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Abstract—This paper studies the transmit antenna selection in
massive multiple-input multiple-output (MIMO) wiretap chan-
nels, also termed as multiple-input multiple-output multiple-
eavesdropper (MIMOME) channels. The transmitter, equipped
with a large-scale antenna array whose size is much larger than
that of the legitimate receiver and eavesdropper, selects a subset
of antennas to transmit messages. A branch-and-bound (BAB)
search based algorithm for antenna selection in independent and
identical distributed Rayleigh flat fading channel is proposed to
maximize the secrecy capacity between the transmitter and the
legitimate receiver when the transmit power is equally allocated
into the selected antennas. Furthermore, the proposed algorithm
is separately applied to two scenarios which is based on whether
the channel side information of the eavesdropper (CSIE) is
available at the transmitter. Simulation results show that the
proposed algorithm has the same performance as the exhaustive
search under both scenarios but with much lower complexity.

Index Terms—Massive MIMO wiretap channel, physical layer
security, transmit antenna selection

I. INTRODUCTION

Data flux in wireless networks has experienced an explosive

growth with the sharp increment of the amount of smart

devices. With the rapid growing demand for transmission

rate, the significance of transmission security and reliability

has become increasingly prominent. In this respect, physical

layer (PHY) security [1] has gained pivotal attention in recent

years for its remarkable performance in information security

enhancement.

Wyner in [1] proposed the basic model for physical layer

security i.e., the wiretap channel, in which the transmitted

messages to a legitimate receiver are being overheard by

an eavesdropper. Different from the traditional cryptographic

techniques [2], physical layer security utilizes the inherent

characteristics of wireless channels to ensure reliable trans-

mission. Recently, researchers devoted to PHY security have

shown an increased interest in multiple-input multiple-output

(MIMO) wiretap channels, also referred to as multiple-input

multiple-output multiple-eavesdropper (MIMOME) channels

[3], where multiple antennas are deployed at each of the

three terminals. The works in [4], [5] investigated the secrecy

capacity of MIMOME channels in light of information theory.
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[6] extended these work to large-scale systems, which demon-

strated the significant improvements of transmission security

and reliability in massive MIMOME channel compared to the

small-scale one. More specifically, the transmitter can reduce

the information disclosure to the eavesdroppers by focusing

its main transmit beam to the legitimate receivers [6].

Radio-frequency (RF) chain is an expensive component that

each antenna should be equipped with, which accounts for

high hardware cost in large-scale system. However, antenna

selection (AS) technology [7] is regarded as an alternative to

alleviate the requirement on the RF transceivers by selecting

a subset of antennas to transceive signals. Up to now, the

research on AS in MIMOME channels has tended to focus on

the closed-form expressions of secrecy capacity under different

scenarios but ignore the algorithm design. Most of them

merely consider single-antenna selection and the correspond-

ing analytical expression of the secrecy outage probability [8]–

[12]. However, a few researches discussed the performance

of multiple-antenna selection and very simplistic algorithms

were applied to it, such as the norm-based method [13], [14].

Furthermore, few literatures focused on the algorithm design

of multiple-antenna selection in massive MIMOME channels.

This paper concentrates on transmit antenna selection (TAS)

algorithm design in massive MIMOME channels. To the

best of our knowledge, this is the first time to propose

an optimal multiple transmit antenna selection algorithm in

massive MIMOME channels, the complexity of which is

much lower than that of exhaustive search. For simplicity,

assume that the total transmit power is uniformly allocated

over the selected antennas and the channel side information

of the legitimate receiver (CSIL) is available. An optimal TAS

algorithm is proposed to maximize the secrecy capacity in

massive MIMOME channels and discussed in two scenarios:

1) For Scenario A: the eavesdropper’s channel side information

is unavailable at the transmitter (NCSIE), and 2) For Scenario

B: the eavesdropper’s channel side information (CSIE) is

available. In each scenario, simulation results demonstrate that

the proposed algorithm obtains an optimal solution at the

expense of much lower complexity than exhaustive search.

The remaining parts of this manuscript is structured as

follows: Section II describes the system model. In Section III,

the optimal TAS algorithm is proposed. The simulation results

and corresponding analysis are shown in Section IV. Finally,
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Section V concludes the paper.

Notations: Scalars, vectors and matrices are denoted by

non-bold, bold lower case, and bold upper letters, respectively.

C stands for the complex numbers. The Hermitian and inverse

of matrix H is indicated with H† and H−1, and IN is the

N×N identity matrix.

II. SYSTEM MODEL

In this paper, we consider a massive MIMO wiretap channel.

The transmitter is equipped with Nt antennas, the legitimate

receiver is equipped with Nr antennas and the eavesdropper

is equipped with Ne antennas. The received signal vector at

the legitimate receiver reads

ym =
√
ρmHmx+wm, (1)

where x ∈ CNt×1 is the transmitted signal with unit power,

ρm is the Signal to Noise Ratio (SNR) at each receive antenna

of the legitimate receiver and wm∼CN (0, INt
) is the additive

complex Gaussian noise. Assume that the transmitted symbols

from different antennas are independent. Considering inde-

pendent and identical distributed (i.i.d) Rayleigh flat fading

channel, the elements in channel matrix Hm∈CNr×Nt are

i.i.d. complex Gaussian random variables following CN (0, 1).
Assume that the eavesdropper channel is still suffering i.i.d.

Rayleigh flat fading with Gaussian noise. Let ρe denote the

SNR at each antenna of the eavesdropper, the received signal

in the eavesdropper is given by

ye =
√
ρeHex+we. (2)

The secrecy capacity between the transmitter and the legiti-

mate receiver is then written as [5]

Cs = [Cm − Ce]
+
, (3)

where [x]+
△
= max{x, 0}, Ce and Cm denote the channel

capacity over the eavesdropper channel and the legitimate

channel, respectively. Assume that the transmit power is

uniformly allocated, Ce and Cm can be written as [15]

Cm = log2 det

(

INt
+

ρm

Nt
HmH

†
m

)

(4a)

Ce = log2 det

(

INe
+

ρe

Nt
HeH

†
e

)

. (4b)

Then, consider the TAS at the transmitter and suppose L

antennas are selected. Actually, selecting a subset of trans-

mit antennas, in other words, is to select the corresponding

columns of the channel matrix. Let H̃m and H̃e denote the

submatrix after TAS, the secrecy capacity has the following

expression:

Cs =



log2




det
(

INt
+ ρmH̃mH̃

†
m

)

det
(

INe
+ ρeH̃eH̃

†
e

)









+

, (5)

where ρm = ρm

L
and ρe = ρe

L
are defined as the normalized

SNR.

III. TAS ALGORITHM

In this section, an optimal TAS algorithm with low complex-

ity in massive MIMOME channels is formulated. We assume

that full CSIL is available at the transmitter.

Most of the TAS algorithms used in MIMOME channels are

norm-based [13], [14] i.e., to select L antennas corresponding

to the largest L norms of the column vectors in the channel

matrix Hm. The norm-based method is of low complexity

but moderately poor performance. Exhaustive search (ES) is

definitely an optimal algorithm, but it is prohibitively complex

and even impractical for its huge complexity especially under

large-scale scenario. Does an optimal algorithm exist for

TAS with much lower complexity in contrast to the ES?

Branch-and-bound (BAB) method [16], [17] could answer this

question.

BAB was used for receive antenna selection in massive

MIMO system [17]. In the followings, consider two scenarios

stated before depending on whether the CSIE is available or

not, and propose corresponding BAB based algorithms for

these situations respectively. It’s shown that the proposed BAB

in Section III-A is equivalent to that in [17], but the algorithm

in Section III-B is totally different.

A. NCSIE

In this case, the transmitter knows nothing about the eaves-

dropper channel and the transmitted power is uniformly allo-

cated to the selected antennas. Since the CSIE is unavailable

at the transmitter, only the legitimate channel is considered in

antenna selection. In this setup, the antenna selection for the

eavesdropper channel could be treated as a random selection.

Let S denote the selected subset of transmit antenna indexes

whose cardinality is |S| = L. The transmit antenna selection

problem could be formulated as

Sopt = argmax
S∈M

log2 det
(

INr
+ ρmH̃mH̃

†
m

)

(6)

where M denotes the full set of all the candidate column index

subsets with size L.

Let Hm,n denote the submatrix of legitimate channel after

n antennas are selected and Cm,n denote the corresponding

channel capacity. Assuming that the kth row hk of matrix

Hm is selected in the (n+ 1) step, n = 0, 1, · · · , L − 1, the

updated channel submatrix is [Hm,n,hk] the capacity can be

derived as

Cm,n+1 = log2 det
(

INr
+ ρmHm,n+1H

†
m,n+1

)

= log2 det
(

INr
+ ρmHm,nHm,n

† + ρmhkh
†
k

)

= Cm,n + log2 det
(

INr
+ ρmTm,nhkh

†
k

)

(a)
= Cm,n + log2

(

1 + ρmh
†
kTm,nhk

)

︸ ︷︷ ︸

∆k,n

,

(7)

where Tm,n =
(
INr

+ ρmHm,nH
†
m,n

)−1
and Tm,0 = INr

.

The last equality (a) holds for the Sylvesters determinant
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Fig. 1. An example search tree for branch-and-bound algorithm when Nt = 6

and L = 2. The number besides each node is the index of this antenna. An
entire path from the root to any tip nodes in Level 2 is a antenna selection
result.

identity [18] det (I+AB) = det (I+BA). By the Sherman-

Morrison formula [18], the computation for the matrix inverse
(
INr

+ ρmHm,nH
†
m,n

)−1
is simplified. Let Kn+1 denote the

antenna index selected in the (n+ 1)th step, Tm,n+1 can be

conveniently expressed in the following recursive form

Tm,n+1 =
(

INr
+ ρmHm,nH

†
m,n + ρmhKn+1

h
†
Kn+1

)−1

= Tm,n − tn+1t
†
n+1,

(8)

where tn+1 =
Tm,nhKn+1

√

(ρm)−1+h
†

Kn+1
Tm,nhKn+1

. Define

φKn+1,n+1 = h
†
Kn+1

Tm,n+1hKn+1
, which can be updated as

φKn+1,n+1 = h
†
Kn+1

Tm,n+1hKn+1

= h
†
Kn+1

(

Tm,n − tn+1t
†
n+1

)

hKn+1

= φKn+1,n −
∣
∣ξKn+1,n+1

∣
∣
2
,

(9)

where ξKn+1,n+1 = h
†
Kn+1

tn+1. Therefore, ∆k,n can be

written as ∆k,n = log2 (1 + ρmφk,n).
The BAB search is a classical algorithm in integer program-

ming [16], [17] which achieves the optimal solution but holds

much lower complexity than exhaustive search. To use branch-

and-bound search, a search tree as decribed in Fig. 1 is built

to implement the whole search. One can see from Fig. 1 that

the depth of the search tree is (L+ 1). The exhausitive search

is to traverse the whole tree. To apply branch-and-bound into

TAS, the object function Cm,n is adjusted to C̃m,n,

C̃m,n = Cm,n −
n−1∑

a=0

Za, (10)

where Za = log2
(
1 + ρmζ2a

)
, and ζ2a = maxk∈Ia

h
†
khk,

Z0 = 0. The index set Ia consists of all the candidate

antenna set in the ath level. In the section that follows, the

monotonicity of the new object function C̃m,n is derived in

detail. According to the definition of C̃m,n, one can see that

C̃m,n+1 = C̃m,n +∆Kn+1,n − Zn. (11)

Equ. (8) shows that Tm,n+1 = INr
−∑n+1

a=1 tat
†
a as Tm,0 =

INr
, then

h
†
Kn+1

Tm,n+1hKn+1
− h

†
Kn+1

hKn+1

=− h
†
Kn+1

(
n+1∑

a=1

tat
†
a

)

hKn+1
= −

n+1∑

a=1

∣
∣
∣h

†
Kn+1

ta

∣
∣
∣

2

≤ 0.

(12)

By the definition of Zn, the relationship Zn ≥
log2

(

1 + ρmh
†
Kn+1

hKn+1

)

holds. As a result,

∆Kn+1,n = log2

(

1 + ρmh
†
Kn+1

Tm,n+1hKn+1

)

≤ log2

(

1 + ρmh
†
Kn+1

hKn+1

)

≤ Zn.
(13)

By Equ. (10) and Equ. (13), C̃m,n+1 ≤ C̃m,n holds, which

indicates that C̃m,n is monotonically decreasing with the

increase of the number of the selected antennas.

As Zn is the maximal value in each level, they are con-

stants once the search tree is fixed. Therefore, maximiz-

ing Cm,n is equivalent to maximizing C̃m,n by Equ. (10).

Branch-and-bound search is suitable to find maximum with

a monotonically-decreasing object function [16]. Suppose that

the depth-first and best-first strategy is used during tree search.

Since the object function C̃m,n along a path is decreasing,

the object function value of a complete path from the root

node to the tip node could serve as a lower bound for other

nodes. For example, when a node ’A’ of a path in the qth

level is visited, all the child nodes produced by ’A’ can be

discard if the real-time object function value C̃m,q is smaller

than the lower bound. When we arrive at another tip node,

we need to update the lower bound as the object function

value of this new complete path if the object function value

is larger than the lower bound. This procedure will not stop

until the whole tree is traversed. Let minus infinity be the

initial global lower bound. The tighter the initial bound is,

the lower complexity the BAB algorithm would possess. The

branch-and-bound algorithm is summarized in Alg. 1 attached

with the complexity analysis, where In,k is the sub-node index

set in the nth level of the kth node.

C̃m,n is regarded as the objective function instead of Cm,n,

because the former is monotonically decreasing. During the

procedure of tree search, many nodes could be pruned. Sup-

pose Cm,n was utilized, the whole procedure would degrade

into an exhaustive search with huge computational complexity.

If the tree search stops at the first level, it would degrade

into the norm-based method. During the procedure of branch-

and-bound algorithm, the total number of visited node is

uncertain, the computational complexity could be calculated

by O (NnodeNtNr) where Nnodes denotes the visited nodes’

total number. Many branches are pruned during the algorithm,

thuis it could achieve the optimal solution with much lower

computation cost than exhaustive search.

B. CSIE

The previous section has discussed the scenario without

CSIE. Then, consider the situation when the transmitter have

both full CSIL and full CSIE. The following part moves on to

describe in greater detail that the BAB still works well when

CSIE is available.

Since the transmitter knows the channel matrix of the eaves-

dropper, the antenna selection for the eavesdropper channel

can not be treated as random selection any more and the

channel side information must be taken into consideration. Let



Algorithm 1 BAB search for TAS with NCSIE [17]

1: Tm = INr
, B = −∞, C̃m = 0, n = 1, K = 0, s = 0L,

K = {1, 2, · · · , Nt}, L = {1, 2, · · · , L}
2: φk = h

†
khk, ∀k ∈ K ⊲ O (NtNr)

3: ζa = maxk∈Ia
φk, Za = log2 (1 + ρmζa) , ∀a ∈ L

4: ∆k = log2 (1 + ρmφk) , ∀k ∈ K
5: if n = L then

6: ck := C̃m +∆k − ZL, ∀k ∈ IL,K

7: if maxm∈IL,K
cm < B then

8: [s]L = argmaxm∈IL,K
cm

9: B := maxm∈IL,K
cm, and ŝ := s

10: end if

11: else

12: ck := C̃m +∆k − Zn, ∀j ∈ In,K
13: sort ck, ∀k ∈ In,K in a descend order to get an ordered

index vector k

14: Tm,tmp := Tm, φtmp,k := φk , ∀k ∈ K
15: for i = 1 : |In,K | do

16: K = [k]i
17: if cK > B then

18: Q := {K + 1,K + 2, · · · , Nt}
19: [s]n = K

20: tm := TmhK√
(ρm)−1+φtmp,K

⊲ O
(
N2

t Nnodes

)

21: Tm := Tm,tmp − tmt
†
m

22: C̃m := cK
23: ξa := h†

atm, ∀a ∈ Q ⊲ O (NtNrNnodes)
24: φa := φtmp,a−|ξa|2 , ∀a ∈ Q ⊲ O (NtNnodes)
25: ∆a := log2 (1 + ρmφa) , ∀a ∈ Q

⊲O (NtNrNnodes)
26: n := n+ 1, jump to line 5

27: else

28: break the loop

29: end if

30: end for

31: end if

32: return the final set ŝ

Hm,n and He,n denote the submatrix of legitimate channel and

eavesdropper channel after n antennas are selected and Cs,n

denote the corresponding secrecy capacity. Assuming that the

kth column hm,k of matrix Hm is selected at the (n+ 1)
step, the channel matrix is denoted by [Hm,n,hk]. For the

eavesdropper, the kth column he,k of matrix He is selected.

Following the similar steps in Equ. (7) yields another recursive

formulation

Cs,n+1 = Cs,n + log2

(

1 + ρmh
†
m,kTm,nhm,k

1 + ρeh
†
e,kTe,nhe,k

)

︸ ︷︷ ︸

∆k,n

, (14)

where Tm,n =
(
INr

+ ρmHm,nH
†
m,n

)−1
and Te,n =

(
INe

+ ρeHe,nH
†
e,n

)−1
. By the Sherman-Morrison formula,

these expressions are simplified as follows:

Tm,n+1 = Tm,n − tm,n+1t
†
m,n+1, (15a)

Te,n+1 = Te,n − te,n+1t
†
e,n+1, (15b)

in which tm,n+1 and te,n+1 hold the similar expressions as

tn+1 in Section III-A.

Define

φm,k,n+1 = φm,k,n − |ξm,k,n+1|2 , (16a)

φe,k,n+1 = φe,k,n − |ξe,j,n+1|2 , (16b)

where ξm,k,n+1 = h
†
m,ktm,n+1 and ξe,k,n+1 = h

†
e,kte,n+1.

Then, ∆k,n = log2 (1 + ρmφm,k,n)−log2 (1 + ρeφe,k,n). Cs,L

should be adjusted to a monotonically-decreasing function,

that is

C̃s,n = Cs,n −
n−1∑

a=0

Za, (17)

where Za = log2
(
1 + ρmζ

2
a

)
− log2 (1 + ρeηa), in which

ζ2a = maxk∈Ia
h
†
m,khm,k and ηa is defined as ηa =

mink∈Ia
h
†
e,k

(
INe

+ ρeHeH
†
e

)−1
he,k. The index set Ia con-

sists of all the candidate antenna set in the ath level, and

Z0 = 0. Suppose that the Kn+1th antenna has been selected

in the (n+ 1)th step, a recursive formula is derived, namely

C̃s,n+1 = C̃s,n +∆Kn+1,n − Zn. (18)

Since Te,n+1 = INe
−∑n+1

a=1 te,at
†
e,a, once all the Nt antennas

are selected, Te,Nt
is a constant by its definition i.e., Te,Nt

=

INe
−∑Ne

a=1 te,at
†
e,a =

(
INe

+ ρeHeH
†
e

)−1
, which shows that

Te,Nt
is fixed in any selection order. Therefore,

h
†
e,Kn+1

Te,n+1he,Kn+1
− h

†
e,Kn+1

Te,Ne
he,Kn+1

(a)
=h

†
Kn+1

(
Ne∑

a=n+2

tat
†
a

)

hKn+1
=

Ne∑

a=n+2

∣
∣
∣h

†
Kn+1

ta

∣
∣
∣

2

≥ 0.

(19)

The step (a) in Equ. (19) holds for that one could treat Te,Ne

as the result of any selection order which includes the first

(n+ 1) antennas index that results in Te,n+1.

According to the definition of ηa, ηa =
mink∈Ia

h
†
e,kTe,Ne

he,k, thus ηa ≤ h
†
e,Kn+1

Te,Kn+1
he,Kn+1

.

In addition, it has been proved in Equ. (12) and (13) that

h
†
m,Kn+1

Tm,Nm
hm,Kn+1

≤ ζ2a. Consequently,

∆Kn+1,n = log2

(

1 + ρmh
†
m,Kn+1

Tm,n+1hm,Kn+1

1 + ρeh
†
e,Kn+1

Te,n+1he,Kn+1

)

≤ log2
(
1 + ρmζ2a

)
− log2 (1 + ρeηa) = Zn.

(20)

Thus C̃s,n+1 ≤ C̃s,n holds by Equ. (18), which indicates that

C̃s,n+1 is monotonically decreasing. It’s clear that the branch-

and-bound for the situation with full CSIE is different from

the one with NCSIE. In Section III-A, the monotonically-

increasing function Cm,n is adjusted to a monotonically-

decreasing function C̃m,n. Nevertheless, the original function

Cs,n isn’t monotonic, which makes it even harder to do

the construction. The branch-and-bound with full CSIE is



Algorithm 2 BAB search for TAS with CSIE.

1: Tm = INr
, Te = INe

, B = −∞, C̃s = 0, n = 1, K0 = 0,

s = 0L, K = {1, 2, · · · , Nt}, L = {1, 2, · · · , L}
2: φm,k = h

†
m,khm,k, φe,k = h

†
e,khe,k, ∀k ∈ K

3: ζa = maxk∈Ia
φm,k, ∀a ∈ L

4: ηa = mink∈Ia
h
†
e,k

(
INe

+ ρeHeH
†
e

)−1
he,k, ∀a ∈ L

5: Za = log2
(
1 + ρmζ

2
a

)
− log2 (1 + ρeηa) , ∀a ∈ L

6: ∆k = log2 (1 + ρmφm,k)− log2 (1 + ρeφe,k) , ∀k ∈ K,

7: if n = L then

8: ck := C̃s +∆k − ZL, ∀k ∈ IL,K

9: if maxm∈IL,K
cm < B then

10: [s]L = argmaxm∈IL,K
cm

11: B := maxm∈IL,K
cm, and ŝ := s

12: end if

13: else

14: ck := C̃s +∆k − Zn, ∀k ∈ In,K
15: sort ck, ∀k ∈ In,K in a descend order to get an ordered

index vector k

16: Tm,tmp:=Tm, φm,tmp,k:=φm,k, ∀k ∈ K
Te,tmp:=Te, φe,tmp,k:=φe,k, ∀k ∈ K

17: for i = 1 : |In,K | do

18: K = [k]i
19: if cK > B then

20: Q := {K + 1,K + 2, · · · , Nt}
21: [s]n+1 = K

22: tm:=
Tmhm,K√

(ρm)−1+φm,tmp,K

Tm:=Tm,tmp − tmt
†
m

te:=
Tehe,K√

(ρe)
−1+φe,tmp,K

Te:=Te,tmp − tet
†
e

23: C̃s,n:=cK
24: ξm,a:=h†

m,atm, ξe,a:=h†
e,ate, ∀a ∈ Q

25: φm,a:=φm,tmp,a − |ξm,a|2 , ∀a ∈ Q
φe,a:=φe,tmp,a − |ξe,a|2 , ∀a ∈ Q

26: ∆a:= log2

(
1+ρmφm,a

1+ρeφe,a

)

, ∀a ∈ Q
27: n := n+ 1, jump to line 7

28: else

29: break the loop

30: end if

31: end for

32: end if

33: return the final set ŝ

summarized in Alg. 2, where In,k is the subnode index set of

the jth node in the nth level. Similar as Alg. 1, the complexity

of Alg. 2 is O (NnodesNt max (Nr, Ne)) where Nnodes denotes

the total number of the visited nodes,

IV. SIMULATION RESULTS

This part gives the simulation results followed by the com-

putation complexity analysis of all the proposed algorithms.

Fig. 2 presents the ergodic secrecy capacity versus ρm when

CSIE is unavailable at the transmitter. As is shown in Fig. 2,

BAB based search has superior performance in all conditions
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Fig. 2. Ergodic secrecy capacity verus ρ
m

using BAB-based and norm-based
method with NCSIE, Nr = 4, Ne = 8, L = 4 and ρ

e
= 5dB.
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Fig. 3. Ergodic secrecy capacity verus ρ
m

using BAB-based and norm-based
method with CSIE, Nr = 4, Ne = 8, L = 4 and ρ

e
= 5dB.

compared with the norm-based search. Furthermore, Fig. 3

shows the ergodic secrecy capacity for BAB method and norm-

based method when CSIE is available. Also, it can be seen

from the figure that BAB still outperforms the norm based

method. Finally, to verify that the branch-and-bound search

has the same optimal performance as exhaustive search, Fig.

4 compares the ergodic secrecy capacity of BAB and ES in

both NCSIE and CSIE cases. It is apparent from Fig. 4 that

the BAB search can find the optimal antenna index subset to

maximize the secrecy capacity.

Fig. 5 provides the complexity of the BAB, norm-based

and ES method. As stated before, they can all be treated as

tree search and the complexity of BAB is related with the

number of visited nodes. Therefore, it makes sense to use the

number of visited nodes asking for updating operations during

the tree search to measure the complexity of these algorithms

[17]. As shown in Fig. 5, the norm-based method has the

lowest complexity and the complexity of ES is much higher

than that of the BAB. Based on above simulation results, the

advantages of BAB are apparent for its optimality and low-

complexity. To examine the robustness of the BAB method,

Fig. 6 shows the complexity versus ρm and ρe. From this
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Fig. 4. Ergodic secrecy capacity verus ρ
m

using BAB and ES, Nr = 4, Ne =

4 and ρ
e
= 1dB.
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Fig. 6. Complexity of BAB versus normalized SNR ρ
m

when Nr = 4,
Ne = 4, L = 4 and Nt = 64.

figure, it is clear that there are scarcely no great fluctuation

in complexity for different ρm. Additionally, the complexity

will increase as ρe rises up, which indicates that the BAB

algorithm is more efficient under more secure transmission

condition. Nevertheless, the fluctuation due to ρe is not very

large. Taken together, the proposed BAB method is robust and

practical, especially for the scenario with NCSIE.

V. CONCLUSION

This paper studies transmit antenna selection in massive MI-

MOME channels. An optimal algorithm based on branch-and

bound search is proposed and discussed in the situations when

the CSIE is available or unavailable. Simulation shows that

branch-and-bound search can guarantee optimal performance

with much lower complexity compared with exhaustive search.

The proposed algorithm could serve as a benchmark in the

future work on TAS algorithm design in massive MIMOME

channels.
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