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Abstract—This paper presents a linear complexity iterative
rake detector for the recently proposed orthogonal time fre-
quency space (OTFS) modulation scheme. The basic idea is
to extract and combine the received multipath components
of the transmitted symbols in the delay-Doppler grid using
linear diversity combining schemes like maximal ratio combining
(MRC), equal gain combining and selection combining to improve
the SNR of the combined signal. We reformulate the OTFS input-
output relation in the vector form by placing some null symbols
in the delay-Doppler grid thereby exploiting the block circulant
property of the channel matrix. Using the new input-output
relation we propose a low complexity iterative detector based
on the MRC scheme. The bit error rate (BER) performance of
the proposed detector will be compared with the state of the
art message passing detector and orthogonal frequency division
multiplexing (OFDM) scheme employing a single tap minimum
mean square error (MMSE) equalizer. We also show that the
frame error rate (FER) performance of the MRC detector can
be improved by employing error correcting codes operating in
the form of a turbo decision feedback equalizer (DFE).

Index Terms—OTFS, Detector, Decoder, Rake, Maximal Ratio
Combining, Delay–Doppler channel, turbo, DFE.

I. INTRODUCTION

Orthogonal time frequency and space (OTFS) is a new

two dimensional (2D) modulation technique that transforms

information symbols in the delay-Doppler coordinate system

to the familiar time-frequency domain [1] by spreading all

the information carrying symbols (e.g., QAM) over both time

and frequency to achieve maximum diversity. As a result, the

time-frequency selective channel is converted into an invariant,

separable and orthogonal interaction, where all received QAM

symbols experience the same localized impairment and all the

delay-Doppler diversity branches are coherently combined.

OTFS can be imagined as a 2-D code division multiple

access (CDMA) scheme where the information symbols are

spread in both time and frequency as compared to either time

or frequency as in the traditional CDMA systems [1]. A simple

rake receiver in the case of direct sequence CDMA scheme in

a multipath fading channel works by combining the delayed

components or echoes of the transmitted symbols extracted

using correlators matched to the respective orthogonal spread

sequences (orthogonal time-frequency basis functions in the

case of OTFS). Similarly, in the case of OTFS, the received

delay and Doppler shifted components of the transmitted

symbols in the OTFS grid can be extracted and combined using

linear diversity combining techniques so as to maximize the

SNR of the accumulated signal.

Diversity combining techniques are well studied in the

literature starting from Brennan’s paper on linear diversity

combining [2]. Rake receivers for time domain combining

using a variety of combining schemes like maximum ratio

combining (MRC), equal gain combining (EGC) and selection

combining (SC) are discussed in [3], [4]. Even though MRC

is shown to work best when the branches are uncorrelated,

it is still shown to be optimal in the case of both correlated

and uncorrelated branches as well as unequal noise and inter-

ference power in these branches [5], [6]. Moreover, iterative

rake combining schemes and variants are shown to combat

inter-symbol interference better and are well investigated in

the literature for single and multi-carrier code division multiple

access (CDMA) systems [7], [8].

In this paper, we propose an iterative rake receiver for

OTFS using the maximal ratio combining scheme. We start

from the matrix input-output relation following [9] and then

group the delay-Doppler grid symbols into vectors according

to their delay index and reformulate the input-output relation

between the transmitted and received frames in terms of

these transmitted and received vectors. By placing some null

symbols in specific delay-Doppler grid locations we arrive at a

reduced input-output relation, which is of the form that allows

the use of the maximal ratio combining scheme to design

a low complexity detector for OTFS. The number of null

symbols, which can also be used as pilot symbols, needed for

the proposed detection scheme is less than what is required for

accurate channel estimation [10] and so there is no additional

utilization of resource or power for using these null symbols

for detection.

The rest of the paper is organized as follows. In Section

II, we discuss the system model and derive the input-output

relation in the vector form. In Section III, the proposed MRC

based iterative rake detector and turbo-rake detector will be

described. The simulation results are provided in Section IV

along with some discussion on the complexity of the proposed

algorithm in Section V. Section VI contains our concluding

remarks.

II. OTFS SYSTEM MODEL

A. Notations

The following notations will be followed in this paper; a,

a, A represents scalar, vector and matrix respectively. a(n)
represents the nth element of a and a(m,n) represents the

(m,n)th element of A; AH , A∗ and An represents the
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Hermitian transpose, complex conjugate and nth power of A.

The set of M ×N dimensional matrices with complex entries

in denoted by CN×M . Let ⊛ represent circular convolution, ◦
the Hadamard product (the element wise multiplication) and

⊘ the Hadamard division and |S| the cardinality of the set S.

Let FN and FH
N be the N point DFT and IDFT matrices and

IM the M ×M identity matrix. Let 0N and 1N denote a N
length column vector of zeros and ones respectively.

B. Transmitter and Receiver frames

The transmitter and receiver steps follows [9], [11]. Let

X and Y be the transmitted and received two-dimensional

symbols in the delay-Doppler grid. Let xm and ym be column

vectors containing the symbols in the mth row of X and Y

respectively: xm = [X(m, 0),X(m, 1), · · · ,X(m,N − 1)]T

and ym = [Y(m, 0),Y(m, 1), · · · ,Y(m,N − 1)]T , where m
and n denotes the delay and Doppler indices respectively,

in the two-dimensional grid. We will be using this vector

representation throughout the paper.

C. Channel

Consider a channel with P propagation paths, where hi,

li,and ki are the complex path gain, delay and Doppler shift

index associated with the ith path. The delay and Doppler-

shift for the ith path is given by τi =
li

M∆f
, νi =

ki

NT
. The

total frame duration and bandwidth of the transmitted OTFS

signal frame are Tf = NT and B = M∆f , respectively. We

consider the case where T∆f = 1, i.e., the OTFS signal is

critically sampled for any pulse shaping waveform. We assume

that the maximum delay of the channel is τmax = lmaxT/M
and that the channel is under-spread, i.e., all li ≤ lmax < M
and −N/2 < ki < N/2. Since the number of channel

coefficients, representing different scatterers, in the delay-

Doppler domain is typically limited the channel response has

a sparse representation [1], [9]:

h(τ, ν) =

P∑

i=1

hiδ(τ − τi)δ(ν − νi) (1)

D. Input-Output Relation

Following [9], the input-output relation for the ideal pulse

shaping waveform case can be written as a two dimensional

circular convolution between X and the channel, i.e.,

Y(m,n) =

P∑

i=1

hiX([m− li]M , [n− ki]N ) + w(m,n) (2)

where w(m,n) is iid AWGN noise with variance σ2
w. In

practical cases, the pulse shaping waveforms are not ideal, and

the imperfect bi-orthogonality introduces extra phase shifts

αi(m,n) to each of the channel coefficients hi. We assume

a rectangular transmit and receive pulse shaping waveform as

described in [9], [11]. Following [9], the input-output relation

for the rectangular pulse shaping waveform case (omitting

Fig. 1. OTFS full channel matrix (H) after adding null symbols

the AWGN noise vector for brevity) can be written as a two

dimensional convolution in the form.

Y(m,n) =

P∑

i=1

hiαi(m,n)X([m− li]M , [n− ki]N ) (3)

where z = e
j2π

MN and

αi(m,n) =







e−j2π n
N zki([m−li]M), if m < li

zki([m−li]M ), if m ≥ li
0, otherwise.

(4)

We note that in this case we have a circular convolution of X

with a varying channel due to the phase terms in αi(m,n).
First, following the notations described in the above sub-

section B, we can rewrite (3) in vector form by replacing

Y(m,n) = ym(n) and X(m− l, [n−k]N ) = xm−l([n−k]N )
as

ym(n) =
P∑

i=1

hiαi(m,n)x[m−li]M ([n− ki]N ) (5)

Equation (4) gives two cases for the phase shifts introduced

by the rectangular pulse shaping waveform. The first case, for

phase shifts whit m < li, is dependent on both m and n,

whereas the second equation for m ≥ li depends only on m.

We may ignore the first case in (4), which has a dependency

on n (Doppler index), by placing null symbol vectors xm in

the last lmax rows of X such that, for all li ≤ lmax,

hiαi(m,n)x[m−li]M ([n− ki]N ) = 0, if m < li (6)

Hence, we can set

xm(n) = 0, if m ≥ M − lmax and n = 0, . . .N − 1 (7)

Fig. 1 shows the NM ×NM vectorized channel matrix H

for OTFS for N = M = 8 and lmax = 3. As shown in Fig.

1, the transmitted and received symbol vectors, xm and ym

respectively, are stacked in a column according to the respec-

tive delay indices (m). At the transmitter, the coloured vectors

(x0,x1,x2,x3,x4) denote valid symbol vectors and the non-

coloured vectors (x5,x6,x7) denote null symbol vectors (0N ).



The reduced phase correction equations for this null and

valid data symbol placement now becomes

α′
i(m) =

{
zki(m−li), if m ≥ li
0, otherwise.

(8)

For m = 0, · · · ,M−1 and k = 0, · · · , N−1, let us define the

vectors φm ∈ CN×1, the phase correction vector containing

the phases α′
i(m) introduced by the non ideal pulse shaping

waveform (rectangular in this case), with entries:

φm(k) =

{
zkm, if 0 ≤ k ≤ N/2− 1

z−(N−k)m, if N/2 ≤ k ≤ N − 1
(9)

Let νl ∈ CN×1 be the channel Doppler spread vector at the

l-th delay tap for ideal pulse shaping waveform, with entries:

νl(k) =

{
hi, if l = li and k = [ki]N
0, otherwise.

(10)

We can now rewrite (5), for m < M − lmax, by replacing

the channel coefficients hi and the reduced phase corrections

α′
i(m) with the channel Doppler spread vectors for ideal

pulses νl and phase correction vector φm introduced by the

rectangular pulses,

ym(n) =
∑

l∈L

N−1∑

k=0

νl(k)φm−l(k)xm−l([n− k]N ) (11)

where L = {li} is the set of unique delay tap indices among

the P received paths in the delay-Doppler domain.

Now this can be written as the sum of one-dimensional cir-

cular convolutions between the vectors νm,l, xm−l ∈ CN×1,

where νm,l = [νm,l(0),νm,l(1), · · · ,νm,l(N − 1)]

ym =
∑

l∈L

νm,l ⊛ xm−l (12)

where

νm,l(k) =

{
νl(k)φm−l(k), if l ∈ L,m ≥ l
0, otherwise.

(13)

Referring to the vectorized form shown in Fig. 1, we convert

the circular convolution between two vectors into the product

of a circulant matrix and a vector by defining Km,l ∈ C
N×N

to be a banded circulant matrix

Km,l = circ[νm,l(0), · · · ,νm,li(N − 1)]

=








νm,l(0) νm,l(N − 1) · · · νm,l(1)
νm,l(1) νm,l(0) · · · νm,l(2)

...
. . .

. . .
...

νm,l(N − 1) νm,l(N − 2) · · · νm,l(0)








.

From (10) we note that the band width of each submatrix

Km,l of H is equal to the maximum Doppler spread kmax <
N and the full channel matrix H has a band width equal to

N(lmax + 1). We can then write (12) as

ym =
∑

l∈L

Km,l · xm−l (14)

Note that Km,l can be considered as the time-varying Doppler

spread matrix at the delay tap with index l. Now (12) and

(14) gives us a very simple equation relating the transmitted

and received symbol vectors that we defined at the start of

this section. This is a much more compact form, compared to

the input-output relation we began with. The vector relations

shows how the symbol vector transmitted at delay index m− l
is impaired by the channel Doppler spread vector νm,l (or

matrix Km,l) at the delay tap with index l.

III. LOW COMPLEXITY ITERATIVE RAKE DETECTOR

We can think of the proposed MRC decoder as the maximal

ratio combining of the channel impaired signal components

received at L = |L| ≤ P different delay branches in the

delay-Doppler grid analogous to the CDMA rake receiver.

The SNR of the received signal components of a transmitted

symbol vector xm in each of these branches are unequal and

depends on the channel response. The optimal MRC weights

in this case are discussed in [6]. In our proposed detector, we

iteratively cancel inter-symbol interference in the branches we

have selected for combining, so as to maximize the signal to

noise ratio at the output of the MRC.

We have the input output relation between the transmitted

and received symbol vectors xm and ym given by

ym =
∑

l∈L

Km,l · xm−l +wm (15)

where wm is iid AWGN noise with variance σ2
n. Due to the

inter-symbol interference caused by delay spread (lmax∆τ ),

all vectors xm have a signal component in L received symbol

vectors ym+l where l ∈ L (15). Let bl
m ∈ CN×1 be the

channel impaired signal component of xm in the received

vector at delay index m + l (ym+l) after removing the

interference of the other transmitted symbol vectors xk 6=m.

Assuming we have the estimates of symbol vectors xm from

previous iterations, we can then write bl
m for l ∈ L as

bl
m = ym+l −

∑

l′∈L,l′ 6=l

Km+l,l′ · x̂m+l−l′ (16)

Then from (15) and (16) for l ∈ L, we have L equations for

the symbol vector estimates x̂
(l)
m given as

bl
m = Km+l,l · x̂m +wm+l (17)

In our proposed scheme, instead of estimating the transmitted

symbol vector x̂m separately from each of the L equations in

(17), we maximal ratio combine the estimates bl
m (20) and

then decode vectors x̂m symbol-by-symbol by using the ML

criterion as given below in (21). Let us define

Rm =
∑

l∈L

KH
m+l,l ·Km+l,l (18)

gm =
∑

l∈L

KH
m+l,l · b

l
m (19)

Then the output of the maximal ratio combiner, cm ∈ CN×1,

is given by

cm = Rm

−1 · gm (20)



x̂m(n) = arg min
aj∈Q

|aj − cm(n)| . (21)

where aj is an element from the set of transmitted QAM

alphabet Q with j = 1, · · · , |Q| and n = 0, · · · , N − 1.

Once we update the estimate x̂m, we increment m and

repeat the same to estimate all M ′ = M − lmax information

symbol vectors x̂m using the updated estimates of the previous

decoded symbol vectors in the form of a decision feedback

equalizer (DFE).

Algorithm 1: MRC Rake Detector

for m = 0 : M ′ − 1 do

Rm =
∑

l∈L KH
m+l,lKm+l,l

end

for iteration=1:max do
gm = 0N

for m = 0 : M ′ − 1 do

for l ∈ L do

bl
m = (ym+l −

∑

l′ 6=l Km+l,l′ · x̂m+l−l′ )

gm = gm +KH
m+l,l · b

l
m

end

cm = R−1
m · gm

x̂m(n) = argminaj∈Q |aj − cm(n)|

end

end

It can be seen from (18) that Rm is the sum of product

of circulant matrices Km,l and hence a circulant matrix,

which can be computed in the Fourier domain in M ′NL
computations. In (16), for each symbol vector xm, we need

to compute L vectors bl
m. This operation requires L(L − 1)

products between circulant matrices Km,l and symbol vectors

xm−l. We can take advantage of the redundant summation

operations to reduce the complexity of (16). By defining

ŷm+l =
∑

l′∈L

Km+l,l′ · x̂m+l−l′ (22)

we can rewrite (16) as

bl
m = ym+l − ŷm+l +Km+l,l · x̂m (23)

The L vectors ŷm+l in (22) requires computation of L2

matrix-vector products. Let x
(i)
m be the estimate of xm com-

puted in the ith iteration. Then in the i+1th iteration for every

m = 0, · · · ,M − lmax − 1 and l ∈ L, instead of computing

the L vectors ŷm+l again with the latest estimates (x
(i+1)
m )

using (22), we can simply update the vectors ŷm+l and bl
m

as follows

ŷm+l = ŷm+l +Km+l,l · (x̂
(i+1)
m − x̂(i)

m ) (24)

bl
m = ym+l − ŷm+l +Km+l,l · x̂

(i+1)
m (25)

Each of (24) and (25) for all l ∈ L requires L matrix-

vector product computations per symbol vector xm. If we

compute ŷm+l and store it, then only (24) and (25) needs to

be calculated in every iteration. The overall number of matrix-

vector products for estimating vectors bl
m for each m is then

reduced from L(L−1) in (16) to 2L in (24), (25). The vectors

gm and cm then together requires L+1 matrix-vector products

per symbol vector xm per iteration.

The matrix-vector products in Algorithm 1 are products

between circulant matrices Km,l ∈ CN×N and column vec-

tors xm ∈ CN×1 which can be converted to element-wise

product of vectors in the Fourier domain with a complexity of

N complex multiplications. Overall complexity per iteration

for calculating bl
m, gm and cm for all symbol vectors is

then M ′(3L + 1)N complex multiplication. The redundant

summations and FFT computations can be avoided by storing

the Fourier transform of the first column of all M ′L circulant

matrices Km,l, M
′ vectors xm and M ′L vectors ŷm+l in (22),

and then operating in the Fourier domain.

A. Low Complexity Initial Estimate

In Algorithm 1, we initially assume that all the alphabets

of the QAM modulation set Q are equally likely and hence

we initialize x̂m = 0N , for all m. Even though the MRC

detector complexity per iteration is of the order O(NML), the

overall complexity scales linearly with the number of detector

iterations needed to converge.

However, a low complexity initial estimate of the OTFS

symbols may reduce the required number of MRC detector

iterations and hence the overall complexity. A single tap

equalizer assuming ideal pulse shaping waveform in the time-

frequency domain can provide a low complexity rough initial

estimate of the OTFS symbols.

Define Hdd(m,n) ∈ CM×N , the delay-Doppler domain

channel impulse response matrix for the ideal pulse shaping

waveform case,

Hdd(m,n) =

{
hi, if m = li, n = [ki]N
0, otherwise

The corresponding time-frequency channel response for the

ideal pulse shaping waveform is obtained by an ISFFT oper-

ation on the delay-Doppler channel as

Htf = FMHddF
H
N (26)

Similarly the received time-frequency samples can be obtained

by the ISFFT operation on the received delay-Doppler domain

samples as

Ytf = FMYFH
N (27)

Since in the ideal pulse shaping waveform case, circular con-

volution of the channel and transmitted symbols in the delay-

Doppler domain transforms to element-wise product in the

time-frequency domain, we estimate the transmitted samples

in the time-frequency domain by a single tap minimum mean

square error (MMSE) equalizer

X̂tf = (H∗
t,f ◦Yt,f )⊘(|Ht,f |

2 + σ2
w) (28)

where ⊘ represents the Hadamard division (element wise

division) and superscript ∗ denotes the complex conjugate.



Fig. 2. Turbo-MRC Operation

The delay-Doppler domain estimate the OTFS symbols can

then be obtained by the SFFT operation on the time-frequency

domain estimates as

X̂ = FH
MX̂tfFN (29)

Then the initial estimate of the symbol vectors are simply x̂
(0)
m

= [X̂(m, 0), X̂(m, 1) . . . X̂(m,N − 1)]T .

B. Turbo Rake Detector

The frame error rate (FER) performance of the detector

can be improved by employing an error control code. The

encoded bits are random interleaved in the frame so as to

extract maximum time and frequency diversity.

The turbo decoder principle as shown in Fig. 2 can be used

to further improve the FER performance. The detector output

bit log likelihood ratios (LLR) after random de-interleaving

is fed to the LDPC decoder. The output bit LLRs from the

LDPC decoder after interleaving is then fed back to the MRC

detector and the process repeats. Inside the MRC detector a

hard decision is taken on the input LLRs from the LDPC

decoder to get the estimates of xm. Overall, one turbo iteration

involves one iteration of MRC detector, de-interleaver, LDPC

decoder and interleaver.

IV. SIMULATION RESULTS AND DISCUSSION

For simulations we use an OTFS frame with N = 128
and M = 512 and sub-carrier spacing of 15 KHz. The

maximum delay spread (in terms of integer taps) is taken

to be 32 (lmax = 31) which is approximately 4 µs. The

channel delay model is generated according to the standard

Extended Vehicular A (EVA) model (speed = 120 km/hr) with

the Doppler shift for the ith path generated from a uniform

distribution U(0, νmax), where νmax is the maximum Doppler

shift. The EVA channel power delay profile is given by [0, -

1.5, -1.4, -3.6, -0.6, -9.1, -7.0, -12.0, -16.9] dB with excess

tap delays [0, 30, 150, 310, 370, 710, 1090, 1730, 2510] ns

[15]. We consider one Doppler shifted path per delay tap with

L = 9, lmax = 32 and kmax = 16 and in the simulations.

Fig. 3 shows the BER plot for the MRC detector for 4-QAM

modulated OTFS waveform with 10 iterations comparing it

with the state of the art message passing algorithm (MPA)
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Fig. 3. Uncoded 4-QAM BER Plot : MRC vs MPA vs MMSE-OFDM
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Fig. 4. Uncoded 16-QAM BER Plot : MRC vs MPA vs MMSE-OFDM

described in [12], [13] (labelled as OTFS-MPA in Fig. 3

and 4) with 50 maximum iterations (the message passing

algorithm has a stopping criteria based on convergence of

the estimated symbol probabilities) and the OFDM single tap

MMSE equalizer. In Fig. 3, we show the performance of the

MRC detector with the initial estimate obtained using a single-

tap MMSE equalizer in the time-frequency domain. As we can

see, there is a 1 dB gain at a BER of 10−3 with just 2 iterations

of the MRC detector with the initial estimate (MRC-Init-TF

Est).

Fig. 4 shows the BER plot for the MRC detector for 16-

QAM modulation with 10 iterations. Using the initial estimate

from the single tap equalizer in the time-frequency domain,

the number of iterations can be reduced. Only 5 iterations are

needed to match the BER performance of plain MRC detector

with 10 iterations, which approximately halves the overall

complexity. The 16-QAM BER performance is compared with

the OFDM scheme, and we see that the initial time-frequency

estimate itself (curve corresponding to MRC-Init TF Est for

0 iterations in the plot) performs better than the single tap

OFDM scheme. The error performance is further improved by

the MRC detector iterations.

Fig. 5 shows the frame error performance of a turbo and

plain coded MRC detector with the half rate LDPC codeword

of length 4096 bits. The cases with and without the turbo



iterations is plotted. Please note that coded and turbo MRC

detector is the same for 1 iteration. It can be observed that

just 1 iteration of plain coded MRC detector (coded-init-

MRC) is required to achieve better error performance than the

bit interleaved coded MMSE OFDM. Moreover, we can gain

further by turbo operation as explained in the previous section.

It can be seen that with 2 iterations of turbo MRC detector

(turbo-init-MRC) we can achieve the same performance as

a plain coded MRC detector with 5 iterations. The overall

detector complexity in the form of required iterations is

significantly reduced by using the initial estimates from the

time-frequency single tap equalizer along with turbo operation.

V. DETECTOR COMPLEXITY

The actual overall complexity (in terms of complex multi-

plications), including initial computations and Fourier domain

transformations as discussed at the end of Section III, is

(1)
︷ ︸︸ ︷

NM ′S(3L+ 1)+

(2)
︷ ︸︸ ︷

NM ′L2

(3)
︷ ︸︸ ︷

NM ′(2L+ 1) log2(N)+

(4)
︷ ︸︸ ︷

NM [3 + 3 log2(NM)]

where S is the number of MRC detector iterations. The

term (1) includes the iterative computations inside detector

(calculating bl
m, gm and cm) in Fourier domain and term (2)

is for calculating the initial M ′L vectors ŷm in (22) and M ′

vectors Rm. The term (3) includes computing the FFT of the

first column of the M ′L circulant matrices Km,l,
1 the M ′L

vectors ŷm and M ′ vectors x̂m and term (4) is for computing

the low complexity initial time-frequency estimate x̂
(0)
m (28).

The linear complexity detectors currently available in the

literature for OTFS [12], [14] with non ideal pulse shaping

waveform (rectangular) are still not of lower enough complex-

ity for practical applications. The complexity of MPA detector

scales with alphabet size |Q| and has a complexity of the order

of O(SNMP |Q|) [12]. The storage requirement for the MRC

detector is in the order of O(NML), whereas for MPA it is

O(NMP |Q|) [12]. The detector proposed in [14] even though

is a non iterative detector has a computational complexity

of O(MNkmaxP
2) where kmax is the maximum Doppler

spread, whereas our proposed detector has a complexity of

O(SMNL) where L ≤ P .2

VI. CONCLUSION

We reformulated the OTFS input-output relation and pro-

posed a linear complexity iterative rake detector algorithm

for OTFS modulation based on the maximal ratio combining

scheme. We show that the MRC detector can achieve similar

BER performance as compared to MPA detector but with

lower complexity and storage requirements. The required

number of iterations and hence complexity can be reduced

by employing a low complexity single tap MMSE equalizer

1Operations in (3) are part of the channel estimation process and can be
simplified by using the time domain received pilot samples.

2By selecting only the dominant paths, L can be reduced.
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Fig. 5. Coded 16-QAM FER Plot: MRC vs BIC-OFDM-MMSE

in the time-frequency domain to get an initial estimate of the

OTFS symbols. The MRC detector performance can be further

improved with the aid of error control codes and through turbo

iterations.
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