
ar
X

iv
:1

90
1.

06
89

2v
1

 [
cs

.I
T

]
 2

1
Ja

n
20

19

Construction and Decoding of Product

Codes with Non-Systematic Polar Codes

Valerio Bioglio, Carlo Condo, Ingmar Land

Mathematical and Algorithmic Sciences Lab

Huawei Technologies France SASU

Email: {valerio.bioglio,carlo.condo,ingmar.land}@huawei.com

Abstract—Product codes are widespread in optical communica-
tions, thanks to their high throughput and good error-correction
performance. Systematic polar codes have been recently consid-

ered as component codes for product codes. In this paper, we
present a novel construction for product polar codes based on
non-systematic polar codes. We prove that the resulting product
code is actually a polar code, having a frozen set that is dependent
on the frozen sets of the component polar codes. We propose a
low-complexity decoding algorithm exploiting the dual nature
of the constructed code. Performance analysis and simulations
show high decoding speed, that allows to construct long codes
while maintaining low decoding latency. The resulting high
throughput and good error-correction performance are appealing
for optical communication systems and other systems where high
throughput and low latency are required.

I. INTRODUCTION

Polar codes [1] are capacity-achieving linear block codes

based on the polarization phenomenon, that makes bit channels

either completely noisy or completely noiseless as code length

tends to infinity. While optimal at infinite code length, the

error-correction performance of polar codes under successive

cancellation (SC) decoding degrades at practical code lengths.

Moreover, SC-based decoding algorithms are inherently se-

quential, which results in high dependency of decoding latency

on code length. List decoding was proposed in [2] to improve

SC performance for practical code lengths: the resulting SC-

List (SCL) algorithm exhibits enhanced error-correction per-

formance, at the cost of higher decoder latency and complexity.

Product codes [3] are parallel concatenated codes often

used in optical communication systems for their good error-

correction performance and high throughput, thanks to their

highly parallelizable decoding process. To exploit this feature,

systematic polar codes have been concatenated with short

block codes as well as LDPC codes [4], [5]. This concatenation

allows the construction of very long product codes based on

the polarization effect: to fully exploit the decoding paral-

lelism, a high number of parallel decoders for the component

codes need to be instantiated, leading to a high hardware cost.

Authors in [6] propose to use two systematic polar codes in

the concatenation scheme in order to simplify the decoder

structure. Soft cancellation (SCAN) [7] and belief propagation

(BP) [5] can be used as soft-input / soft-output decoders

for systematic polar codes, at the cost of increased decoding

complexity compared to SC. Recently, SCL decoding has been

proposed as a valid alternative to SCAN and BP [8], while

authors in [9] propose to use irregular systematic polar codes

to further increase the decoding throughput.

In this paper, we show that the nature of polar codes

inherently induces the construction of product codes that are

not systematic. In particular, we show that the product of two

polar codes is a polar code, that can be designed and decoded

as a product code. We propose a code construction approach

and a low-complexity decoding algorithm that makes use of

the observed dual interpretation of polar codes. Both analysis

and simulations show that the proposed code construction and

decoding approaches allow to combine high decoding speed

and long codes, resulting in high-throughput and good error-

correction performance suitable for optical communications.

II. PRELIMINARIES

A. Polar Codes

Polar codes are linear block codes based on the polarization

effect of the kernel matrix T2 = [1 0
1 1]. A polar code of length

N = 2n and dimension K is defined by the transformation

matrix TN = T⊗n
2 , given by the n-fold Kronecker power of

the polarization kernel, and a frozen set F ⊂ {1, . . . , N} com-

posed of N −K elements. Codeword x = [x0, x1, . . . , xN−1]
is calculated as

x = u · TN , (1)

where the input vector u = [u0, u1, . . . , uN−1] has the N−K
bits in the positions listed in F set to zero, while the remaining

K bits carry the information to be transmitted. The frozen set

is usually designed to minimize the error probability under

SC decoding, such that information bits are stored in the

most reliable bits, defining the information set I = FC .

Reliabilities can be calculated in various ways, e.g. via Monte

Carlo simulation, by tracking the Batthacharyya parameter, or

by density evolution under a Gaussian approximation [10].

The generator matrix G of a polar code is calculated from the

transformation matrix TN by deleting the rows of the indices

listed in the frozen set.

SC decoding [1] can be interpreted as a depth-first binary

tree search with priority given to the left branches. Each node

of the tree receives from its parent a soft information vector,

that gets processed and transmitted to the left and right child

nodes. Bits are estimated at leaf nodes, and hard estimates

are propagated from child to parent nodes. While optimal for

infinite codes, SC decoding exhibits mediocre performance for

http://arxiv.org/abs/1901.06892v1

short codes. SCL decoding [2] maintains L parallel codeword

candidates, improving decoding performance of polar codes

for moderate code lengths. The error-correction performance

of SCL can be further improved by concatenating the polar

code with a cyclic redundancy check (CRC), that helps in the

selection of the final candidate.

B. Product Codes

Product codes were introduced in [3] as a simple and

efficient way to build very long codes on the basis of two

or more short block component codes. Even if it is not

necessary, component codes are usually systematic in order

to simplify the encoding. In general, given two systematic

linear block codes Cr and Cc with parameters (Nr,Kr) and

(Nc,Kc) respectively, the product code P = Cc×Cr of length

N = NrNc and dimension K = KrKc is obtained as follows.

The K information bits are arranged in a Kc ×Kr matrix U ,

then code Cr is used to encode the Kc rows independently.

Afterwards, the Nr columns obtained in the previous step are

encoded independently using code Cc. The result is a Nc×Nr

codeword matrix X , where rows are codewords of code Cr
and columns are codewords of code Cc, calculated as

X = GT
c · U ·Gr, (2)

where Gr and Gc are the generator matrices of codes Cr and

Cc respectively. Alternatively, the generator matrix of P can

be obtained taking the Kronecker product of the generator

matrices of the two component codes as G = Gc ⊗Gr [11].

Product codes can be decoded by sequentially decoding

rows and column component codes, and exchanging infor-

mation between the two phases. Soft-input/soft-output algo-

rithms are used to improve the decoding performance by

iterating the decoding of rows and columns and exchanging

soft information between the two decoders [12]. Since no

information is directly exchanged among rows (columns),

the decoding of all row (column) component codes can be

performed concurrently.

III. PRODUCT POLAR CODES DESIGN

Product codes based on polar codes have been proposed

in literature, using systematic polar codes as one of the two

component codes or as both. However, the peculiar structure

of polar codes has never been exploited in the construction

of the product code. Both polar and product codes are defined

through the Kronecker product of short and simple blocks, that

are used to construct longer and more powerful codes. In the

following, we prove that the product of two non-systematic

polar codes is still a polar code, having a peculiar frozen

set obtained on the basis of the component polar codes. This

design can be extended to multi-dimensional product codes.

Let us define two polar codes Cr and Cc of parameters

(Nr,Kr) and (Nc,Kc) with transformation matrices TNr
and

TNc
respectively, where Nc = 2nc and Nr = 2nr , and Fr

and Fc are the respective frozen sets. The product polar code

P = Cc×Cr is generated as follows. An Nc×Nr input matrix

U is generated having zeros in the columns listed in Fr and

N
r

N
c

c

r
F

F

Fig. 1: Input matrix U for a product polar code.

in the rows listed in Fc as depicted in Figure 1. Input bits

are stored in the remaining KrKc entries of U , row first,

starting from the top left entry. Encoding is performed as

for product codes: the rows of U are encoded independently

using polar code Cr, namely through matrix multiplication by

the transformation matrix TNr
, obtaining matrix Ur. Then,

the columns of Ur are encoded independently using Cc. The

encoding order can be inverted performing column encoding

first and row encoding next without changing the results. The

resulting codeword matrix X can be expressed as

X = T T
Nc

· U · TNr
. (3)

In order to show that this procedure creates a polar code,

let us vectorize the input and codeword matrices U and X ,

converting them into row vectors u and x. This operation is

performed by the linear transformation row(·), which converts

a matrix into a row vector by juxtaposing its rows head-to-tail.

This transformation is similar to the classical vectorization

function vec(·) converting a matrix into a column vector by

juxtaposing its columns head-to-tail. However, before proving

our claim, we need to extend a classical result of vec(·)
function to row function.

Lemma 1. Given three matrices A, B, C such that A ·B ·C
is defined, then

row(A ·B · C) = row(B) · (AT ⊗ C). (4)

Proof. The compatibility of vectorization with the Kronecker

product is well known, and is used to express matrix multi-

plication A ·B ·C as a linear transformation vec(A ·B ·C) =
(CT ⊗ A) · vec(B). Moreover, by construction we have that

vec(AT) = (row(A))T . As a consequence,

row(A · B · C) = (vec((A ·B · C)T))T

= (vec(CT ·BT · AT))T

= ((A⊗ CT) · vec(BT))T

= (vec(BT))T · (A⊗ CT)T

= row(B) · (AT ⊗ C).

Equipped with Lemma 1 we can now prove the following

proposition:

Proposition 1. The (N,K) product code P defined by the

product of two non-systematic polar codes as P = Cc × Cr
is a non-systematic polar code having transformation matrix

TN = TNc
⊗ TNr

and frozen set

F = argmin(ic ⊗ ir), (5)

where ir (ic) is a vector of length Nr (Nc) having zeros in

the positions listed in Fr (Fc) and ones elsewhere.

Proof. To prove the proposition we have to show that x =
row(X) is the codeword of a polar code, providing its frozen

set and transformation matrix. If u = row(U), Lemma 1 shows

that

x = row(X)

= row(T T
Nc

· U · TNr
)

= row(U) · (TNc
⊗ TNr

)

= u · TN .

By construction, input vector u has zero entries in positions

imposed by the structure of the input matrix U , and (5) follows

from the definition of U ; with a little abuse of notation, we

use the argmin function to return the set of the indices of

vector i = ic ⊗ ir for which the entry is zero. Finally, TN =

TNc
⊗ TNr

= T
⊗(nc+nr)
2 is the transformation matrix of a

polar code of length N = 2nc+nr .

Proposition 1 shows how to design a product polar code

on the basis of the two component polar codes. The resulting

product polar code P has parameters (N,K), with N = NrNc

and K = KrKc, and frozen set F designed according to

(5). The encoding of P can be performed in O(logN) steps

exploiting the structure of TN . The sub-vectors xi
r and xj

c

corresponding to the i-th row and the j-th column of X
represent codewords of polar codes Cr and Cc respectively. It

is worth noticing that the frozen set identified for the product

polar code is suboptimal, w.r.t. SC decoding, compared to the

one calculated for a polar code of length N . On the other hand,

this frozen set allows to construct a polar code as a result of

the product of two shorter polar codes, that can be exploited

at decoding time to reduce the decoding latency, as shown in

Section IV-B. We also conjecture the possibility to invert the

product polar code construction, decomposing a polar code as

the product of two or more shorter polar codes.

Figure 2 shows the encoding of a product polar code

generated by a (4, 2) polar code with frozen set Fc = {0, 1}
as column code Cc and a (4, 3) polar code with frozen set

Fr = {0} as row code Cr. This defines a product polar code

P with N = 16 and K = 6. According to Proposition 1, its

frozen set can be calculated through the Kronecker product

of the auxiliary vectors ic = [0, 0, 1, 1] and ir = [0, 1, 1, 1],
obtaining F = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12}. We recall that

0 0 0 0

0 0 0 0

0

0

0

1

1

0

1

1

0 0 0 0

0 0 0 0

0

0

1

0

0

1

1

1

0 1 1 0 0 1 1 0

U
r

U

0 1 1 0

0 1 0 1

0

0

1

1

1

0

0

1

0 1 1 0

0 0 1 1

0

0

1

0

1

1

0

1

c
XU

Fig. 2: Example of product polar code design and encoding.

Fig. 3: Example of overlapping of Xr and Xc. Red squares

represent mismatches, blue lines represent wrong estimations

identified by Algorithm 1.

the optimal frozen set for a (16, 6) polar code is given by

F ′ = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10}.

IV. LOW-LATENCY DECODING OF PRODUCT POLAR

CODES

In this Section, we present a two-step, low-complexity

decoding scheme for the proposed polar product codes con-

struction, based on the dual nature of these codes. We propose

to initially decode the code as a product code (step 1), and

in case of failure to perform SC decoding on the full polar

code (step 2). The product code decoding algorithm of step

1 exploits the soft-input / hard-output nature of SC decoding

to obtain a low complexity decoder for long codes. We then

analyze the complexity and expected latency of the presented

decoding approach.

A. Two-Step Decoding

The first decoding step considers the polar code as a product

code. Vector y containing the log-likelihood ratios (LLRs) of

the N received bits is rearranged in the Nc × Nr matrix Y .

Every row is considered as a noisy Cr polar codeword, and

decoded independently through SC to estimate vector ûr. Each

ûr is re-encoded, obtaining x̂r = ûr · TNr
: the Nr-bit vectors

x̂r are then stored as rows of matrix Xr. The same procedure

is applied to the columns of Y , obtaining vectors x̂c = ûc ·
TNc

, that are in turn stored as columns of matrix Xc. In case

Algorithm 1 FindErroneousEstimations

1: Initialize ErrRows = ErrCols = ∅
2: Xd = Xr ⊕Xc

3: NumErrRows = SumRows(Xd)
4: NumErrCols = SumCols(Xd)
5: while NumErrRows + NumErrCols > 0 do

6: er = arg max(NumErrRows)

7: ec = arg max(NumErrCols)

8: if max(NumErrRows) > max(NumErrCols) then

9: ErrRows = ErrRows ∪ {er}
10: Xd(er, :) = 0
11: else

12: ErrCols = ErrCols ∪ {ec}
13: Xd(:, ec) = 0
14: end if

15: NumErrRows = SumRows(Xd)
16: NumErrCols = SumCols(Xd)
17: end while

18: return ErrRows, ErrCols

Xr = Xc, decoding is considered successful; the estimated

input vector û of code P can thus be derived inverting the

encoding operation, i.e. by encoding vector x̂ = row(Xr),
since TN is involutory. In case Xr 6= Xc, it is possible to

identify incorrect estimations by overlapping Xr and Xc and

observing the pattern of mismatches. Mismatches are usually

grouped in strings, as shown in Figure 3, where mismatches

are represented by red squares.

Even if mismatch patterns are simple to analyze by visual

inspection, it may be complex for an algorithm to recognize an

erroneous row or column. We propose the greedy Algorithm 1

to accomplish this task. The number of mismatches in each

row and column is counted, flagging as incorrect that with

the highest count. Next, its contribution is subtracted from the

mismatch count of connected rows or columns, and another

incorrect one is identified. The process is repeated until all

mismatches belong to incorrect rows or columns, the list

of which is stored in ErrRows and ErrCols. An example of

this identification process is represented by the blue lines in

Figure 3.

Incorrect rows can be rectified using correct columns and

vice-versa, but intersections of wrong rows and columns

cannot. In order to correct these errors, we propose to treat

the intersection points as erasures. As an example, in a row,

crossing points with incorrect columns have their LLR set to

0, while intersections with correct columns set the LLR to

+∞ if the corresponding bit in Xc has been decoded as 0,

and to −∞ if the bit is 1. The rows and columns flagged

as incorrect are then re-decoded, obtaining updated Xr and

Xc. This procedure is iterated a number t of times, or until

Xr = Xc.

In case Xr 6= Xc after t iterations, the first step returns

a failure. In this case, the second step of the algorithm is

performed, namely the received vector y is decoded directly,

Algorithm 2 TwoStepDecoding

1: Initialize Yr = Yc = Y
2: for w = 1 . . . t do

3: X̂r = DecodeRows(Y)
4: X̂c = DecodeCols(Y)
5: if Xr == Xc then

6: x̂ = row(Xr)
7: return û = PolarEncoding(x̂)
8: else

9: FindErroneousEstimations

10: end if

11: Yr = (−2X̂c + 1) · ∞
12: Yc = (−2X̂r + 1) · ∞
13: Yr(:,ErrCols) = 0
14: Yc(ErrRows, :) = 0
15: end for

16: return û = Decode(y)

considering the complete length-Npolar code P .

The proposed two-step decoding approach is summarized in

Algorithm 2. Any polar code decoder can be used at lines 3,4

and 16. However, since a soft output is not necessary, and the

decoding process can be parallelized, simple, sequential and

non-iterative SC-based algorithms can be used instead of the

more complex BP and SCAN.

B. Decoding Latency and Complexity

The proposed two-step decoding of product polar codes

allows to split the polar decoding process into Nr+Nc shorter,

independent decoding processes, whose hard decisions are

compared and combined together, using the long polar code

decoding only in case of failure. Let us define as ∆N the

number of time steps required by an SC-based algorithm to

decode a polar code of length N . For the purpose of latency

analysis, we suppose the decoder to have unlimited compu-

tational resources, allowing a fully parallel implementation of

decoding algorithms. Using Algorithm 2 to decode component

codes, the expected number of steps for the proposed two-step

decoder for a code of length N = NcNr is given by

∆P
N = tavg∆max(Nr,Nc) + γ∆N , (6)

where tavg ≤ t is the average number iterations, and

max(Nr, Nc) assumes that the decoding of row and column

component codes is performed at the same time. The pa-

rameter γ is the fraction of decoding attempts in which the

second decoding step was performed. It can be seen that as

long as γ ≈ 0 and tavg << N/max(Nr, Nc), then ∆P
N is

substantially smaller than ∆N .

The structure of parallel and partially-parallel SC-based

decoders is based on a number of processing elements per-

forming LLR and hard decision updates, and on dedicated

memory structures to store final and intermediate values. Given

the recursive structure of polar codes, decoders for shorter

codes are naturally nested within decoders for longer codes.

In the same way, the main difference between long and short

3 3.5 4 4.5 5 5.5 6 6.5
Eb/N0 [dB]

10-10

10-8

10-6

10-4

10-2

100
B
E
R

P-SC, N = 5122

P-SC, N = 322

SC, N = 1024
SC, N = 2048

Fig. 4: BER comparison for SC and P-SC, for codes of rate

R = (7/8)2.

code decoders is the amount of memory used. Thus, not only a

high degree of resource sharing can be expected between the

first and second decoding step; the parallelization available

during the first decoding step implies that the same hardware

can be used in the second step, with minor overhead.

V. PERFORMANCE RESULTS

The dual nature of product polar codes can bring substantial

speedup in the decoding; on the other hand, given a time

constraint, longer codes can be decoded, leading to improved

error-correction performance. In this Section, we present de-

coding speed and error-correction performance analysis, along

with simulation results. We assume an additive white Gaussian

noise (AWGN) channel with binary phase-shift keying (BPSK)

modulation, while the two component codes have the same

parameters, i.e. Nr = Nc and Kr = Kc.

A. Error-Correction Performance

As explained in Section III, the frozen set identified for

the code of length N is suboptimal for product decoding of

polar codes, that relies on the frozen set seen by component

codes. On the other hand, a frozen set that can help product

decoding leads to error-correction performance degradation

when standard polar code decoding is applied.

Figure 4 portrays the bit error rate (BER) for different codes

under P-SC decoding, i.e. the proposed two-step decoding

with SC as the component decoder, with parameter t = 4,

while N = 5122 = 262144 and N = 322 = 1024 with

rate R = (7/8)2. As a reference, Figure 4 displays also

curves obtained with SC decoding of a polar code of length

N = 1024 and N = 2048, with the same rate R = (7/8)2,

designed according to [1]. As expected due to the subopti-

mality of the frozen set, P-SC degrades the error correction

performance with respect to standard SC decoding when

compared to codes with the same code length N . However, the

speedup achieved by P-SC over standard SC allows to decode

longer codes within the same time constraint: consequently,

3 3.5 4 4.5 5 5.5 6 6.5
Eb/N0 [dB]

10-10

10-8

10-6

10-4

10-2

100

B
E
R

P-SCL, N = 5122

P-SCL, N = 322

SCL, N = 1024
SCL, N = 2048

Fig. 5: BER comparison for SCL and P-SCL, for codes of rate

R = (7/8)2 and L = 8.

we compare codes with similar decoding latency. SC decoding

of N = 2048 and N = 1024 codes has a decoding latency

similar to that of a conservative estimate for P-SC decoding of

the N = 5122 code. The steeper slope imposed by the longer

code can thus be exploited within the same time frame as the

shorter codes: the BER curves are shown to cross at around

BER ≃ 10−7.

Figure 5 depicts the BER curves for the same codes,

obtained through SCL and P-SCL decoding with a list size

L = 8, and no CRC. The more powerful SCL algorithm leads

to an earlier waterfall region for all codes, with a slope slightly

gentler than that of SC. The P-SCL curve crosses the SCL ones

around similar BER points as in Figure 4, but at lower Eb/N0.

B. Decoding Latency

To begin with, we study the evolution of the parameters γ
and tavg in (6) under SC decoding. Figure 6 depicts the value

of γ measured at different Eb/N0, for various code lengths

and rates. The codes have been decoded with the proposed

two-step decoding approach, considering t = 4 maximum

iterations. As Eb/N0 increases, the number of times SC is

activated rapidly decreases towards 0, with γ < 10−3 at a

BER orders of magnitude higher than the working point for

optical communications, which is the target scenario for the

proposed construction. Simulations have shown that the slope

with which γ tends to 0 changes depending on the value of t;
as t increases, so does the steepness of the γ curve. Regardless

of t, γ tends to 0 as the channel conditions improve.

The first decoding step is stopped as soon as Xr = Xc,

or if the maximum number of iterations t has been reached.

Through simulation, we have observed that the average num-

ber of iterations tavg follows a behavior similar to that of

γ, and tends to 1 as Eb/N0 increases. It is worth noting

that similar considerations apply when a decoding algorithm

different than SC is used, as long as the same decoder is

applied to the component codes and the length-N code. The

trends observed with SC for γ and tavg are found with P-SCL

3 3.5 4 4.5 5 5.5 6 6.5
Eb/N0 [dB]

10-4

10-3

10-2

10-1

100
γ

N = 322,K = 282

N = 322,K = 302

N = 1282,K = 1122

N = 1282,K = 1212

N = 5122,K = 4482

N = 5122,K = 4852

Fig. 6: Evolution of γ with codes of different length and rate,

SC component decoding, t = 4, Nr = Nc, Rr = Rc.

TABLE I: Time step analysis for standard and two-step

decoding.

Code
∆SC

N

∆P−SC

N ∆SCL

N

∆P−SCL

N

N ,K WC BC WC BC

1024, 784 2046 2294 62 2830 3190 90

1024, 841 2046 2294 62 2876 3240 91

4096, 3136 8190 8694 126 11326 12054 182

4096, 3249 8190 8694 126 11508 12244 184

16384, 12544 32766 33782 254 45310 46774 366

16384, 13225 32766 33782 254 46038 47518 370

65536, 50176 131070 133110 510 181246 184182 734

65536, 52900 131070 133110 510 184155 187119 741

262144, 200704 524286 528374 1022 724990 730870 1470

262144, 211600 524286 528374 1022 736623 742555 1483

as well, and we can safely assume that similar observations

can be made with other SC-based decoding algorithms.

Table I reports ∆N required by standard SC and SCL

decoders, as well as for the proposed two-step decoder P-SC

and P-SCL, at different code lengths and rates. Assuming no

restrictions of available resources, the number of time steps

required by SC decoding is ∆SC
N = 2N − 2, that becomes

∆SCL
N = 2N +K − 2 for SCL decoding [13]. For P-SC and

P-SCL, ∆P
N is evaluated for worst case (WC), that assumes

tavg = t and γ = 1, and best case (BC), that assumes tavg = 1
and γ = 0. Simulation results show that ∆P

N tends to the

asymptotic limit represented by BC decoding latency as the

BER goes towards optical communication working point. As

an example, for N = 5122 = 262144, K = 4482 = 200704
with P-SC, at BER ≃ 2.5 · 10−7, i.e. approximately eight

orders of magnitude higher than the common target for optical

communications, γ ≈ 6 · 10−3 and tavg = 1.1, leading to

∆P−SC
N = 5967. This value is equivalent to 1.1% of standard

decoding time ∆SC
N , while the BC latency is 0.2% of ∆SC

N . At

BER ≃ 10−15, it is safe to assume that the actual decoding

latency is almost equal to BC.

VI. CONCLUSION

In this paper, we have shown that the product of two

non-systematic polar codes results in a polar code whose

transformation matrix and frozen set are inferred from the

component polar codes. We have then proposed a code con-

struction and decoding approach that exploit the dual nature of

the resulting product polar code. The resulting code is decoded

first as a product code, obtaining substantial latency reduction,

while standard polar decoding is used as post-processing in

case of failures. Performance analysis and simulations show

that thanks to the high throughput of the proposed decoding

approach, very long codes can be targeted, granting good error-

correction performance suitable for optical communications.

Future works rely on the inversion of the proposed product

polar code construction, namely rewriting any polar code as

the product of smaller polar codes.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–
3073, July 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions

on Information Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.
[3] P. Elias, “Error-free coding.,” Transactions of the IRE Professional

Group on Information Theory, vol. 4, no. 4, pp. 29–37, 1954.
[4] M. Seidl and J. B. Huber, “Improving successive cancellation decoding

of polar codes by usage of inner block codes,” in IEEE Interna-

tional Symposium on Turbo Codes and Iterative Information Processing

(ISTC), Brest, France, September 2010.
[5] J. Guo, M. Qin, A. G. I Fabregas, and P. H. Siegel, “Enhanced belief

propagation decoding of polar codes through concatenation,” in IEEE

International Symposium on Information Theory (ISIT), 2014, Honolulu,
HI, USA, June 2014.

[6] D. Wu, A. Liu, Y. Zhang, and Q. Zhang, “Parallel concatenated
systematic polar codes,” in Electronics Letters, 2015, vol. 52, pp. 43–45.

[7] U. U. Fayyaz and J. R. Barry, “Low-complexity soft-output decoding
of polar codes,” IEEE Journal on Selected Areas in Communications,
vol. 32, no. 5, pp. 958–966, 2014.

[8] Z. Liu, K. Niu, and J. Lin, “Parallel concatenated systematic polar code
based on soft successive cancellation list decoding,” in IEEE Inter-

national Symposium on Wireless Personal Multimedia Communications

(WPMC), Yogyakarta, Indonesia, December 2017.
[9] T. Koike-Akino, C. Cao, Y. Wang, K. Kojima, D. S. Millar, and

K. Parsons, “Irregular polar turbo product coding for high-throughput
optical interface,” in Optical Fiber Communication Conference and

Exhibition (OFC), San Diego, CA, USA, 2018, p. March.
[10] H. Vangala, E. Viterbo, and Y. Hong, “A comparative study of

polar code constructions for the AWGN channel,” in arXiv preprint

arXiv:1501.02473, 2015.
[11] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

codes, Elsevier, 1977.
[12] R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo

codes,” IEEE Transactions on communications, vol. 46, no. 8, pp. 1003–
1010, 1998.

[13] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive-
cancellation list decoders for polar codes,” IEEE Transactions on Signal

Processing, vol. 65, no. 21, pp. 5756–5769, October 2017.

http://arxiv.org/abs/1501.02473

	I Introduction
	II Preliminaries
	II-A Polar Codes
	II-B Product Codes

	III Product Polar Codes Design
	IV Low-latency Decoding of Product Polar Codes
	IV-A Two-Step Decoding
	IV-B Decoding Latency and Complexity

	V Performance Results
	V-A Error-Correction Performance
	V-B Decoding Latency

	VI Conclusion
	References

