
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Android-based Implementation of a Fog Computing and Networking Environment / Tarchi D.; Grandi S.;
Cerroni W.. - ELETTRONICO. - 2019:(2019), pp. 8885910.1-8885910.6. (Intervento presentato al
convegno 2019 IEEE Wireless Communications and Networking Conference, WCNC 2019 tenutosi a
Marrakech, Morocco nel 15th -19th April 2019) [10.1109/WCNC.2019.8885910].

Published Version:

Android-based Implementation of a Fog Computing and Networking Environment

Published:
DOI: http://doi.org/10.1109/WCNC.2019.8885910

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/706031 since: 2020-11-30

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/WCNC.2019.8885910
https://hdl.handle.net/11585/706031

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

D. Tarchi, S. Grandi and W. Cerroni, "Android-based Implementation of a Fog Computing
and Networking Environment," 2019 IEEE Wireless Communications and Networking
Conference (WCNC), Marrakesh, Morocco, 2019, pp. 1-6.

The final published version is available online at DOI:

https://doi.org/10.1109/WCNC.2019.8885910

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1109/WCNC.2019.8885910

Android-based Implementation of a
Fog Computing and Networking Environment

Daniele Tarchi, Stefano Grandi and Walter Cerroni
Department of Electrical, Electronic and Information Engineering

University of Bologna, Bologna, Italy
email:daniele.tarchi@unibo.it, stefano.grandi8@studio.unibo.it, walter.cerroni@unibo.it

Abstract—The increasing number of devices and applications
requesting external processing and storage facilities with reduced
access latency has led to the introduction of edge computing
solutions. Among others, Fog Computing can be considered
as an edge computing solution enabling the edge devices to
offer general-purpose processing and storage capabilities. Despite
a huge research effort for proposing efficient Fog Computing
solutions, their implementability is still under study. By resorting
to the Cloud Computing service models, we propose here an
Android-based proof-of-concept solution allowing to implement
different Fog services in an edge scenario by using off-the-shelf
end-user devices.

I. INTRODUCTION

The Fog Computing paradigm was recently introduced
to implement a distributed computing environment by tak-
ing advantage of the computational resources available at
the network edge. Despite the increasing number of high-
performance cloud computing infrastructures, they are typi-
cally located far from the edge of the network, where the
interaction between user devices and data sources often takes
place. Fog Computing fits this scenario by leveraging on the
presence of a multitude of devices available at the edge that
offer general purpose processing capabilities suitable to exe-
cute a wide range of applications [1], [2]. Moreover, exploiting
processing resources at the edge allows to reduce the latency
experienced by the end user when accessing remotely-executed
services, thus complying with one of the most important re-
quirements of the upcoming 5G communication standards [3].

Such a highly distributed environment not only involves the
optimization of the processing resources deployment, but also
requires to rethink the provisioning and management of net-
working resources, given the necessity of taking into account
the characteristics of the communications links interconnecting
the different devices involved. This is what is usually referred
to as Fog Networking [4].

The importance of Fog Computing and Networking, and the
increasing interest from both academia and industry in this
subject, became clear since the beginning, when the OpenFog
consortium was established to foster the development of an
open Fog ecosystem [5]. The outcome of such as a joint effort

This work has been partially supported by the project ”GAUChO - A Green
Adaptive Fog Computing and Networking Architecture” funded by the MIUR
Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2015 -
grant 2015YPXH4W 004.

of both industry and research centers was recently included
also as a part of a new work-in-progress IEEE Standard [6].
Although under a different name, a similar concept has been
also considered in the European context by the ETSI Multi-
access Edge Computing (MEC) working group, aimed at
studying the scenario where multiple nodes with computing
capabilities and heterogeneous communication technologies
are disseminated at the edge of the network [7]. Despite
MEC and Fog Computing have lots of similarities, the MEC
concept is more devoted to an architecture bringing a reduced
number of computing nodes at the network edge, whereas
Fog Computing turns toward a multi-layer architecture where
different types of nodes from the lower-end device to the
high-performance computing node cooperate for defining a
distributed architecture able to cope with the user requirements
while limiting the processing at the edge.

The interest in Fog Computing and Networking solutions
has been rapidly raising in the last few years. In [4], an
overview of the advantages of using the Fog architecture
in Internet of Things (IoT) scenarios is introduced. In [8],
an optimization framework for scheduling applications in a
Fog Computing scenario is considered.Nonetheless, despite the
large interest raised by the ideas behind Fog Computing and
Networking, the availability of working implementations of an
open Fog environment is still very limited [9], [10]. This is
a significant gap that should be filled in order to prove the
feasibility of the Fog ecosystem, as well as to quantify in
practical terms the potential benefits that it can bring to both
network service providers and customers.

This is the main motivation behind the contribution we
provide in this paper, which presents a possible implemen-
tation of generic Fog Computing and Networking services
assuming the presence of end-user devices available to share
their processing capacity. Although the ultimate goal of our
implementation is to enable a platform-independent system
able to cope with different on-demand services, in this work
we consider as a starting point a deployment based on the
Android mobile operating system, due to its wide adoption
by end-user devices and simple implementation. In particular,
we present the design and development of a Fog Networking
layer upon which generic Fog Computing services could be
built. As a proof-of-concept implementation, we consider a
computation offloading service [11]–[13] and test it through

four different applications, having different characteristics in
terms of requested amount of processing and data exchanged.

The paper is organized as follow. In section II we de-
fine the possible service models assumed in our distributed
Fog Computing scenario. Then in section III we present
the methodology we followed for the design of our Fog
Networking layer. We report the testing results of our proof-of-
concept implementation in section IV and, finally, we conclude
the work in section V.

II. SERVICE MODELS FOR A DISTRIBUTED FOG
COMPUTING SCENARIO

The general scenario considered here in order to deploy
a Fog Computing environment is composed by a number of
connected devices, both fixed and mobile, able to interact
among each other and create a localized Fog Networking
infrastructure. The set of Fog-enabled devices is assumed to be
heterogeneous and providing different computing, storage and
communication capabilities, including for instance wireless
access points, edge cloud nodes, portable devices, tablets,
smart objects, etc. Under this assumption, the ultimate goal
of our Fog Networking layer proof-of-concept implementation
is to demonstrate the feasibility of the Fog concept by taking
advantage of off-the-shelf equipment, such as System-on-Chip
(SoC), System-on-Module (SoM) and Android-based devices.
In the preliminary work presented in this paper, we limit our
implementation to Android-based devices to show how is it
possible to create an infrastructure capable of setting up a
Fog Computing and Networking environment using off-the-
shelf smartphones and tablets.

To this end, first we need to define the different service
models that can be implemented in a Fog environment, and
then discuss about their implementability on an Android-based
platform.

A Fog Computing environment can be considered as an
extension toward the edge of the well-known cloud computing
environment. Therefore, following the classical cloud com-
puting XaaS service model taxonomy, we decided to classify
the Fog Computing applications into Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-
Service (IaaS) categories [14].

In a cloud computing environment, a SaaS model allows
to access a software application instance running on a remote
cloud server through a thin client interface. This principle,
when extended to a Fog environment, allows to implement a
service where a server node provides a specific Fog application
through a specific interface to another node, which runs a
thin client application. This means that both client and server
nodes should implement mutually compatible applications.
The amount of exchanged data is limited to the input param-
eters/output results from one node to another.

In a cloud computing environment, a PaaS model allows to
access a remote platform or operating system instance for de-
veloping custom applications, using programming languages,
libraries and tools provided by the cloud. This principle,
when extended to a Fog environment, allows to implement a

service where a server node provides a generic Fog application
through a specific library/platform. Within this scenario a
client Fog node can send an application’s source code to
be compiled and executed in the server Fog node, if the
latter provides a compatible programming environment. In
this case the amount of exchanged data includes also the
code/application to be executed.

Finally, in a cloud computing environment, an IaaS model
allows to access virtualized computing, storage and network-
ing resources for installing and running a custom system,
including the whole processing stack. This principle, if ex-
tended to the Fog environment, allows to implement a model
where a server node provides a generic Fog application on
a generic platform through a programmable infrastructure
(e.g., the virtualization environment). In this case a complete
instance of a virtual machine, implementing the required ap-
plication, is executed and the server node needs to support the
virtualization system (i.e., the hypervisor). Due to the limited
resources available in a Fog Computing node, lightweight
virtualization paradigms must be considered, such as con-
tainers and unikernels. In this scenario the process becomes
more complex since a direct offload of the whole virtualized
environment from the requesting node to the server node can
be unfeasible. Therefore, a repository should be foreseen for
storing the available virtualized OS implementations to be
used upon request from a Fog node. Indeed, in this case
the amount of exchanged data includes the whole virtualized
instance image.

It is quite clear that the implementation of the different
cloud service models on a Fog environment offers similar
characteristics: when going from the SaaS to the IaaS model
through the PaaS, we move from the lowest to the highest
grade of generality and flexibility, but also from the fastest
to the slowest service delivery speed. In the following we
will focus on an Android-based implementation of the SaaS
and PaaS models. Indeed, due to limited resources typically
available on Android-based devices in terms of virtualization,
the implementation of an IaaS solution seems unfeasible with
this platform, and we leave it to future extensions of our work.
However, the proposed SaaS/PaaS implementation, despite
being less flexible than the IaaS model, provides a simple and
lightweight solution to be used in distributed environments,
even without the presence of a fixed infrastructure, giving
some interest to be used in some specific scenarios, such as
isolated and emergency situations.

III. ANDROID FOG NODE IMPLEMENTATION

In this section, the main points related to the Android
implementation of a Fog Service module are described. In
order to avoid any misunderstanding, in the following we will
refer to Fog Service as the generic service that can be delivered
through a Fog network, and to Android Service as the Android-
based implementation of the service module, as defined in the
Android fundamental architecture [15].

The developed module is composed of two main parts.
On one hand, an Android Service module implements the

necessary methods allowing the exchange of data among
the nodes. On the other hand, an Android app, composed
of different application types, is in charge of implementing
different Fog Services by exploiting the Android Service.
In particular we focused on the possibility of building a
generic Android Service allowing to implement the previously
introduced SaaS and PaaS models, to be used by the Android
apps for realizing the desired Fog Service.

The Android Service, named FogNetworkService, imple-
ments two interfaces:

• IFogNetworkService, used to execute the Fog Services by
exchanging the messages among the Fog Nodes;

• INetwork, allowing to create and manage a Fog Network.

A. Android Fog Service Interface

The IFogNetworkService is implemented by using the An-
droid Interface Definition Language (AIDL) and implements
two methods, invokeCode() and invokeInterface(), used for
implementing the PaaS and the SaaS models, respectively.
Both methods require two parameters as arguments, named
FogParams and FogResults, that are two objects used for
exchanging the input parameters and the output of the executed
process at the computing Fog node. This implementation
allows to have multiple instances of the IFogNetworkInterface
so that each Fog node can implement different Fog services
at the same time by using different IFogNetworkInterface
instances.

The invokeInterface() method allows to execute a remote
application, by exchanging the application-dependent input
parameters. To this aim, the node implementing the Fog
application is designed to execute a certain task on the received
parameters by using its libraries. This can be seen as a
SaaS model implementation on Android-based Fog Computing
nodes. While this method can gain in terms of execution
efficiency of the requested application, it gives lower flexibility
limiting the Fog interaction only to the specific parameters
defined as input for the considered application.

The invokeCode() method, instead, allows to remotely ex-
ecute an application by sending the code to be executed at
the remote fog node. This allows to implement the service
with higher flexibility by resorting to the PaaS model. The
invokeCode() method is implemented by having as input the
code to be executed and as an output the result of the executed
code. This method allows to implement a much more flexible
service, while requiring more time for the code execution due
to the indirect implementation of the requested Fog application
as an Android library. In particular, by gaining from the
fact that Android apps can be implementation by coding in
Java, we resorted to BeanShell [16], a lightweight scripting
language able to remotely execute Java programs. Beanshell
is implemented in any of the nodes in the network able to
receive some code from the others to be executed through the
invokeCode() method.

In order to implement any of the possible interfaces, a
specific method, called addInterface(), is used, giving the
possibility to a node to offer such interface to the other

nodes; similarly, removeInterface() is used for removing such
an interface and avoiding other nodes to use it.

B. The Android Fog Network Interface

The INetwork interface is used for exchanging the messages
needed to create the Fog Network by implementing a network
discovery protocol; to this aim, aiming at simple and reliable
solution, we resorted to a broadcast message sent by each Fog
node to inform the other nodes about its presence and the
Fog services it offers. In particular, a distributed approach is
considered. Each Fog node entering in a network will send
the discovery message on a specific socket. Every other node
present in the same network will reply to notify its presence
and the offered Fog services. This handshaking mechanism
allows each node to store the list of available nodes and the
related offered Fog services, without the need of a centralized
infrastructure.

After the Fog Network creation, in order to implement the
Fog Service a suitable protocol has been implemented. The
Fog Network works by using two sockets. A UDP socket
working on a predefined port number allows to exchange the
control information of the Fog service, while a TCP socket,
activated upon a new request between two peers should be
established, allows to exchange the data by using one of
the two models, i.e., PaaS or SaaS, by using one of the
two methods previously introduced, i.e., invokeInterface() or
invokeCode(). To this aim both server and client sides have
been considered, where the server side takes into account the
interface exposition and the computation, while the client side
takes into account the service request and the computation
request. Within the FogNetworkService class there are two
listening threads:

• ServiceListeningSocketThread allows to create a UDP
socket always listening on a predefined port number.
Every message received by this handler is then passed
to the HandlerThread

• HandlerThread manages the received message by creat-
ing a separate execution thread for each received request.

The proposed solution allows to manage different requests
at the same time, even related to different services by each
node, by exposing more interfaces. The incoming requests are
queued at the handler.

At the client side, an AsyncTask instance manages the
service request to be executed. AsyncTask is an Android class
enabling to perform background operations and publish results
on the User Interface thread in an asynchronous way, avoiding
to halt any other threads and/or handlers. Therefore, the result
of the remote operation can be waited without blocking the
requesting node operations.

In Fig. 1 the whole set of protocol messages is reported,
where the main messages are highlighted with numbers:

1) The client node creates a ServerSocket(), that is a TCP
socket endpoint.

2) The client node sends a UDP message to the server,
including the request type, and the port number of its
ServerSocket.

Fig. 1. Protocol messages exchanged between client and server for setting
up a Fog Service.

TABLE I
TESTBED COMPONENTS

Device type Number Characteristics Usage
Rasberry Pi3 1 CPU 4×ARM Cortex-A53

1.2GHz; RAM 1 GB;
10/100 Ethernet, Wi-Fi
2.4GHz 802.11n, Bluetooth
4.1 & LE; microSD; GPIO
40-pin.

Fog Access
Point

Asus ZE520KL 1 Android 8.0; CPU Octa-
core 2.0 GHz Cortex-A53;
RAM 4GB; Wi-Fi 802.11
a/b/g/n/ac

Fog Node

Samsung SM-
T705

1 Android 6.0; CPU Quad-
core 2.3 GHz Krait 400;
RAM 3GB; Wi-Fi 802.11
a/b/g/n

Fog Node

LG Nexus 5 1 Android 6.0; CPU Quad-
core 2.3 GHz Krait 400;
RAM 2GB; Wi-Fi 802.11
a/b/g/n

Fog Node

3) The server node receives the request, and creates a thread
for elaborating the request.

4) During the thread execution the server connects to the
TCP client socket.

5) After creating the TCP link between the nodes, the client
sends to the server the information for starting the ser-
vice (interface name and operation) and the parameters
(values or code to be executed)

6) The server executes the request and sends back the result
on the same TCP connection

7) The client terminates the execution when the task sends
the received result to the app.

IV. COMPUTATION OFFLOADING PROOF-OF-CONCEPT
SOLUTION

The proof-of-concept solution has been implemented by
using different device types, each one with different charac-
teristics. The devices used in the testbed are listed in Table I;
in particular three devices have been used as Fog nodes, while
the Raspberry Pi3 has been used as a WiFi AP.

The solution copes with three main phases able to provide
and execute Fog services:

1) Network Discovery: when a node is turned on, it should
start a discovery phase for searching other nodes nearby

capable of building any of the Fog service models;
2) Service Discovery: after having discovered any node,

the incumbent node should be able to discover which
services are implemented by the nodes in the area;

3) Service Delivery: the Fog service implementation is
performed by following one of the previously introduced
models depending on the requested service.

In the first phase each Fog node, when entering in a network,
sends a broadcast message on a predefined socket. If any
other Fog node is present in the network, an acknowledgement
message is sent, including the list of the available Fog services.
This message is implementing the second phase. In this paper
we will focus mainly on the third phase by assuming to have
an already established network with a given number of Fog
nodes, each one aware of the services that can be delivered
by the other nodes.

The components were used to set up a testing environment
for computation offloading in a Fog Computing environment.
To this aim four different types of application were tested by
leveraging on a suitable Android implementation of the Fog
Network primitives, and based on SaaS and PaaS models:

• Calculator: A calculator applications that allows to exploit
a remote Android device for executing some simple
algebraic operations;

• Integral: A remote integral solver;
• Image Compression: A remote JPEG compression ser-

vice;
• Hash Calculator: A remote brute force hash calculator.

The implemented apps exploit the underlying Android Ser-
vices described in the previous section for implementing the
related services by using different models.

The Calculator has been implemented in both SaaS and
PaaS models. The SaaS implementation has been performed
with a limited subset of operations. This is due to the fact that
when designing the services to be executed as a SaaS even the
operation is one of the parameters to be exchanged between
the nodes, and, hence, the possible operations should be a
predefined set. On the other side, in the PaaS implementation
a generic Java code could be sent remotely to be executed on
the other side. In this way any possible algebraic operation can
be executed, by exploiting the related mathematical Java class.
The flexibility is evident by noticing that in this case we can
execute any complex set of different mathematical operations.

The Integral solver app allows to solve a definite integral. To
this aim we selected to solve the integral of the cosine function
between two bounds. In this case we have instead considered
three comparisons. On one side a SaaS implementation ex-
ploiting a suitable Android mathematical library. On the other
side the same solver was implemented locally allowing to
compare the remote and the local solutions in terms of delay.
Finally, we implemented a partial offloading mechanism by
dividing the definite integral in two equally bounded definite
integrals and solving one half locally and the other remotely.

The image compressor implements both local and SaaS
JPEG compression of an uncompressed bitmap image. Due

TABLE II
ALGEBRAIC OPERATIONS APP DELAYS

Device SaaS [ms] PaaS [ms]
ASUS ZE520KL 178.8 (± 78.8) 216.5 (± 57.6)
Samsung SM-T705 233.9 (± 88.2) 248.7 (± 99.7)

to the complexity of the code only the SaaS model has been
implemented by comparing it with the local compression. In
this case the test allows to consider the case in which the
exchanged data is relevant; we have considered a 256 color
bitmap version of the Lena sample image with resolution
512×512 and size 222 kB. The compression has been im-
plemented by resorting to a suitable image processing library
in Android.

Finally, the fourth app implements the iterative execution
of a hashing operation through the HMAC algorithm [17], to
discover the key given a string and its Hash. This operation
has been executed locally and remotely by exploiting both
SaaS and PaaS models. The SaaS model has been implemented
through the exchange of the string between two different
Android nodes. Differently, the PaaS model has been im-
plemented by exploiting the BeanShell scripting installed on
Android devices. In this case the requesting node is sending
the entire Java code that is executed remotely. The results are
also compared with a local execution.

In the following the time required to completely deliver
different services has been reported. Unless otherwise stated,
in the following tests we have considered that the LG Nexus
5 device is the client device while the other devices are
selected as servers. The measured values are averaged over
10 trials, by indicating also the standard deviation. Those
values represent the whole remote execution, including both
transmission/reception and processing phases. The LG Nexus
5 has been selected being the less powerful device, even if the
goal of the tests more than evaluating the numerical values
aims at demonstrating the correctness of the implemented
solution.

In Table II, the results for the remote algebraic operations
are reported, where each device represents the selected remote
node performing the calculation. In particular we selected a
simple addition of two integers. It is interesting to notice
that the processing time is lower when exploiting a higher
performing device. Moreover SaaS allows to have a lower
latency with respect to PaaS, despite a lower flexibility. It
is worth to be noticed that in this case the additional delay
introduced by the PaaS library is reduced mainly due to
the simple operation that is performed. It is worth to be
noticed that in case of PaaS more complex operations could
be performed by sending a user defined Java code to the
processing node.

In Table III, the results for the definite integral calcula-
tion are reported by comparing the local integration with
the SaaS implementation and the partial local and SaaS
implementation. In particular we resorted to the integration
of the cosine function between -10000 and 10000 in order

TABLE III
DEFINITE INTEGRAL ESTIMATION DELAYS

Device Local [ms] SaaS [ms] Local&SaaS [ms]
LG Nexus 5 1816.8 (± 21) - -
ASUS ZE520KL 61.6(± 8.4) 461.7(± 163.4) 920.5(± 27.3) &

293(± 88.3)
Samsung SM-T705 1439.5(± 80.7) 1723.7 (± 81.4) 907(± 14.3) &

1100.5(± 120.4)

TABLE IV
JPEG COMPRESSION DELAY

Device Local [ms] SaaS [ms]
LG Nexus 5 51.6 (± 12.6) -
ASUS ZE520KL 39.6(± 16.5) 536 (± 68.1)
Samsung SM-T705 60.6 (± 13.2) 582 (± 116.7)

to perform a high number of operations. Both local and
SaaS are implemented by using Romberg’s method [18] for
estimating the definite integral, available trough the Java pack-
age org.apache.commons.math.analysis.integration. In case of
partial offloading we divide the definite integral in two equal
parts; the first from -10000 to 0 computed locally while the rest
offloaded. By analyzing the time needed for local computation
it is possible to see the impressive improvement when using
a higher performance device (i.e, the ASUS ZE520KL) when
performing heavy processing. To this aim it is interesting to see
the second column, reporting the time needed for performing
the processing by the device in the related row when requested
by the LG Nexus 5. Here it is clear the advantage of the SaaS
approach, in particular by looking to the ASUS ZE520KL that
allows to reduce the time. The additional time with respect
to the local computation at the same device is due to the
transmission/reception time and additional Android operations.
Even more interesting the results of the partial offloading
where half of the processing is performed locally and half
is offloaded. In this case it is possible to notice that both SaaS
and local are reduced to about one half, as expected. Since
the local and SaaS processing can be done in parallel, this
incurs in a remarkable gain when using the Samsung device,
allowing to reduce to about one half the overall processing
time.

In Table IV, the results for the image compression are
reported, by comparing the local compression and the SaaS
compression implemented through the ImageIO Java class.
In this case the local compression is always performed with
the lowest amount of time, while offloading does not have
a remarkable impact on using one of the two devices. This
is mainly due to the fact that in this case most of the time
is spent for exchanging the image. However, even if with a
higher delay, it is possible to see that in case one node cannot
compress an image, this facility can be easily implemented
remotely.

In Table V, the results for the iterative execution of a hash-
ing operation through the HMAC algorithm are represented.
It is possible to notice that the SaaS execution delay is higher
than the local execution but the increase is not remarkable,

TABLE V
ITERATIVE OPERATION DELAYS

Device Local [ms] SaaS [ms] PaaS [ms]
LG Nexus 5 76 (± 8.3) - -
ASUS ZE520KL 35 (± 20) 247.5 (± 52.8) 12078.1 (± 663)
Samsung SM-T705 51 (± 3.9) 255.4 (± 75.8) 15933.7 (± 427.3)

(a) Client Profiling (LG Nexus 5)

(b) Server Profiling (ASUS ZE520KL)

Fig. 2. Definite Integral SaaS Profiling

while the PaaS execution requires much more time. This
is due to the fact that the Android devices should execute
a given code on an external library requiring much more
processing effort. It is also possible to notice that the device
processing capabilities do not affect the SaaS execution time,
while PaaS is affected by the device capabilities. Also in this
case it is worth to be noticed that the PaaS case, despite a
higher processing time, provides higher flexibility allowing the
execution of any user-defined Java code on the target device.

Finally, we have used the Android Studio profiler for taking
a look to the time spent by each device during one of the
previous operations. Due to space limit we are showing here
the results for the remote Integral operation.

In particular in Fig. 2a, it is possible to notice that the
LG Nexus 5 is using the network interface two times, when
sending and receiving the result of the request, while between
the two network usage the CPU is not used. This is the reverse
in Fig. 2b where instead the ASUS is mainly receiving then
the CPU is used and finally the result is sent back.

In Fig. 3, we are showing the profiling for the client side
when partial offloading is performed. It is possible to notice
that the client is sending and receiving the SaaS result while
at the same time the CPU is occupied for the local processing.

V. CONCLUSION

Fog Computing enables the usage of edge devices for
implementing a computational sharing environment. The aim
of this work is to show a proof-of-concept implementation of
PaaS and SaaS models on a Fog Computing environment by
using Android-based devices. The correctness of the solution

Fig. 3. Partial Definite Integral SaaS Client Profiling (LG Nexus 5)

has been proved by resorting to four possible applications
implementing computation offloading with different schemes.

REFERENCES

[1] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Commun. Surveys Tuts., vol. 20, no. 3, pp. 1826–1857, Third Quarter
2018.

[2] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A comprehensive survey on fog computing: State-of-
the-art and research challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 416–464, First Quarter 2018.

[3] Y. Ku, D. Lin, C. Lee, P. Hsieh, H. Wei, C. Chou, and A. Pang,
“5G radio access network design with the fog paradigm: Confluence of
communications and computing,” IEEE Commun. Mag., vol. 55, no. 4,
pp. 46–52, Apr. 2017.

[4] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec.
2016.

[5] (2018, Oct.) OpenFog Consortium. [Online]. Available: https://www.
openfogconsortium.org

[6] IEEE Standard for Adoption of OpenFog Reference Architecture for Fog
Computing, IEEE Std. 1934-2018, Jun. 2018.

[7] (2018, Oct.) Multi-access Edge Computing. [On-
line]. Available: https://www.etsi.org/technologies-clusters/technologies/
multi-access-edge-computing

[8] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 26–35, Mar. 2017.

[9] R. Craciunescu, A. Mihovska, M. Mihaylov, S. Kyriazakos, R. Prasad,
and S. Halunga, “Implementation of fog computing for reliable e-health
applications,” in 2015 49th Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, USA, Nov. 2015, pp. 459–463.

[10] A. Brogi, S. Forti, A. Ibrahim, and L. Rinaldi, “Bonsai in the fog: An
active learning lab with fog computing,” in 2018 Third International
Conference on Fog and Mobile Edge Computing (FMEC), Barcelona,
Spain, Apr. 2018, pp. 79–86.

[11] D. Mazza, D. Tarchi, and G. E. Corazza, “A unified urban mobile
cloud computing offloading mechanism for smart cities,” IEEE Commun.
Mag., vol. 55, no. 3, pp. 30–37, Mar. 2017.

[12] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “Centralized and
distributed architectures for energy and delay efficient fog network based
edge computing services,” IEEE Trans. Green Commun. and Netw., Dec.
2018, early view.

[13] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjec-
tive optimization for computation offloading in fog computing,” IEEE
Internet Things J., vol. 5, no. 1, pp. 283–294, Feb. 2018.

[14] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
The National Institute of Standards and Technology, SP 800-145, Sep.
2011. [Online]. Available: https://doi.org/10.6028/NIST.SP.800-145

[15] (2018, Oct.) Services overview | Android Developers. [Online].
Available: https://developer.android.com/guide/components/services

[16] (2016, Feb.) Beanshell - lightweight scripting for Java. [Online].
Available: http://www.beanshell.org/

[17] “HMAC: Keyed-hashing for message authentication,” RFC 2104, Feb.
1997. [Online]. Available: https://tools.ietf.org/html/rfc2104

[18] W. Romberg, “Vereinfachte numerische integration,” Det Kongelige
Norske Videnskabers Selskab Forhandlinger, vol. 28, no. 7, pp. 30–36,
1955.

