
The Influence of Canyon Shadowing on
Device-to-Device Connectivity in Urban Scenario

Quentin Le Gall∗, Bartłomiej Błaszczyszyn†, Elie Cali∗ and Taoufik En-Najjary∗
∗Modelling and Statistical Analysis, Orange Labs Networks, Châtillon, France

Email: quentin1.legall@orange.com, elie.cali@orange.com and taoufik.ennajjary@orange.com
†Inria-ENS, Paris, France Email: bartek.blaszczyszyn@ens.fr

Abstract—In this work, we use percolation theory to study the
feasibility of large-scale connectivity of relay-augmented device-
to-device (D2D) networks in an urban scenario featuring a
haphazard system of streets and canyon shadowing allowing only
for line-of-sight (LOS) communications in a finite range. We
use a homogeneous Poisson-Voronoi tessellation (PVT) model of
streets with homogeneous Poisson users (devices) on its edges
and independent Bernoulli relays on the vertices. Using this
model, we demonstrate the existence of a minimal threshold for
relays below which large-scale connectivity of the network is not
possible, regardless of all other network parameters. Through
simulations, we estimate this threshold to 71.3%. Moreover, if the
mean street length is not larger than some threshold (predicted
to 74.3% of the communication range; which might be the case
in a typical urban scenario) then any (whatever small) density
of users can be compensated by equipping more crossroads with
relays. Above this latter threshold, good connectivity requires
some minimal density of users, compensated by the relays in a
way we make explicit. The existence of the above regimes brings
interesting qualitative arguments to the discussion on the possible
D2D deployment scenarios.

Index Terms—Device-to-device networks, relays, connectivity,
shadowing, continuum percolation, simulation

I. INTRODUCTION

The fifth generation (5G) of mobile networks currently
concentrates an intensive research effort covering broad fields
such as security, energy consumption, radio communications
or resource allocation [1]–[3]. One of the main technical
challenges of 5G remains to face the exponential growth of
mobile data traffic while keeping up with the quality of service
(QoS). Device-to-Device (D2D) is deeply investigated in this
regard [4]. Coverage extension could also be achieved thanks
to multihop D2D networks [5]. This opens the way to crowd
networking and uberization of telecommunications networks
[6], which represent high economic stakes.

As a matter of fact, studying the technical feasibility of
large-scale connectivity of D2D networks seems critical for
operators. To this end, resorting to mathematical models
amenable to numerical simulations remains a safe and nec-
essary prelude to massive investments. Since the seminal
paper [7] of Gilbert, the question of large-scale connectivity
in telecommunication networks has mathematically been dealt
with using percolation theory [8], [9]. Recent refinements have
taken into account various street system models as the support
of the network [10].

In this paper, as the main novelty of our work, we consider
the canyon effect of shadowing allowing only for line-of-

sight (LOS) connections on the streets: only network nodes
located on the same street, and whose relative distance is less
than a certain threshold can establish communication. We then
apply this assumption to an existing street model and study its
impact on the connectivity properties of a D2D network using
percolation theory.

The main results of this paper are the following ones:
The canyon shadowing assumption, combined with our

model for streets and network users, requires the presence of
relays located at crossroads in order to achieve connectivity
between adjacent streets. We prove that there exists a minimal
fraction of crossroads which have to be equipped with relays
below which large-scale connectivity of the D2D network
cannot be achieved regardless of all other network parameters.

Regarding the interplay between the street system and
the transmission range of D2D technology, we exhibit two
different connectivity regimes for our model: one where large-
scale connectivity can solely rely on relays, the other one
where a high enough density of users, compensated by relays,
is required.

The remaining part of this paper is organized as follows:
We begin in Section II by recalling related works. Next,
in Section III, we present our model with its associated
assumptions. Then, in Section IV, we present our results.
Finally, we conclude our work in Section V.

II. RELATED WORKS

In his founding work [7], Gilbert modelled a wireless
network by a random graph and interpreted large-scale con-
nectivity as percolation of this graph, i.e. the existence of an
infinite connected component with positive probability. How-
ever, this first model did not include any geometric features
nor propagation effects.

The impact of fading and interference in Gilbert’s model was
studied in [11], [12]. In these works, the authors considered
new connectivity conditions: a connection between two nodes
of the network depends not only on their relative distance
anymore, but also on the position of all other nodes of the
network through the signal-to-interference plus noise ratio
(SINR).

The influence of the geometric features of the considered
territories and simulation perspectives have been considered
in [10], [13]. In these works, real street systems are fitted by
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random tessellations, including Poisson-Voronoi tessellations
(PVT), more amenable to statistical analysis.

Connectivity for D2D networks on street systems using
percolation theory was explored only recently in [14], building
on the theoretical results from [15] regarding percolation of
Cox models. Very recently, percolation of the SINR graph
associated with Cox processes has been studied in [16]. Cox
processes cluster their points more than Poisson point pro-
cesses [17] and, in general, their percolation properties cannot
be simply derived by a comparison to this latter model [18].
Our work is also related to [19] where Bernoulli percolation
on random tessellations, including PVT, is studied.

Completely different self-similar street systems with canyon
shadowing effects have been considered in [20], [21].

Regarding D2D per se, the surveys [6], [22] exhibit a
rich variety of use cases for D2D communications. Tech-
nical promises and contributions of D2D to 5G networks
are investigated in [4]. Many more questions regarding D2D
deployment scenarios have been explored [23]–[26]. Technical
issues related to D2D development are out of the scope of this
paper.

III. NETWORK MODEL

We first present the crucial system assumptions and then
describe our percolation model of large-scale connectivity for
D2D communications.

A. System assumptions

Several assumptions have been made in our model, either
for physical reasons or for the sake of simplicity.

Reflections of the waves on the buildings and the crossroads
as well as diffractions on the edges of the buildings were
not considered as a first step, for simplicity. Therefore, we
modelled the street system as a two-dimensional tessellation.

As in [27], we assume a constant communication radius.
This implies that we assume the transmission power of all
devices and network relays to be constant and equal to a global
common value. We also neglect any interference phenomenon
or user mobility. The connectivity mechanism of our model
only allows for LOS communications between a source and
a target (whether they are a relay or an actual user equipped
with a device): this is the canyon shadowing assumption. This
implies that the physical obstacles encountered in our model
are sufficiently absorbing to prevent any signal from being
transmitted through them. In the context of 5G, where the main
part of the useful spectrum consists of very high frequencies,
this is indeed the case.

B. Description of the model

The network model relies on three major elements depicted
on Figure 1 and detailed in what follows: the street model,
the respective distributions of users and relays and the D2D
connectivity mechanism.

Fig. 1. Example of a D2D network simulated using our model. The blue
lines represent the edges of the Poisson-Voronoi tessellation modeling the
street system. The red points represent the network users. The green points
represent the relays. Possible connections are highlighted in orange: these
correspond to pairs of points being in line-of-sight and of relative Euclidean
distance smaller than some threshold r.

1) Street system: First, following [10], we model the street
system by a planar Poisson-Voronoi tessellation (PVT) S gen-
erated by a homogeneous Poisson point process (PPP) in R2

of intensity λS > 0. We denote by V (respectively E) the set
of vertices (respectively edges) of S. Letting ν1(S∩B) be the
total edge length of S in any observation window defined by
a Borel set B, we denote by γ := E

[
ν1

(
S ∩ [−1/2; 1/2]2

)]
the total street length per unit area, expressed in km/km2. It
is known that γ = 2

√
λS [28]. Typical encountered values

are γ ≈ 20 km/km2 for a city center of a classical European
major city, while γ ≈ 1 km/km2 for rural areas. Since γ is
an intrinsic characteristic determined by geographical location,
we will consider it to be a fixed parameter of the problem
considered here.

2) Devices and relays distribution: Users are equipped with
mobile devices and distributed according to a Cox point pro-
cess X driven by the random intensity measure λν1(S ∩ dx),
where λ ≥ 0 is the user intensity expressed in km-1 (the case
λ = 0 corresponds to an absence of users and a D2D network
only relying on relays placed by operators). Equivalently,
whenever λ > 0, this means that conditioned on any realisation
S of the street system, X is a Poisson point process with mean
measure λν1(S ∩ dx). In particular, for any street segment
e ∈ E, the number of users located on e is a Poisson
random variable with parameter λν1(e) and all users are spread
independently and uniformly on e.

Network relays are placed on the crossroads of the street
system according to a Bernoulli point process Y of parameter
p ∈ [0, 1]. In other words, for each v ∈ V , a relay is placed
at v with probability p, independently from the state of any
other crossroad in V \ {v}.

The point process of users X and the one of relays Y are
also assumed to be independent.

3) Connectivity conditions: We assume a constant commu-
nication radius r > 0 (expressed in kilometers) as in [27].
Letting Z := X ∪ Y := {Zi} denote the superposition of
the users and the relays point processes, two distinct network
agents (either relays or users’ devices) are connected by a D2D



link if and only if they are in LOS and of relative Euclidean
distance smaller than r, i.e. :

∀ i 6= j, Zi ! Zj ⇔
{
∃ e ∈ E, Zi ∈ E and Zj ∈ E
‖Zi − Zj‖ ≤ r

(1)

The network is then represented by the connectivity graph
whose vertices are the points of Z and where an undirected
edge {Zi, Zj}, i 6= j is drawn if and only if Zi ! Zj .
Connectivity of the network relying on the possibility of estab-
lishing long-range communications, we are thus interested in
assessing whether there exists an infinite connected component
of the connectivity graph for a given set of model parameters.
Some intrinsic scale-invariance properties of our model allow
us to reduce the number of these parameters, as presented in
what follows.

4) Dimensionless parameters of the model: Similarly to
[14], our model features scaling invariances: the Bernoulli
process of relays is by definition motion-invariant [29], while
changing γ to aγ for a > 0 is equivalent to zooming or
unzooming to a rescaled simulation window where λ has
changed to aλ and r to r/a. Therefore, the two dimensionless
parameters λ/γ and rγ are scale-invariant. It is however phys-
ically more interesting to consider the following parameters,
which are dimensionless and scale-invariant as well:

U =
4

3

λ

γ
and H =

4

3

1

rγ
(2)

Indeed, following [29, Section 9.4], U represents the mean
number of users per typical edge of the PVT street system,
while H is the mean number of hops necessary to ensure
connectivity of a typical edge of the PVT street system. Note
that U both depends on the density of the street system
and the density of users, while H represents the interplay
between the street system and the transmission range related
to D2D technology. The connectivity graph representing the
D2D network will be denoted by Gp,U,H .

C. Simulation method

All of our numerical experiments have been performed using
the statistical software R. Since an infinite graph cannot be
simulated, we chose a squared simulation window of side win,
expressed in kilometers. When possible, win = 30km, a value
chosen sufficiently large in practice so as to avoid any effects
due to the finiteness of the simulation window. We chose not
to simulate on a torus-traced window. Indeed, in [14], [30],
the authors showed that simulations on a torus-traced window
take much longer time for a very small gain in precision.

For a set of parameters (p, U,H), we first simulate a
PVT S with the desired parameter γ. Then, we label each
street segment with a unique number. Thereafter, we simulate
the corresponding users’ Cox point process and the relays’
Bernoulli process (recall that λ is determined by (2) and p
is given). Each user is located on a unique street, while each
relay is located on a crossroad at the intersection of 3 streets
almost surely, see [28]. We assign to each user (respectively
each relay) the label of the unique street (respectively the label
of the streets) it is located on. As a matter of fact, two network
agents are in LOS if and only if they share a common label.

Determining all existing connections in an optimized way
is thereafter straightforward: arrange the simulated network
agents by street segment label, only keep the street segments
containing at least two distinct network agents and then, for
each street segment, compute the successive distances from
one agent to the next one. If only one disconnection occurs on
a given street segment, then it is not necessary to continue the
computations for this street segment. We then keep track of
the connected components of the simulated graph by using
a union-find algorithm, as suggested in [31]. Finally, we
declare that the simulated connectivity graph Gp,U,H percolates
if there exists a left-right or a top-bottom crossing of the
simulation window by a connected component. We then repeat
this process 100 times (simulations showed that a greater
amount of times does not enhance the precision of the results
significantly) and are thus able to compute the proportion of
simulations where the graph Gp,U,H percolates for a given set
of parameters (p, U,H).

IV. RESULTS

We now present theoretical and numerical results of the
study of our model.

A. Minimal relay proportion

Our first theoretical result is a minimality condition on p
for the possibility of percolation of the connectivity graph
Gp,U,H . To this end, we consider another percolation model:
the Bernoulli site percolation model on S. In this model,
each vertex of S is either open (i.e. present) with probability
p ∈ [0, 1] or closed (i.e. absent) with probability 1−p. Denote
by G̃p the subgraph of S obtained by only keeping the open
vertices of S (i.e. {v ∈ V : v is open}) and the edges of E
connecting them. As usual, say that G̃p percolates if it has an
infinite connected component. Define as usual the percolation
threshold:

pc := psite, PVT
c := inf{p ≥ 0, G̃p percolates} (3)

It is known that pc is independent of λS and that pc ∈ (0, 1)
[19]. Moreover, [32] found the following theoretical estimate:
psite, PVT
c ≈ 0.7151, while [33], using Monte-Carlo simulations

with periodic boundary conditions, numerically determines
psite, PVT
c ≈ 0.71410 ± 0.00002. We also performed Monte-

Carlo simulations on our own to check the precision of our
simulations. The results are shown in Figure 2(a). A logistic
model1 seems to fit a good approximation. Since the theoretical
curve on an infinite tessellation would be a 0-1 curve with
cutoff value pc by ergodicity, we can reasonably approximate
pc by the abscissa of the inflection point of the logistic curve,
yielding:

pc := psite,PVT
c ≈ 0.71299 (4)

This is a fairly reasonable approximation for our purposes.

1Logistic regression consists in estimating parameters a and b such that

log

(
f(p)

1− f(p)

)
= ap+ b,

where discrete values of f(p) are obtained by simulations.
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Fig. 2. Left: Estimation of pc. Right: Estimation of Hc. The points are
the discrete values of the window-crossing probability crossing obtained by
simulation (window size 30x30 km2, street density γ = 20 km/km2), the
curve is the logistic model and the vertical line is supposed to intercept the
percolation threshold.

By comparing percolation of the connectivity graph Gp,U,H
with Bernoulli site percolation on S, we obtained the following
result:

Theorem 1 (Minimality condition on p): If p < pc, then, for
all U ≥ 0 and H > 0, the connectivity graph Gp,U,H does not
percolate, i.e. long-distance multihop D2D communications
are not possible.

Proof: Let p < pc. Consider site percolation on S with
parameter p. Then, by (3) the associated graph G̃p does not
percolate. But since Gp,U,H is a subgraph of G̃p for all U ≥ 0
and H > 0, the absence of percolation of G̃p implies the
absence of percolation of Gp,U,H . Hence the result.

Remark 1: Theorem 1 has the following practical conse-
quence: an operator willing to constitute a multihop D2D
network should equip an important number of crossroads. This
represents a heavy investment, which needs to be counter-
balanced. Only relying on users’ devices to allow for long-
distance connectivity is not a viable option. Finally, note that
our result ensures a minimality condition on p only. Indeed, we
shall see in what follows that there exists a regime of network
parameters, such that even when p = 1, i.e. all crossroads are
equipped with relays, the connectivity graph does not percolate
in the absence of users. A matching maximality result on p is
therefore unthinkable.

B. Relay-limited connectivity

After having proven that there exists a minimal relay pro-
portion under which no large-scale connectivity of the network
is possible regardless of all other network parameters, we
may wonder whether connectivity of the D2D network can
solely rely on relays. Indeed, with the D2D communication
range being a physical constraint imposed by the type of D2D
technology, in particular the type of the radio link [6], one can
think that if there are sufficiently many streets shorter than
this range, a sufficiently high proportion of relays could be
deployed, allowing for long-range D2D communications even
when the user density is low, i.e. U → 0. This is indeed the
case, as we shall see in what follows.

For given H , let us consider first the best possible case
where all crossroads are equipped with relays, i.e. p = 1. If

large-scale connectivity without users cannot be achieved when
all crossroads are equipped with relays, then it also cannot
be achieved for any p ∈ (pc, 1). Setting p = 1, define the
following critical value for H:

Hc := sup{H > 0, G1,0,H percolates} . (5)

Checking the possibility of percolation in the absence of users
is equivalent to verifying whether Hc > 0. This theoretical
question can be answered affirmatively using theoretical tools
out of the scope of this paper, and we approximate Hc by
simulations.

In this regard, we compute, for a grid of values of H ,
the proportion g(H) of simulations where the graph G1,0,H
percolates. Here, an inverse sigmoid yields a good fitting of
the estimated curve, see Figure 2(b). Finally, we recover Hc

by the abscissa of the inflection point of the logistic curve and
find the following estimate: Hc ≈ 0.743.

In the remaining part of this section, we investigate the
relay-limited connectivity regime (H < Hc), that is when
there is a possibility of percolation in the absence of users.
The question is whether we need the complete deployment
of relays (p = 1) for percolation, as assumed in (5). The
intuition is that statistically shorter streets (corresponding to
H < Hc) might require only some proportion of crossroads
equipped with relays. In mathematical terms, we define the
following critical proportion of relays ensuring percolation of
the connectivity graph Gp,0,H in the absence of users in the
relay-limited connectivity regime H < Hc:

pc(H) := inf{p ∈ (0, 1), Gp,0,H percolates} (6)

We already know from Section IV-A that pc(H) ≥ pc and it
can be proved mathematically that pc(H) < 1 for all H < Hc.
Our goal is again to approximate this function by simulation.

The methodology is quite the same as in the previous
numerical simulations: this time, for a given H < Hc and a
grid of values of p ∈ (pc, 1), we compute the proportion k(p)
of simulations where the graph Gp,0,H percolates. Theory tells
us that k is increasing in p (more relays indeed implies more
connections, hence making percolation easier to occur) and
the logistic model yields again a good fitting of the estimated
curve, leading to pc(H) as the inflection point of the logistic
curve. The estimated values are presented in Table I. As can
easily be guessed and as is confirmed by our results, pc(H) is
increasing with H . We were only able to consider H > 0.46.
Below this value the system started having an erratic behaviour
not giving any reasonable estimation of pc(H). This can be
explained by the fact that when H approaches 0, p approaches
pc and the simulation of the model close to criticality is much
trickier.

Remark 2: In practice, operators have leverage on p (by
equipping more or less crossroads with relays). The results
provided in Table I allow them to find an appropriate propor-
tion of relays in function of H , which depends both on the
D2D technology and the inner geometry of the network. In
this table we also relate H to the D2D communication range
r = 4

3
1
Hγ (see (2)) in case of an urban environment by taking

γ = 20 km/km2. It is worth noticing that the relay-limited



TABLE I
CRITICAL PARAMETER pc(H) AND CORRESPONDING r IN AN URBAN

ENVIRONMENT AS A FUNCTION OF H

H pc(H) r (meters), urban environment
0.467 0.75 142.96
0.487 0.76 136.96
0.503 0.77 132.60
0.521 0.78 127.95
0.534 0.79 124.90
0.548 0.80 121.72
0.609 0.85 109.52
0.655 0.90 101.75
0.702 0.95 95.03

Hc ≈ 0.743 1 89.78

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6
H

p
c
(H

)

Fig. 3. Critical relay proportion pc(H) in the absence of users (U = 0) as
a function of H . The points are the discrete values from Table I, the curve is
the estimated quadratic fit. The isolated point pc(0) = pc corresponds to the
(absolute) minimal relay proportion (4).

connectivity regime (H < Hc) in such an environment implies
r smaller than 150 meters in most cases. This is a technological
threshold which does not seem physically unreachable [5].

In order to get a continuous approximation of pc(H) for
0.46 < H < Hc we interpolate the discrete values given
in Table I. We found out that the following quadratic model
pc(H) ≈ aH2 + bH + c with the value of the coefficients a,
b and c estimated by linear regression a ≈ 1.45, b ≈ −0.84,
c ≈ 0.83 yields a good fit able to explain 99% of the variance.
Fig. 3 illustrates the discrete simulated curve and the estimated
quadratic fit for pc(H), confirming that a quadratic model is
a very good approximation when 0.46 < H < Hc. We do not
have any approximation of pc(H) for smaller H . However, we
believe that it drops quickly to the (absolute) minimal relay
proportion pc(0) = pc ≈ 0.71299 given by (4).

C. Relay-and-user-limited connectivity

The main question arising from the previous section is about
what happens when the D2D range and the street system do not
allow to reach the critical parameter Hc and thus to solely rely
on relays for ensuring large-scale connectivity of the network.
In other words, for H > Hc, is there a critical user density
above which long-range communications are possible? If so,
which minimal relay proportion is appropriate for ensuring
large-scale connectivity with the help of users serving as D2D
relays?

As in Section IV-B, for some H > Hc, let us consider first
the case where p = 1. If large-scale connectivity relying on
both users and relays cannot be achieved when all crossroads
are equipped with relays, then it also cannot be achieved for

any p ∈ (pc, 1). Setting p = 1 and for given H > Hc, define
the following critical value for U :

Uc(H) := inf{U ≥ 0, G1,U,H percolates} (7)

1) Non-triviality of the critical parameter Uc(H): On a
theoretical perspective, we were able to prove that under
sufficiently general conditions, the critical parameter Uc(H)
representing the minimal average number of users per typical
street allowing for long-range communications is indeed pos-
itive and finite. Our result is the following one:

Theorem 2 (Non-triviality of Uc(H)): There exists a critical
value H∗ ≥ Hc such that whenever H > H∗ we have
0 < Uc(H) <∞.

Theorem 2 says that if the streets of the network are long
enough compared to the D2D range (H > H∗), then long-
range communications can only be achieved under a suf-
ficiently high (but finite) user density. There is a possible
theoretical gap between H∗ ≥ Hc and the critical value
Hc ≈ 0.743 found in Section IV-B, however our simulations
suggest that H∗ ≈ Hc. A rigorous proof of the above result
follows the approach developed in [15]. As the goal of this
paper is more about giving numerical estimates, and due to
space constraints, we only give a rough sketch of the proof.

Sketch of proof of Theorem 2: The main problem faced
in the study of percolation in a random environment (PVT
street system in our case) is the spatial dependence of the
environment. By the stabilization property [15] of the PVT,
the configuration of the network environment in a given ob-
servation window only depends on a bounded region including
the observation window with high probability. In other words,
if two observed regions of the network are distant enough, they
are independent. This allows one to introduce a discretized site
percolation process featuring short-range spatial dependencies
only. Well-chosen definitions of open and closed sites in the
former process allow to ensure that if the discretized process
does not percolate, then neither does G1,U,H . Finally using the
domination by product measures theorem [34] allows one to
conclude that the discretized process does not percolate if U
is sufficiently small and H > H∗ for some absolute constant
H∗ ≥ Hc (H∗ only depends on the edge length distribution
of the edges in a PVT), thus proving that Uc(H) > 0.

Similar techniques are used in the proof of the finiteness
of Uc(H). In this case, we introduce a discrete percolation
process chosen so that if the former process percolates, then
so does G1,U,H . Crucially relying on the asymptotic essential
connectedness [15] of the PVT street system S and using again
the domination by product measures theorem [34] allows one
to conclude that the discretized percolation process percolates
if U and H are sufficiently large. Hence the result.

2) Numerical estimations of Uc(H): We now estimate the
critical values Uc(H) theoretically predicted in Theorem 2.
The simulation method used to estimate Uc(H) for given H
is merely the same as in Sections IV-A and IV-B: for a given
H and a grid of values for U , we simulate a large number of
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Fig. 4. Left: Uc(H) as a function of H . Right: Example of estimation of
Uc(H) for H ≈ 0.89. The simulation window is of size 10x10 km2. The
points are the discrete values of the window-crossing probability obtained by
simulations, the curve is the logistic model and the vertical line determines
the intercept Uc(H).

connectivity graphs G1,U,H and compute the proportion l(U) of
simulations where G1,U,H percolates. Again, a logistic model
gives a good fitting of the estimated curve, and we determine
Uc by noting the abscissa of the inflection point of the
logistic curve. Fig. 4(b) illustrates the estimation of Uc(H) for
H ≈ 0.89 (corresponding to a D2D range r = 75m). Fig. 4(a)
provides such estimated values of Uc(H) as a function of H .
Note that Uc(H) = 0 whenever H < Hc ≈ 0.743.

D. Critical user density in relay augmented D2D network

From the results in Sections IV-B and IV-C, we have seen
that users and relays have to compensate each other to allow
for arbitrarily long-range communications on the network
whenever H > Hc. In fact, even when large-scale connectivity
can solely be ensured by relays, i.e. H < Hc, an operator
might rather want to invest less in relays and incentivize
users to serve as D2D relays. The compromise between relay
proportion and user density can be captured by either of the
following functions:

• (U,H) 7→ pc(U,H) := inf{p > pc, Gp,U,H percolates}
• (p,H) 7→ Uc(p,H) := inf{U ≥ 0, Gp,U,H percolates}

Both approaches are actually equivalent and choosing either
one is just a matter of convenience and practicality for nu-
merical simulations. Indeed, it can mathematically be proven
that Uc(p,H) is a decreasing function of p for fixed H and
can therefore be inverted: this leads back to the critical relay
proportion pc(U,H).

Remark 3: The function (p,H) 7→ Uc(p,H) can be seen by
an operator as an indicator of the average number of users
needed to successfully deploy a D2D network for a given
investment in relays. Note that the function Uc(H) defined
in (7) is such that for all H > Hc, Uc(H) = Uc(p = 1, H).
The interest of computing Uc(p,H) also when H < Hc relies
on the fact that an operator might rather want to rely on its
already existing subscribers than on new relays.
In what follows, we shall present some values of Uc(p,H) for
both regimes H < Hc and H > Hc.

The simulation method used to estimate the critical av-
erage number of users Uc(p,H) is merely the same as in
Section IV-C: for given p > pc and H , and for a grid of values
for U , we simulate a large number of connectivity graphs
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Fig. 5. Left: Critical user density Uc(p,H) as a function of H for several
values of p. Right: Example of estimation of Uc(p = 0.9, H ≈ 4.44),
corresponding to r = 15m in an urban environment (γ = 20 km/km2).
The simulation window is of size 10x10 km2. The points are the discrete
values of the window-crossing probability obtained by simulations, the curve
is the logistic model and the vertical line determines the intercept Uc(p,H).

TABLE II
CRITICAL USER DENSITY Uc(p,H) AS A FUNCTION OF p AND H .

Uc(p,H)
H p = 1 p = 0.9 p = 0.8 p = 0.75 NoSha [14]

4.44 16.23 17.39 21.17 26.09 15.87
2.67 7.07 8.30 10.59 13.72 7.44
1.33 1.82 2.42 3.56 4.93 –
0.89 0.41 0.77 1.48 2.41 1
0.67 0 0.03 0.51 1.17 –
0.53 0 0 0 0.45 0.32
0.38 0 0 0 0 0.16

Gp,U,H and compute the proportion m(U) of simulations
where Gp,U,H percolates. Again, a logistic model gives a good
fitting of the estimated curve, and we determine Uc(p,H) by
noting the abscissa of the inflection point of the logistic curve.
Fig. 5(b) illustrates an example. Results for estimations of
Uc(p,H) are given in Table II. We also include a comparison
with results from [14], where the authors simulated a model
similar to ours without any shadowing effects (NoSha), i.e.
there are only users on streets distributed according to a
Cox process and any two users (being in LOS or not) with
reciprocal Euclidean distance less than r are connected. It
is clear from Table II that the previous estimates from [14]
are much smaller than ours: taking the canyon shadowing
assumption into account in our model indeed provides more
realistic information for operators.

Fig. 5(a) shows the variation of the critical user density
Uc(p,H) as a function of H for several values of p. It is clear
from Fig. 5(a) and Table II that H 7→ Uc(p,H) is increasing
for fixed p and that p 7→ Uc(p,H) is decreasing for fixed H ,
which confirms that for given H , we can invert Uc(p,H) to
get back pc(U,H).

V. CONCLUSION

We have proposed a percolation model allowing one to
study the connectivity of D2D networks in an urban canyon
environment. It is based on a Poisson-Voronoi model of streets
with canyon shadowing. Poisson users on the edges (streets)
and Bernoulli relays on the vertices (crossroads) establish line-
of-sight communications of bounded range on the streets.

This model allowed us to observe and quantify the following
phenomena: there is a minimal fraction of crossroads to be



equipped with relays. Below this proportion, good connectivity
of the network (indicated by percolation) cannot be achieved.
Moreover, if the mean street length is not too big with respect
to the communication range, then a small density of users can
be compensated by equipping more crossroads with relays. If
not, then good connectivity requires some minimal density of
users compensated by the relays in a way explicitly estimated
using our model.

While the precise critical values and functions certainly
depend on the model, the general qualitative results (exis-
tence of the aforementioned regimes) are of more general
nature and bring interesting arguments to the discussion on
the possible D2D deployment scenarios. In this regard, our
work complements [14], which does not take into account
any shadowing effects and thus does not predict the strategic
necessity of investments into relays located at crossroads to
ensure connectivity between adjacent streets. Concerning this
necessary investment, observe that the theoretical value of at
least 71, 3% equipped crossroads might be smaller in practice.
Indeed, in our model, crossroads are punctual. In reality, they
have a certain surface and one well-placed regular user could
ensure connectivity between adjacent streets. Taking this into
account would improve our quantitative predictions and is a
track to follow for future work.

Other natural model extensions include more general shad-
owing, e.g. via introducing two D2D connectivity radii, one
for LOS connections, the other for non-line-of-sight (NLOS)
connections. Other street system models, such as Poisson-
Delaunay tessellations (PDT) or Manhattan grids (MG) could
also be considered [10]. Finally, introducing interference ef-
fects and user mobility in our model would definitely lead to
more realistic predictions.
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