, Mθ can compute its public key
as PKθ = {e(g1, g2)αθ , g yθ

1 }. Besides, a public hash function
H : {0, 1}∗ → G1 is used to map an AV global identifier GID
to a point in G1, public hash function F : {0, 1}∗ → G1 that
maps an attribute a ∈ A to G1, and a function T that maps an
attribute a ∈ A to the manufacturer Mθ, hence, the function
ρ(·) can be redefined as ρ(·): T(δ(·)) . The global parameters
are then defined as GP = {G1,G2,GT ,Zp,H,F ,T ,A,M}.

Besides, during the production,Mθ should assign each AV
a key for each assigned attribute a ∈ A using the AV global
identity GID as follows: Mθ chooses a random t

R← ,Z∗p
and outputs to the AV attributes secret keys as SKGID,a =
{KGID,a = gαθ

2 H(GID)yθF (a)t ,K ′GID,a = g t
1}. Finally, for

each AV, Mθ generates a public/private key pair as follows:
a random number xa

R← ZP is selected as the private key and
the corresponding public key is PKVj = g xa

2 . The public key
PKVj should be associated with a manufacturer’s certificate
as (CMθ

PKVj
). Then, the public/private key pair (PKVj , xa) and

CMθ

PKVj
should be added to the AV’s tamper proof device along

with manufacturer’s public key PKθ.

C. Smart Contract Creation

Upon releasing a new update by a subsystem’s manu-
facturer, denoted by Ui , the AV manufacturer that uses the
subsystem should first test the update. Note that a subsystem’s
manufacturer may be different from the AV manufacturer. If
the AV manufacturer decides to use it on its AVs, it starts
the firmware update as follows. The manufacturer creates a
smart contract and initializes it by two attributes: (1) A prov-
ing/verifying key pair: (PKUi

,VKUi) = Gen(1λ,C), required
for the execution of the zk-SNARK protocol; (2) An authen-
tication code for the new firmware update: ACi = H(Ui ||Pi),
where Pi is the access policy defined by the manufacturer to
deliver the update to only AVs that have the features defined
in the policy.
The manufacturer deploys a smart-contract by broadcasting a
transaction to the blockchain network. The deployed smart-
contract is described in Algorithm 1 and includes the follow-
ing main functions:
• Authenticity and integrity of a firmware update. Since

the update’s authentication code and verification key are
stored in the contract, AVs, by consulting the blockchain,
can check whether a received firmware update is the same
one that was originally approved by the AV manufacturer.

• AVs’ reputation. When an AV participates in the distribu-
tion of a new update, the proof of distribution is sent to

Algorithm 1: Pseudocode for the Firmware Update con-
tract

1 contract FirmwareUpdate
2 mapping(address => int) Reputation

// Mapping for distributors
reputation

3 mapping(address => int) UpdatedAVs
// Mapping for AVs with the No.of
obtained updates

4 function FirmwareUpdate(_PK, _VK, _ACi,
_Pi, X)

5 PK ← _PK // Proving Key
6 VK ← _VK // Verifying key
7 ACi ← _ACi // authentication code
8 Pi ← _Pi // ABE Policy
9 MaxUpdate ← X // Max. No. of download

per Update

10 function RecieveProof(σagg, PK[], C[]
keys[])

11 address [] RecievedAVs // Received AV
list

12 for s ← 0 to PK.lengh do
13 if verifySig(pk_M, PK[s], C[s])
14 return
15 end
16 if UpdatedAVs[PK[s]] > MaxUpdate
17 return
18 end
19 hs ← H(keys[s])
20 CVs ← H(ACi , hs)

RecievedAVs.push(Pairing(PK [s], CVs)))
21 end
22 if Pairing(g1,σagg)=Prod(RecievedAVs)
23 UpdateReputation(msg.sender,

PK.length)
24 for i ← 0 to PK.lengh do
25 emitEvent("KeyRevealed", PK_i,

keys[i])
26 UpdatedAVs[PK_i]←

UpdatedAVs[PK_i]+1
27 end
28 end

29 function UpdateReputation(Dist, N)
// increase reputation distributors

30 Reputation[Dist]← Reputation[Dist]+=N

the smart contract which in turn increases its reputation.
The manufacturer rewards the highly-reputed AVs, i.e.,
the active AVs in distributing the firmware. The reward
can be momentary, free or reduced-price maintenance
service, etc.

• Firmware access control. Each firmware update has an
access policy set by the manufacturer, and the AVs that
have enough features to satisfy the policy can receive
the firmware. This can restrict the distribution of the
firmware to only certain AVs. The access policy of an
update is included in the update’s smart-contract.

D. Firmware Update Dissemination

In this stage, the manufacturer starts the dissemination
process of a new update by first selecting the most active

AVs in distributing updates (based on their reputations) to
act as the initial distributors. As discussed before, rewards
are used to incentivize the AVs to act as distributors and
actively distribute the new firmware, but the rewarding system
should be secure to ensure that only honest distributors which
distributes the firmware are rewarded. In practice, each AV
manufacturer will use many subsystems made by different
companies, and therefore, it is very frequent that different AV
manufacturer may use the same subsystems produced by the
same company in their vehicles. Thus, it is very important for
each manufacturer to ensure that its distributors will deliver a
particular update to only certain models of its AVs.

Thanks to ABE, as presented in Section II, each manu-
facturer can define an access policy for each update on the
associated smart contract, where only AVs that belong to the
same manufacturer and have enough fractures, such as model,
year of manufacturer, etc, can decrypt and use the firmware
update they got from a distributor.

For a distributor to find other AVs which can satisfy the
access policy of an update and deliver it, the following steps
should be taken.

1) A distributor AV first queries the blockchain for the ACi ,
proving key PKUi , and the manufacture’s access policy
(A, δ).

2) Then, distributor AV should broadcast an encrypted
challenge message (Mc) using the ABE to the nearby
AVs. This message is encrypted using the manufacture’s
public key PKθ under the access policy (A, δ) set by the
manufacturer. Hence, only the AVs which owns the set
of attributes that satisfy the policy are able to decrypt
the ciphertext CT . To encrypt Mc , distributor AV first
creates two random vectors v = (z , v2, · · · vn)T and
w = (0,w2, · · ·wn)T , where {z , v2, · · · vn,w2, · · ·wn} are
elements randomly selected from Z∗p . We denote λx as
the share of the random secret z corresponding to row x ,
i.e., λx = (Ax · v) and wx denotes the share of zero, i.e.,
wx = (Ax ·w), where Ax is the x-th row of access matrix
A. The distributor AV chooses a random element tx

R←
Z∗p for each row in the policy matrix A and computes the
CT as:

3) After a responder AV receives CT , it first queries the
smart contract for the access policy (A, δ), VKUi and
ACi . Then, to decrypt Mc , the AV should use the
policy (A, δ) from the blockchain and its secret keys
(KGID,a,K ′GID,a) for the subset of rows Ax of satisfied
attributes and for each row x to compute

Then, AV calculates the constants cx ∈ Z∗p such that
ΣxcxAx = (1, 0, . . . 0) and computes:

Πx(e(g , g)λx ,e(H(GID), g)wx)cx = e(g , g)z

This is true because λx = (Ax · v) and wx = (Ax · w),
where 〈(1, 0, · · · , 0) · v〉 = z and 〈(1, 0, · · · , 0),w〉 = 0.
Hence, the challenge message can be decrypted as Mc =
C0/e(g , g)z .

4) Finally, once a responder AV manages to get Mc , it
then replies to the distributor AV with the correct Mc .
Henceforth, both the distributor and responder AV can
proceed with the firmware update transfer.

A distributor AV sends the firmware update to a responder
AV in return for a signature, i.e., a proof for disseminating
the firmware. This exchange of firmware update and proof
can be made in a trust-less way using zk-SNARK protocol as
follows.

1) The distributor AV generates a secret key kj ∈ ZP and
calculates hj = H(kj).

2) Then, it computes Ûi = Enckj (Ui), where Enc is a
symmetric-key encryption algorithm.

3) For zk-SNARK protocol, the secret witness is the in-
stance yj = (Ûi , hj) and kj . The NP statement is as
follows:

∃ kj : H(kj) = hj ∧ H(Deckj (Ûi),Pi) = ACi (1)

Which attests that the distributor AV has a key, kj , such
that its hash is hj , and if kj is used to decrypt Ûi , it
will match the update authentication code ACi . After that,
the distributor computes a zero-knowledge proof πj =
Prove(PKUi , yj , hj) and sends yj ||πj to the responder.

4) Upon receiving (yj ||πj), the responder first verifies that
Verify(VKUi , yj ,πj) = 1, and then computes a signature
σj = [H(CVj)]SKVj , where SKVj is its private key and
CVk

= (ACi , hj).
5) Finally, it sends (σj ||PKVj ||CMθ

PKVj
) to the distributor.

E. Rewarding

In this phase, the distributor AV sends a redeem transaction,
containing multiple proofs, to the smart contact to update its
reputation proportionally to the number of AVs which received
the update. This rewarding process is done as follows.

1) To reduce the number of transactions sent to the
blockchain, instead of making a transaction each time
a firmware is transferred, one transaction can be sent for
several firmware transfers efficiently, as follows. Once the
distributor AV gets the proofs of transferring an update
(σj) from other vehicles, it aggregates multiple signatures

into a single signature (σagg) as follows: σagg =
∏

∀j
σj .

Note that, a signature σj should be different from other
received signatures. In other words, the distributor should
generate a distinct kj for each time he sends the new
update to other vehicles.

2) The distributor sends a transac-
tion to the blockchain containing
(σagg ||PKV1 , ... ,PKVm ||CMθ

PKV1
, ... ,CMθ

PKVm
||k1, ... , km)

where m is the number of vehicles that received the
update.

3) The smart contract method RecieveProof first verifies
that the received public key is one of the certified keys by
the manufacturer (see verifysign in Algorithm 1) as
well as many number of times that AV gets the update.
Then, it computes hj = H(kj) and CVj = H(ACi , hj)
for all j . Thereafter, it verifies the aggregated signature

by checking if e(g1,σagg) =
∏

∀j∈m
e(PKVj , CVj) or not

(see pairing in Algorithm 1 which can be executed
by a pre-compiled contract for elliptic curve pairing
operations available at [13]).

4) Finally, the distributor is rewarded by increasing its
reputation index proportionally to the number of
vehicles that received the update (see the method
UpdateReputation in Algorithm 1).

5) A responder AV queries the contract for a relevant
event associated with its public key for the decryption
key kj it needs to decrypt Ûi to get Ui (see event
"KeyRevealed" in Algorithm 1).

IV. PERFORMANCE ANALYSIS

A. Performance Evaluation

In this section, we evaluate the computation overhead for
the cryptography operations used in our scheme.

The computation times of ABE are measured using Intel
Core i7- 4765T 2.00 GHz and 8GB RAM machine and Python
charm cryptographic library in [14]. In our scheme, a distrib-
utor AV needs to broadcast a challenge packet (Mc) encrypted
by a number of attributes (γ) specified in the smart contract.
According to [14], the required time for encryption is (10.9×γ
+ 1.35) ms. In addition, a responder AV needs to decrypt (Mc)
with total decryption time that can be formulated as (4.03×γ
+ 0.01) ms. After running the ABE scheme, zk-SNARK
protocol should be run. In this protocol, a proof is generated
by the distributor and then verified by the responder. We
implemented the NP statement in Equation 1 using Zokrates2

toolbox. MIMC [15] is used for encryption/decryption due to
its efficiency with zk-SNARK proofs, and sha256 is used for
hashing. The time to generate the proof is 6 seconds, where as,
the verification is 5 milliseconds. It should be noted that the
distributor AV can generate multiple the proofs offline before
starting the communication session with the responder AVs.
Hence, the total computation time needed to run ABE and zk-
SNARK verification of our scheme is low, which is suitable

2https://github.com/Zokrates/ZoKrates

for our application because the AVs are in motion and their
communication time is short.

In our scheme, blockchain is required to ensure the au-
thenticity and integrity of the new update. To reduce the cost
needed to execute our scheme on the blockchain, most of
the computations to secure the scheme are done outside the
blockchain. Using a consortium blockchain will remove any
constraint on the amount of data that should be sent and stored
on the blockchain. Additionally, our scheme reduces the on-
chain operations by reducing the number of transactions sent
to the blockchain by aggregating several firmware transfers
in one transaction using aggregate signature scheme. Also, as
discussed before, the computation cost to run our scheme is
low, and according to [2], the mean throughput for delivering
data to and from moving vehicles that use IEEE 802.11
protocol is equal to 760 kbit/s. If we assume that the size of
a firmware update equals to 1 MByte, then the time required
to transfer the update is 1.3 seconds. Therefore, given this
transfer time and the short time needed for the cryptographic
computations, our scheme can be executed during the contact
time of two moving AVs.

B. Security analysis

In this section, we discuss the possible security threats and
how our scheme mitigate to each of them.
• Firmware integrity. Since the authentication code of each

new firmware update is recorded in the smart contract,
our scheme resists any attempt by an adversary to dis-
tribute malicious updates.

• Firmware distribution and access control. To prevent
unauthorized AVs from accessing a new firmware update,
our scheme allows each AV manufacturer to control the
access by defining the list of authorized AVs. Through
ABE access policy, which is registered in the blockchain,
a distributor can prescribe the AVs that have the right to
receive the update and prevent unauthorized AVs from
receiving it. In addition, because the access policy is
embedded in the update authentication code (AC), any
responder AVs (receiver) can decide if it is concerned by
a particular update or not. If a compromised/malicious
distributor AV changes the access policy used to encrypt
the challenge message, the responder AV will detect this
change during the zk-SNARK verification. Hence, the
distributor (attacker) will not be able to get a proof of
distribution from the responder.

• DoS attack resistance. The proposed scheme resists
Denial-of-service (DoS) attacks [16] that aim to disable
the system and the rewarding mechanism. This attack is
not possible since there is no central unit that distributes
the firmware or runs the scheme. For this attack to
succeed, the attackers need to control the majority of
the validators (manufacturers) of the blockchain network,
which is presumably impossible.

• Update audibility. In our scheme, the AVs that have
distributed or received an update are recorded in the
blockchain. This gives the manufacturer an accurate

insight about the firmware state of its AVs, i.e., which
AVs have received a particular update.

V. RELATED WORK

In the literature, the security of firmware update has been
discussed in several contexts, including wireless sensor net-
work [17], [18], IoT [19], [20], vehicular network [21], etc.
The existing works can be classified either as centralized
(client-server model) or decentralized. In the following we
review some of the existing solutions in both classes.

In [21], Nilsson et al. proposed a firmware update protocol
for modern intelligent vehicles over the internet. The authors
suggested a client-server method using a web portal that
delivers the firmware update in fragments. The fragments
are protected using hash chain and ensuring, therefore, the
integrity of updates. However, the system is vulnerable to a
DoS attack as it relies on a central server. Also, the central
solution does not ensure the availability of the update when
several vehicles on the road request the firmware updates at
the same time.

In sensor networks, several schemes such as [17], [18] have
been proposed to improve the reliability of delivering new
updates/security patches by ensuring their integrity. However,
these schemes depend on a single entity to manage the distri-
bution of firmware updates and not scale for large networks.

In [19], the authors proposed a decentralized solution based
on a permission-less blockchain to ensure the integrity of
updates by having multiple verification nodes instead of
depending on a private centralized vendor network. For the
distribution of updates, a peer-to-peer file sharing network
such as BitTorrent is proposed to ensure integrity and versions
tractability of updates. However, the scheme does not provide
any incentive for devices to participate and distribute firmware
updates to others.

In [20], the authors proposed software update framework for
Internet of Things (IoT) devices. The framework allows other
parties to deliver the updates in return for digital currency paid
by the vendor. However, the scheme incurs high financial cost
since it depends on Etherum blockchain [9] which apply fees
for each transaction sent to the network.

VI. CONCLUSION

In this paper, a firmware update scheme based on
blockchain and smart contract is introduced for autonomous
vehicles. A smart contract is used to ensure the authenticity
and integrity of firmware updates, and more importantly to
manage the reputation values of AVs that transfer the new
updates to other AVs. We also use ABE to allow AV manu-
facturer to target a specific set of AVs that have certain features
defined by the manufacturer to download the firmware. A
zero-knowledge proof protocol is used to enable the AVs to
exchange an update for proof of distribution in a trust-less
way. To improve the efficiency, an aggregate signature scheme
is used to allow a distributor to combine multiple proofs to
make only one transaction on the blockchain when it redeems
the rewards. Finally, the smart contract rewards the distributors

by increasing their reputation in the blockchain. Our evalua-
tion analysis indicates that the cryptography primitives used
to secure the firmware update exchange is suitable to the AVs
network. For the future work, we will implement a prototype
of our proposed scheme.

REFERENCES

[1] T. Lassa. The beginning of the end of driving. [Online]. Available:
http://www.motortrend.com/news/the-beginning-of-theend-of-driving/

[2] J. Eriksson, H. Balakrishnan, and S. Madden, “Cabernet: vehicular con-
tent delivery using wifi,” in Proceedings of the 14th ACM international
conference on Mobile computing and networking. ACM, 2008, pp.
199–210.

[3] A. Greeenberg. [Online]. Available: https://www.wired.com/2015/07/
jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/

[4] G. Lin, D. Fu, J. Zhu, and G. Dasmalchi, “Cloud computing: It as a
service,” IT professional, no. 2, pp. 10–13, 2009.

[5] T. M. Fernández-Caramés and P. Fraga-Lamas, “A review on the use of
blockchain for the internet of things,” IEEE Access, 2018.

[6] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts
for the internet of things,” Ieee Access, vol. 4, pp. 2292–2303, 2016.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[8] N. Szabo, “The idea of smart contracts,” Nick SzaboâĂŹs Papers and

Concise Tutorials, vol. 6, 1997.
[9] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.
[10] Y. Rouselakis and B. Waters, “Efficient statically-secure large-universe

multi-authority attribute-based encryption,” in International Conference
on Financial Cryptography and Data Security. Springer, 2015, pp.
315–332.

[11] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture.” in USENIX
Security Symposium, 2014, pp. 781–796.

[12] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2003, pp. 416–432.

[13] Precomiled contract for BGLS signature, “https://github.com/project-
arda/bgls-on-evm.”

[14] M. Nabil, M. Bima, A. Alsharif, W. Johnson, S. Gunukula, M. Mah-
moud, and M. Abdalla, “Toward priority-based and privacy-preserving
ev dynamic charging system using divisible payment,” in Smart Cities
Cybersecurity and Privacy. Elsevier, 2018.

[15] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, “Mimc:
Efficient encryption and cryptographic hashing with minimal multi-
plicative complexity,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2016,
pp. 191–219.

[16] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[17] D. Kim, H. Nam, and D. Kim, “Adaptive code dissemination based
on link quality in wireless sensor networks,” IEEE Internet of Things
Journal, vol. 4, no. 3, pp. 685–695, 2017.

[18] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler, “Securing the deluge
network programming system,” in Proceedings of the 5th international
conference on Information processing in sensor networks. ACM, 2006,
pp. 326–333.

[19] B. Lee and J.-H. Lee, “Blockchain-based secure firmware update for
embedded devices in an internet of things environment,” The Journal
of Supercomputing, vol. 73, no. 3, pp. 1152–1167, 2017.

[20] O. Leiba, Y. Yitzchak, R. Bitton, A. Nadler, and A. Shabtai, “Incen-
tivized delivery network of iot software updates based on trustless proof-
of-distribution,” arXiv preprint arXiv:1805.04282, 2018.

[21] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the
air in intelligent vehicles,” in Communications Workshops, 2008. ICC
Workshops’ 08. IEEE International Conference on. IEEE, 2008, pp.
380–384.

http://www.motortrend.com/news/the-beginning-of-theend-of-driving/
https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/
https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/

	I Introduction
	I-A Motivation
	I-B Contribution

	II Preliminaries
	II-A Blockchain and Smart Contracts
	II-B Cryptographic Tools
	II-B1 Attribute Based Encryption
	II-B2 Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARK):
	II-B3 Aggregate Signatures

	III Secure and Scalable Firmware Update Scheme
	III-A System Architecture
	III-B System Initialization
	III-C Smart Contract Creation
	III-D Firmware Update Dissemination
	III-E Rewarding

	IV Performance Analysis
	IV-A Performance Evaluation
	IV-B Security analysis

	V Related Work
	VI conclusion
	References

