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Abstract—In this paper, we consider a multi-user full duplex
(FD) mobile edge computing (MEC) system, where a FD base sta-
tion (BS) integrated with a MEC server, simultaneously transmits
information signals to downlink users through the downlink and
receive computation tasks for execution by the MEC server from
mobile devices in the uplink. We study the trade-off between the
offloading energy and latency by minimize the total offloading
energy and latency via a weighted multi-objective optimization
problem. First, we propose a design strategy based on the
traditional interference suppression in the downlink, and then,
we proposed a second design based on downlink interference
exploitation. We employ Lagrangian methods to solve the two
non-convex designs via an iterative algorithm. Simulation results
not only show the trade-off between the offloading energy and
latency, but also show the substantial gains achieved by the
proposed FD schemes compared with the baseline half duplex
schemes.

I. INTRODUCTION

The next generation 5G network aims at providing higher
data rate and low latency. Full duplex (FD) communications is
widely recognised as one of the key technologies for providing
higher data rate. Following the considerable breakthroughs
in terms of self interference (SI) cancellation [1], various
practical implementation issues such as protocols and resource
allocation algorithms have been investigated. [2] proposed a
power efficient resource allocation design to study the trade-off
between the UL and DL power consumption for a multiuser
FD communication system with a FD BS serving uplink (UL)
and downlink (DL) users, simultaneously. In [3], the authors
studied the resource allocation for distributed antenna systems
in a similar system setup. In [?], [4], [5], the authors used the
knowledge of the DL signals at the FD BS to exploit multi-user
interference (MUI) instead treating the MUI as unwanted as in
traditional interference suppression techniques. In addition, it
was shown that by exploiting the downlink MUI, the downlink
transmit power is reduced significantly, although the downlink
MUI is exploited, the power gains extend to the uplink through
the self-interference serving as the link [4].

On the other hand, the unprecedented growth of mobile data
traffic calls for significant increase in the wireless network
capacity. Furthermore, the data traffic growth is not matched
by improvement on mobile devices in terms of energy con-
sumption and data storage capabilities. A promising solution
is to enable mobile devices (MDs) offload their intensive
and latency-critical computation tasks to nearby servers for
execution through mobile edge computing (MEC). In this way,

the battery life, data storage capabilities and reliability of the
MDs are enhanced [6]. In quest to reap the benefits of the
MEC, several resource allocation designs have been proposed.
In [7], an offline heuristic algorithm was proposed to minimize
the average completion time of multiple users for partitioning
and scheduling the offloading of their computations. [8] in-
vestigated resource allocation design for MEC systems based
on time- and orthogonal frequency-division multiple access
offloading by considering the local computation capabilities of
the users. In [9], a wireless powered multiuser MEC system
was proposed where the devices depend on their harvested
energy to compute locally or offload tasks to the MEC server
while the energy consumption of the MEC server is mini-
mized. However, in all the above works, the authors focused
on single-objectives i.e., either energy consumption or latency
objectives. In [10], the authors studied the effects of using
multiple access points (APs) with computation capabilities for
offloading tasks in order to minimize the energy consumption
and latency for fixed and elastic central processing unit (CPU)
frequency. However, the authors assumed fixed transmitting
and receiving power in their analysis, and in addition, the
authors like the authors in [7]–[9] focused on half duplex
transmission.

Accordingly, in this paper, we study a multiuser FD MEC-
supported system. The main contributions of this paper are:
1) the system model: which comprises a FD BS equipped
with a MEC server. The FD BS sends data signals in the DL
and receive computation tasks to be executed by the MEC
server through the UL, 2) the optimisation problem formula-
tion: which involves minimising two desirable but conflicting
system objectives, namely the total offloading energy and
latency, that are handled through a weighted multi-objective
formulation in order to study their trade-off which is highly
dependent on the optimisation variables. To the best of our
knowledge these have not been studied before in the literature.

II. SYSTEM MODEL

The system consists of a FD BS, integrated with a MEC
server, with N transmit and N receive antennas simultaneously
serving K single-antenna downlink users and J single-antenna
mobile devices. In this system, the downlink users receive
information signals from the FD BS, while, the mobile devices
leverage the MEC server at the FD BS to offload its latency-
sensitive computation tasks, which can not be locally executed,



to be executed by the MEC server. In this paper, we assume
that the FD BS knows all the channel state information
(CSI) from and to all the users in the system. We focus on
slow fading channel scenario, where the channels change at
the beginning of each frame. Thus, to facilitate the channel
realization in practice, handshaking is performed between the
FD BS and all users. As the channel changes slowly, pilot
signals are usually embedded in the data packets, which allows
the FD BS to constantly update the CSI estimation of the
transmission links of the users and devices.

A. Downlink Transmission

For the transmission of information signal from the FD BS
to the i-th downlink user, let hi ∈ C

N×1 and wi ∈ C
N×1 be

the channel vector and the beamforming vector between the
FD BS and the i-th downlink user, respectively. Hence, the
received signals at the i-th downlink user is given by

yi = hH
i

K∑
k=1

wk +

J∑
j=1

√
pj`j,i + ni, (1)

where, pj and ni ∼ CN
(
0, σ2

i

)
denote the transmit power for

the j-th mobile device and the additive white Gaussian noise
at the i-th user, respectively. `j,i is the channel between the
j-th mobile device and the i-th downlink user.

B. Computation Offloading

We denote the computation task to be offloaded to the
MEC server for execution in bits at the j-th mobile device
as qj , which are classified as either energy consuming or
time consuming tasks for the battery-constrained and time-
constrained mobile device [6]. Computation offloading to the
MEC server involves the transmission of the computation tasks
to the FD BS by each mobile device and downloading1 of the
results by each user. Hence, we define the transmission rate
of the j-th mobile device with bandwidth B as

rj = B log2
(
1 + γj

)
, (2)

where

γj =
pj

���gH
j uj

���2∑J
n,j pn

��gH
n uj

��2 + sj + σ2
j

uj

2 . (3)

In addition, gj ∈ C
N×1 denotes the channel between the FD BS

and the j-th mobile device and nj ∼ CN(0, σ2
j ) is the additive

white Gaussian noise at the FD BS. We denote uj ∈
N×1 as

the receive beamforming vector for the j-th mobile device. In
this paper, to reduce complexity, we adopt zero-forcing (ZF)
beamforming at the FD BS for the detection of the offloaded
tasks. Furthermore, due to the simultaneous transmission and
reception at the FD BS, there is a strong interference called
self-interference (SI) that degrades the reception of the of-
floaded computation tasks at the FD BS. In the literature,

1As the computational results are usually small, in our analysis we ignore
the downloading time and the power consumed during transmitting and
receiving the results [6], [9]. Thus, in this paper, our focus is particularly
on the offloading of the tasks. We set aside the consideration of the results
downloading from the FD BS to the mobile devices for our future work.

there are different SI mitigation techniques which could be
employed to reduce the effects of SI. In order to isolate our
proposed scheme from the specific implementation of any
passive or active SI mitigation techniques, we model the SI
after cancellation as sj =

∑K
i=1 Tr

{
wiwH

i HH
SIujuH

j HSI

}
[2],

where the matrix HSI ∈ C
N×N denotes the SI channel at

the FD BS. Accordingly, given the computation task qj to
be offloaded by the j-th mobile device, the total offloading
latency is defined as the time taken to offload the task qj to
the FD BS plus the time taken for the FD BS to compute the
corresponding result. This can be expressed as

T total
j =

qj

rj︸︷︷︸
to f f , j

+
qjLBS, j

fBS︸   ︷︷   ︸
tBS, j

. (4)

We denote tof f , j as the time is takes to offload task qj to
the FD BS and tBS, j as the computation time at the FD BS
for task qj , where LBS, j (cycles/bit) is the number of CPU
cycles required to compute 1 input bit of qj at the FD BS
and fBS (cycles/s) is the CPU frequency of the FD BS. Thus,
the corresponding total computation energy consumed in the
offloading process by all the mobile devices is

Eof f =

J∑
j=1

pj tof f , j . (5)

We note here the dependency of the transmit power of the
mobile devices and the downlink beamforming vectors, in that,
pj through the SI term (sj) is a function of wi , which in turn
is a function of pj through (1).

III. PROBLEM FORMULATION

Our main objective in this paper is to study the trade-
off between two important and desirable system objectives,
namely, the total offloading energy and the total offloading
latency. In practice, there always exist a trade-off between
these two objectives, in that, on one hand, an increase in
the offloading energy implies increase in transmit power of
the mobile devices and in essence, leads to a decrease in
the offloading latency and vice versa. In order to efficiently
analyse and address this trade-off between these objectives,
we adopt a weighted multi-objective optimization (MOO) that
aims at minimizing the two objectives by jointly optimizing
the downlink beamforming vectors and the transmit power
for each mobile device, while satisfying the total offload-
ing latency requirement constraint and downlink users QoS
constraints as well as the power constraints. In the following
subsections, we present two strategies for the trade-off design,
one based on classical interference suppression and one based
on interference exploitation.

A. Trade-off Optimization based on Interference Suppression
First, in this section, we define the signal-to-interference

plus noise ratio (SINR) at the i-th downlink user that promotes
interference suppression (IS) transmission based on (1) as

Γ
DL
i =

|hH
i wi |

2∑K
k,i |hH

i wk |
2 +

∑J
j=1 pj |`j,i |2 + σ

2
i

. (6)



Thus, based on the DL SINR expression in (6) the MOOP
based on IS can be mathematically formulated as

P(1) : min
{wi }, {p j }

c1 · Eof f + c2 ·

J∑
j=1

tof f , j

s.t. A1 :
qj

rj
+

qjLBS, j

fBS
≤ T, ∀ j, A2 : ΓDL

i ≥ Γi, ∀i,

A3 : 0 ≤ pj ≤ PMD
max, ∀ j, A4 :

K∑
i=1
‖wi ‖

2 ≤ PDL
max,

(7)

where c1 and c2 are the weights given to the two objectives,
respectively, with c1+ c2 = 1. Constraints A1 ensures the total
offloading latency of each mobile device does not exceed the
required threshold T . Constraint A2 ensures a certain QoS for
the downlink user and constraints A3 and A4 are the maximum
power constraints for each mobile device and for downlink
transmission, respectively.

At this point, we emphasize the flexibility provided by the
MOOP (7) with respect to optimization variables. There is
a strong interdependency between the optimization variables,
in that, increasing the transmit power of the mobile devices
in order to satisfy the latency constraints increases the co-
channel interference (CCI) to the downlink users. At the
same time, increasing the downlink transmit power to satisfy
the downlink SINR constraints due to the increase in CCI,
increases the SI power, which hinders the reception of the
offloaded computation tasks.

The optimization problem (7) is non-convex and in general
difficult to solve partly due to the fractional objective func-
tions. In order to solve (7), in the following we develop a
tractable approach to obtain the optimal resource allocation in
an iterative manner.

First, given a fixed power pj for each mobile device, the
problem reduces to obtaining the beamforming vectors for
the downlink users. Thus, it can be seen that obtaining the
beamforming vectors wi, for i = 1, . . . ,K in (7) aims at
minimizing the downlink transmit power in order minimize the
SI power to satisfy the constraints. Thus, this can be obtained
by solving the following subproblem

P(1.1) : min
{wi }

K∑
i=1
‖wi ‖

2

s.t. A1, A2, A4.

(8)

The optimization problem (8) is non-convex but can be easily
solved through semidefinite relaxation (SDR). By defining
Wi = wiwH

i ,Hi = hihH
i , the SDR formulation of (8) is given

by

P̃(1.1) : min
{Wi �0}

K∑
i=1

Tr {Wi}

s.t. Ã1 : τj − γj ≤ 0, ∀ j, Ã4 :
K∑
i=1

Tr (Wi) ≤ PDL
max,

Ã2 :
Tr (HiWi)

Γi
≥

K∑
k,i

Tr (HiWk) +

J∑
j=1

pj |`j,i |
2 + σ2

i , ∀i,

(9)

where τj = 2

qj

B

(
T−

qj LBS, j
fBS

)
− 1.

The SDR formulation (9) is convex and can be solved by
standard convex solvers. Please note that, the formulation in
(9) is a relaxed form of (8) where the rank one constraint on
Wi has been dropped. If the resulting solution Wi after solving
(9) is rank one, the optimal wi can be obtained by applying
eigenvalue-decomposition (EVD), otherwise, ramdomization
technique [11] can be used to retrieve wi .

Accordingly, for fixed downlink beamforming vectors wi,
for i = 1, . . . ,K , the transmit power for the mobile devices
can be obtained by solving the following subproblem

P(1.2) : min
{p j }, {a j },
{b j }

c1 ·
©«

J∑
j=1

qjaj
ª®¬ + c2 ·

©«
J∑
j=1

qjbj
ª®¬

s.t. A5 :
pj

rj
≤ aj, A6 :

1
rj
≤ bj,

Ã1 : τj − γj ≤ 0, ∀ j, A3 : 0 ≤ pj ≤ PMD
max, ∀ j .

(10)

Here, we introduce auxiliary variables aj and bj for j =
1, . . . , J. In order to solve (10) we analyse the problem using
Lagrangian method. Thus, the Lagrange function of problem
(10) is

L
(
pj, aj, bj, λj, µj, βj, νj

)
= c1

J∑
j=1

qjaj + c2

J∑
j=1

qjbj

+

J∑
j=1

λj
(
pj − ajrj

(
wi, pj

) )
+

J∑
j=1

µj
(
1 − bjrj

(
wi, pj

) )
+

J∑
j=1

βj
(
τj − γj

(
wi, pj

) )
+

J∑
j=1

νj

(
pj − PMD

max

)
, (11)

where λj, µj, βj, νj are the Lagrange multipliers for constraints
A5, A6, Ã1 and A3, respectively. Based on the definition of
Karush-Kuhn-Tucker (KKT) conditions, we have

∂L

∂pj
= λj − λjaj

∂rj
∂pj
− µjbj

∂rj
∂pj
− βj

∂γj

∂pj
+ νj = 0, (12)

∂L

∂aj
= c1qj − λjrj = 0,

∂L

∂bj
= c2qj − µjrj = 0, (13)

λj
(
pj − ajrj

)
= 0, µj

(
1 − bjrj

)
= 0, (14)

βj
(
τj − γj

)
= 0, νj

(
pj − PMD

max

)
= 0. (15)

From (13) and (14) we have λj =
c1qj

rj
, µj =

c2qj

rj
, aj =

p j

rj
and

bj =
1
rj

, respectively. Furthermore, notice that the optimal so-
lution (p∗j, a

∗
j, b
∗
j) of problem (10) satisfies the KKT conditions

of the following J subproblems

min
p j

λjpj − λjajrj
(
wi, pj

)
− µjbjrj

(
wi, pj

)
s.t. Ã1 : τj − γj ≤ 0,

A3 : 0 ≤ pj ≤ PMD
max.

(16)



Algorithm 1 Iterative algorithm for solving problem (7)

1: Initialization:
Set pj = PMD

max, for j = 1, . . . , J,
Obtain wi, for i = 1, . . . ,K , by solving subproblem (9)
Repeat
Loop

2: Compute λj, µj, aj and bj , for j = 1, . . . , J,
3: Update pj, βj and νj , for j = 1, . . . , J,

until convergence. End Loop
4: Update wi, for i = 1, . . . ,K through solving (9)

Until stopping criterion is satisfied.
5: Output: {w∗i } and {p∗j }.

It is easy to see that the KKT conditions for the subproblem
(16) are the same as that of problem (10) and are given by

λj − λjaj
B

ln 2
Ξj

(1 + γj)
− µjbj

B
ln 2

Ξj

(1 + γj)
− βjΞj + νj = 0,

(17)
βj

(
τj − γj

)
= 0, (18)

νj

(
pj − PMD

max

)
= 0. (19)

where Ξj =

���gH
j u j

���2
sj+σ

2
j ‖u j ‖

2 . From (17), we see that the optimal

p∗j is

p∗j =
B

ln 2
λjaj + µjbj

λj − β
∗
jΞj + ν

∗
j

−
1
Ξj
, (20)

where β∗j and ν∗j satisfy the KKT conditions (18) and (19),
respectively. In the following, we examine 3 cases in order to
obtain {p∗j, β

∗
j, ν
∗
j }:

1) From (18) and (19) we have p∗j ∈
(
τj
Ξ j
, PMD

max

)
for β∗j =

ν∗j = 0. In this case, p∗j = Mj where Mj =
B

ln 2
λ j a j+µ jb j

λ j
−

1
Ξ j

according to (20). Thus, we have p∗j = Mj and β∗j =

ν∗j = 0 if Mj ∈

[
τj
Ξ j
, PMD

max

]
.

2) If Mj <
τj
Ξ j

implies that β∗j > 0 from the constraints
(20). Therefore, p∗j =

τj
Ξ j

and ν∗j = 0 according to (18)

and (19). By substituting these in (20) gives β∗j =
λ j

Ξ j
−

B
ln 2

λ j a j+µ jb j

τj+1 .
3) Similarly, if Mj > PMD

max implies that ν∗j > 0. In this case,
p∗j = PMD

max and β∗j = 0 according to (19) and (18) and

putting these into (20) gives ν∗j =
B

ln 2
Ξ j (λ j a j+µ jb j )

PMD
maxΞ j+1 − λj .

Accordingly, from these cases the solution to the subproblem
shown in (10) are given by

p∗j =


τj
Ξ j
, for Mj <

τj
Ξ j
,

Mj, for τj
Ξ j
≤ Mj ≤ PMD

max,

PMD
max, for Mj > PMD

max,

(21)

β∗j =

{
λ j

Ξ j
− B

ln 2
λ j a j+µ jb j

τj+1 , for Mj <
τj
Ξ j
,

0, elsewhere,
(22)

Fig. 1: 16QAM constellation points

ν∗j =

{
0, for Mj ≤ PMD

max,
B

ln 2
Ξ j (λ j a j+µ jb j )

PMD
maxΞ j+1 − λj, elsewhere.

(23)

Algorithm 1 summarizes the step by step procedure for solving
the optimization (7) based on IS.

B. Trade-off Optimization based on Constructive Interference
In this section, we formulate the MOOP based on con-

structive interference (CI). The basic idea of CI is that, the
knowledge of the downlink data signals at the FD BS can be
used to exploit the multiuser interference rather than suppress
it as in Section III-A. The concept of CI has been thoroughly
studied in the literature for both PSK and QAM modulation in
[12]–[14] and references therein, where analytical criteria are
also derived. For notational convenience, we focus on QAM
here. To formulate the MOOP based on CI, we first rewrite
the received signal at the i-th downlink user as

ỹi = hH
i

(
K∑
k=1

wkdk

)
= hH

i x, (24)

where we have omitted the noise term, x =
∑K

k=1 wkdk and
the unit-energy QAM symbol for the i-th downlink user is
represented as dk .

To illustrate the concept of CI for QAM modulation we
provide a schematic representation for 16QAM constellation
points in Fig. 1. Based on [13], to guarantee CI for the
constellation points, we write the SINR constraints for the
downlink users to exploit the specific detection regions for
each group of constellation points separately as detailed below.
From Fig. 1, to ensure CI is achieved and the constellation
points are received in the correct detection region for the
downlink users, the following constraints are adopted. Note
that the dotted lines in Fig. 1 represent the decision boundaries.

• For the group of constellation points in the box labelled
“a” in Fig. 1, since they are all surrounded by the decision
boundaries, the constraints should guarantee that the
received signals achieve the exact constellation point so
as not to exceed the decision boundaries. The constraints
are

B2a : <(ỹi) =

√√√
Γi

J∑
j=1

pCI
j |`j,i |

2 + Γiσ
2
i <(di),



B2b : =(ỹi) =

√√√
Γi

J∑
j=1

pCI
j |`j,i |

2 + Γiσ
2
i =(di),

where < and = are the real and imaginary parts, respec-
tively.

• For the group of constellation points labelled “b” in
Fig. 1, the constraints should guarantee that the received
signals fall in the detection region away from the decision
boundaries, which is the real axis. The constraints are

B2a : <(ỹi) =

√√√
Γi

J∑
j=1

pCI
j |`j,i |

2 + Γiσ
2
i <(di),

B2b : =(ỹi) R

√√√
Γi

J∑
j=1

pCI
j |`j,i |

2 + Γiσ
2
i =(di).

• For the group of constellation points labelled “c” in
Fig. 1, the constraints should guarantee that the received
signals fall in the detection region away from the decision
boundaries, which is the imaginary axis. The constraints
are

B2a : <(ỹi) R

√√√
Γi

J∑
j=1

pCI
j |`j,i |

2 + Γiσ
2
i <(di),

B2b : =(ỹi) =

√√√
Γi

J∑
j=1

pCI
j |`j,i |

2 + Γiσ
2
i =(di).

• For the group of constellation points labelled “d” in
Fig. 1, the constraints should guarantee that the re-
ceived signals fall in the detection region away from the
decision boundaries. Here, the constellation points are
not surrounded by the decision boundaries and therefore
have a larger detection region that extend infinitely. The
constraints are

B2a : <(ỹi) R

√√√
Γi

J∑
j=1

pCI
j |`j,i |

2 + Γiσ
2
i <(di),

B2b : =(ỹi) R

√√√
Γi

J∑
j=1

pCI
j |`j,i |

2 + Γiσ
2
i =(di).

Therefore, by adopting the required DL SINR constraints B2a
and B2b for the corresponding group constellation points, the
MOOP based on CI can be mathematically formulated as

P(2) : min
x, {pCI

j }

c1 · ECI
of f + c2 ·

J∑
j=1

tCI
of f , j

s.t. B1 :
qj

rCI
j

+
qjLBS, j

fBS
≤ T, ∀ j, B2a, B2b, ∀i,

B3 : pCI
j ≤ PMD

max, ∀ j, B4 : ‖x‖2 ≤ PDL
max.

(25)

Here, tCI
of f , j

=
qj

rCI
j

and ECI
of f
=

∑J
j=1 pCI

j tCI
of f , j

, where rCI
j =

B log2

(
1 + γCI

j

)
, γCI

j =
p j

���gH
j u j

���2
sCI
j +σ

2
j ‖u j ‖

2 and sCI
j =

���uH
j HSIx

���2. The

MOOP (25) is non-convex. We solve (25) in a similar fashion
to Section III-A.

For fixed power pCI
j , the variable {x} can be obtained by

solving the following subproblem

P(2.1) : min
x

‖x‖2

s.t. B1, B2a, B2b, B4.
(26)

Unlike the conventional scheme, the subproblem (26) is
convex and can be solved using standard convex solvers.
Accordingly, given the variable {x}, the transmit power for
the mobile devices can be obtained by solving the following
subproblem

P(2.2) : min
{pCI

j }, {a
CI
j },

{bCI
j }

c1 ·
©«

J∑
j=1

qjaCI
j
ª®¬ + c2 ·

©«
J∑
j=1

qjbCI
j
ª®¬

s.t. B5 :
pCI
j

rCI
j

≤ aCI
j , B6 :

1
rCI
j

≤ bCI
j ,

B̃1 : τj − γCI
j ≤ 0, ∀ j, B3 : pCI

j ≤ PMD
max, ∀ j,

(27)

To solve (27), we analyse the problem using Lagrangian
method in a similar fashion to Section III-A. Accordingly,
we obtain the following as the corresponding solutions to the
problem (27)

λCI
j =

c1qj

rCI
j

, µCI
j =

c2qj

rCI
j

, aCI
j =

pCI
j

rCI
j

, bCI
j =

1
rCI
j

,

pCI∗
j =


τj

ΞCI
j

, for MCI
j <

τj

ΞCI
j

,

MCI
j , for τj

ΞCI
j

≤ MCI
j ≤ PMD

max,

PMD
max, for MCI

j > PMD
max,

βCI∗
j =


λCI
j

ΞCI
j

− B
ln 2

λCI
j aCI

j +µ
CI
j bCI

j

τj+1 , for MCI
j <

τj

ΞCI
j

,

0, elsewhere,

νCI∗
j =


0, for MCI

j ≤ PMD
max,

B
ln 2
ΞCI
j (λ

CI
j aCI

j +µ
CI
j bCI

j )
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2 and MCI
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B
ln 2
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j aCI

j +µ
CI
j bCI

j

λCI
j

− 1
ΞCI
j

.

Please note that, a summary of the Algorithm to solve (25)
based on CI is omitted due to space constriants, however,
(25) can be solved by following the same steps as shown in
Algorithm 1 with the corresponding CI based solutions shown
in Section III-B.

IV. SIMULATION RESULTS

We consider the system with the FD BS at the centre of a
cell with N = 6 antennas, each for transmitting and receiving.
We assume K = 4 DL users and J = 2 MDs, are randomly
and uniformly distributed between the distance of 2m and 20m.
We model the channels to the MDs and DL users as Rayleigh
fading. The SI channel is modelled as Rician fading channel
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with Rician factor 6dB. Furthermore, we consider σi = σj =

−60dBm, PMD
max = 32dBm, PDL

max = 40dBm, T = 100ms, Γi =
4dB, B = 1MHz, qj = 105, LBS, j = 103 and fBS = 1010 [6].
Our baseline is the HD scheme in [10]. For fair comparison,
here, the data rate of HD is set equal to the one for FD which
requires that the individual data rate of the mobile devices and
downlink users are double the ones for the FD case, due to
the slotted HD transmission.

Fig. 2 shows the trade-off between the total offloading
energy and latency by varying the weights c1 and c2 between 0
to 1, respectively. First, it can be seen that an increase in the
energy leads to the decrease in the latency and vice versa.
This is as a result of the dependency of the optimization
variables. On one hand, increasing the transmit power of
the mobile devices in order to satisfy the latency constraints
and minimize the offloading latency, increases the CCI to
the downlink users. Hence, the downlink transmit power is
increased to accommodate for the increase in CCI, which
in turn increases the SI. In essence, this leads a continuous
increase in the uplink and downlink transmit power, thus,
the offloading energy increases. On the contrary, reducing
the transmit powers in order to reduce the CCI and SI, and
minimize the offloading energy, gives rise to an increase in
the offloading latency. In addition, the proposed CI scheme
consumes less energy and time as compared to the IS scheme.

This is because less DL transmit power is required to satisfy
the DL SINR constraint, hence, reduced SI, as compared to
the IS scheme where interference is rather suppressed. More
importantly, it can be seen that the FD schemes out perform
their HD counterpart. Furthermore, Fig. 3 shows the total
offloading energy and latency for different latency thresholds
where we set c1 = c2 = 0.5. In terms of offloading energy,
for all schemes, it can be seen that increasing T reduces
the energy consumption, while in terms of offloading latency,
all schemes are proportional to increase in latency. Besides,
the FD schemes outperforms the HD scheme in both cases.
This further highlights the effectiveness of the proposed FD
schemes.

V. CONCLUSION

In this paper, we studied the offloading energy and latency
trade-off in a multiuser FD system that performs both data
transmission and MEC. The proposed FD schemes show a
promising performance improvement over the HD scheme.
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