
HAL Id: hal-02572018
https://hal.science/hal-02572018

Submitted on 13 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Root Cause Analysis of Noisy Neighbors in a
Virtualized Infrastructure

Hedi Bouattour, Yosra Benslimen, Marouane Mechteri, Hanane Biallach

To cite this version:
Hedi Bouattour, Yosra Benslimen, Marouane Mechteri, Hanane Biallach. Root Cause Analysis of
Noisy Neighbors in a Virtualized Infrastructure. WCNC 2020, May 2020, SEOUL, South Korea.
�hal-02572018�

https://hal.science/hal-02572018
https://hal.archives-ouvertes.fr

Root Cause Analysis of Noisy Neighbors in a
Virtualized Infrastructure

Hedi Bouattour
Orange Labs

Chatillon, France
hedibouattour2010@gmail.com

Yosra Ben Slimen
Orange Labs

Chatillon, France
yosra1.benslimen@orange.com

Marouane Mechteri
Orange Labs

Chatillon, France
mechtri.marwen@gmail.com

Hanane Biallach
Orange Labs

Chatillon, France
hanane.biallach@orange.com

Abstract—This paper proposes a model to identify the noise
source in a virtualized infrastructure. This phenomenon appears
when network functions running under virtual machines that are
deployed on the same physical server compete for physical re-
sources. First, an anomaly detection model is proposed to identify
the machines that are in an abnormal state in the infrastructure
by performing an unsupervised learning. An investigation of the
root cause is later achieved by searching how anomalies are
propagated in the system. To do this, a supervised learning of the
anomaly propagation paths is proposed. A propagation graph is
automatically created with a score assigned to its components.
With a testbed created using Openstack, an experimentation
study with real data is held giving promising results.

Index Terms—Virtualization, mobile networks, anomaly detec-
tion, root cause analysis, noisy neighbor, machine learning

I. INTRODUCTION

5G subscriptions are predicted to reach 1.9 billion by 2025
where 35% of traffic will be carried by 5G networks [1]. This
means that 65% of the global population are predicted to be
covered by the technology. In order to have an increased speed,
performance, scalability, and flexible service deployment, 5G
technology relies on Network Function Virtualization (NFV,
[2]). This latter is known as the act of virtualizing the
physical network functions in order to provide dynamic/on-
demand communication services. NFV is the deployment of
one or more virtual machines running different software and
processes, on top of standard high-volume servers, switches
and storage devices, or even cloud computing infrastructure
as illustrated in Fig. 1.

Fig. 1. Virtual machines.

The advantage of NFV is to deliver high-performance
networks with greater scalability, elasticity, and adaptability
at reduced costs compared to networks built from traditional
equipment. However, this technology may arise new chal-
lenges such as the extreme usage of shared resources which

may result in a noisy neighbor situation. This phenomenon
occurs when applications or virtual machines running on
the same hypervisor compete for resources, resulting in a
degradation of performance [3]–[6].

In literature, some research works propose preventive ap-
proaches that aim to mitigate the noisy neighbors’ effects on
shared processor resources such as in [5]. Whereas several
research works aim at detecting the noisy neighbors at real
time. Some works rely on a static analysis of traffic patterns
in order to propose thresholds-based methods such as in [7]
while other works propose machine learning solutions. In
[3], the noisy neighbors are detected with support vector
machines and random forests [8] with an accuracy that is
higher than 90%. Authors in [4] propose exploiting time-series
data and applying a convolutional neural network [8] for noisy
neighbors detection.

Once the noisy neighbor detected, one possible solution is
to migrate the affected machines to other servers except that
the target server may suffer itself from degraded performance
as well. Hence, the detection phase alone is not sufficient since
the source of the problem remains unknown, especially when
it comes to very high dimensions. Performing a root cause
analysis (RCA) is of a paramount importance.

RCA is widely used in virtual infrastructures for several
types of anomalies by using Bayesian networks [9] or prop-
agation graphs that describe the dependencies in the system
[10]–[12]. However, it is not yet well-investigated in a noisy
neighbor situation.

Hence, the objective of this paper is to propose a solution
in order to identify the noise source that disrupts and degrades
the performance of virtual machines (VMs) or virtual network
functions (VNFs, [2]) sharing the same virtualized infrastruc-
ture. The noise source can be either another VM or VNF. To
achieve this purpose, we propose, in a first stage, an anomaly
detection model that performs a clustering of normal behaviors
of the machines. Any behaviour that does not belong to the
normal space is considered as an abnormality in the system. In
order to choose the suitable number of clusters, we introduce
a parameter that allows selecting the best number of groups
during clustering. In a second stage, RCA is proposed by
creating a graph that describes the different dependencies in
the system and the possible propagation paths of anomalies
between the machines. Later, a score is defined to pinpoint

the machine that is responsible for the noise phenomenon. In
order to evaluate our models, an experimentation study is held
over a testbed that we created by using VMs under Openstack
[13]. Real metrics from the different VMs are extracted using
Prometheus [14].

This paper is organized as follows: Section II describes the
related work. Section III presents the proposed noisy neighbor
detection model as well as the RCA model. Section IV details
the testbed and the real data experiments. Finally, Section V
concludes the paper and it introduces some future works.

II. RELATED WORK

In literature, RCA has been studied for different types of
anomalies but, up to our knowledge, it is not yet studied for
a noisy neighbor situation. Several approaches use Bayesian
Networks for the RCA such as in [9]. The model proposed in
[11] studies anomaly alarms in general. It proposes an auto-
matic RCA system that selects a shortlist of the most probable
fault propagation sequences in component-based systems using
a transaction call graph. The root cause is determined using
frequent pattern mining which identifies the component that
appears the most frequently in the graph and may be invoked
in every alarm. Authors in [12] suggest a solution that detects
more general network failures using machine learning and
summarization techniques by means of an influence matrix that
describes the causal relationship between different alarms. In
their experiment, two use cases are studied, a cyberattack and
a traffic migration. J. Lin et Al. in [10] present an automated
anomaly detection method and RCA in virtualized cloud in-
frastructures, by investigating a DoS attack situation. Anomaly
detection is performed by using an unsupervised learning using
K-means algorithm. A component anomaly detection attached
to each entity determines the clusters of normal behavior of
the component and it pinpoints the locations of anomalies.
Regarding the RCA, a set of anomaly propagation graphs is
constructed. Every graph has a source component, and the rest
of the entities are its nodes. The graph that has the best score in
terms of reaching all of the components is the one that has the
root cause. Their solution provides a well-defined architecture.
However, the choice of the number of clusters as well as the
determination of the anomalies after the clustering phase is not
well-defined. Besides, in order to identify propagation paths,
they empirically observe the usage of the different machines
and they deduce the anomaly propagation paths with regard to
a set of a predefined rules. This technique is time-consuming,
complicated on a large scale and it needs human intervention.

III. ANOMALY DETECTION AND ROOT CAUSE ANALYSIS
FOR NOISY NEIGHBORS

Given that several virtual machines are running over a
same hypervisor, the objective of this section is to propose a
solution for the detection of anomalous machines and for the
pinpointing of the root cause of noisy neighbors. As described
in Fig. 2, our solution is composed of four components (A-B-
C-D). The first component (A) aims to describe the machines’
behavior by collecting data using a node exporter agent in

Fig. 2. Architecture of the proposed solution

every machine. The collected counters are later sent to the
second component (B) which is a monitoring system. This
latter extracts metrics that describe the machine and it stores
its historical usage in a dataset. Since in a noisy neighbor
phenomenon, we may perceive a performance degradation of
several machines, an anomaly detection module (C) is needed
to run in every machine. Finally, we pinpoint the source of the
noise by performing a RCA (D). This last component uses a
classification in order to create a propagation graph that allows
to localize the source of the noise.

A. K-Means for Noisy Neighbor: KM2N

Let x be the dataset collected from one machine
and composed of N instances xi that are collected
periodically and F = 3 features belonging to
{CPU usage,Network in,Network out} so that
xi = {xi1, .., xij} where 1 ≤ i ≤ N and 1 ≤ j ≤ F .
CPU usage is a percentage of the time during it the
CPU was busy. Net in is the amount of data arriving
to the machine but originating elsewhere and Net out is
the amount of data originating at the machine to arrive
elsewhere. Although memory usage could also be used, in
our case, the memory is not shared so the machines do not
compete over it. The collected data correspond to the normal
usage and they are unlabeled. Thus, we use an unsupervised
learning to explore the different patterns in the data. K-means
algorithm [8] is a popular unsupervised technique that aims
to partition the observations into K clusters. Although the
algorithm proved its efficiency in different real applications,
its drawback is the need to know a priori the number of
clusters K. A big number of clusters may cause an overfitting
and a high time execution and a small number may also
mislead the training since the patterns risk to be combined.
Hence, in order to select the model with the most appropriate
number of clusters, we introduce a score S(K) that allows
making a trade-off between training performance, time
execution and overfitting.
Given that ξk is the position of the centroid of the cluster

k and x
(k)
i is the position of a data point i assigned to that

cluster k, S(K) =
∑K

k=1

∑
x
(k)
i ∈clusterk

||ξk − x
(k)
i ||2.

A new cluster can be added only if it achieves a significant
gain g in terms of minimizing S(K) i.e. the number of clusters
increases from K to K + 1 only if S(K + 1) ≤ S(K) −
g% ∗ S(K). The training phase of our model is summarized
in Algorithm 1 where Kmax is a fixed maximum number of
clusters.

Result: K-means clustering with the best value of K
Initialize:
g ← 30%, diff ← 0, old← 1010, gain← 0,K ← 1;

while K < Kmax or diff > gain do
K ← K + 1;
KM2N = Kmeans(K);
diff ← old− S(K);
old← S(K);
gain← old ∗ g;
if diff > gain then

best← K;
end

end
KM2N = Kmeans(best);

Algorithm 1: Training phase

After the training phase, the different patterns in normal
usage data are detected. A traditional K-means algorithm is
unable to determine if a new data is anomalous since it aims
to assign it to their nearest cluster. Therefore, in order to
detect anomalies, we propose a threshold-based technique as
detailed in Algorithm 2. A new data represents either a normal
behavior, an anomaly, or a serious anomaly depending on its
distance to the centroid. To do so, we first compute in every
cluster k, the distance of every point x(k)

i belonging to k to
its centroid ξk. Second, we normalize these distances using
standardization so that: z(k)i =

||x(k)
i −ξk||−µk

σk
, where µk and

σk are respectively the mean and standard deviation of the
distances of cluster k elements to its centroid ξk. The cluster
distances will be rescaled so that they will have the properties
of a standard normal distribution with µ = 0 and σ = 1. Third,
for each new data xtest, a normalized distance I(xtest) from
xtest to its nearest cluster knearest is computed as follows:
I(xtest) =

||xtest−ξknearest ||−µknearest

σknearest
. Fourth, this distance

is compared to a threshold θ as follows: if I(xtest) ≥ θ, then
we have an anomaly, otherwise we have a normal behavior.
θ has to be tuned during the test phase. A high value of θ
means a high tolerance and allowing distant observations to
be part of the normal behavior, while a low value increases
the number of anomalies. Finally, the maximum distance Imax

between the centroid and its training data allows to determine
if the anomaly is serious or not.

Since some points in the data may represent outliers, we
propose to use a smoothing technique over a sliding window
of size sw that allows to remove outliers from the dataset and
to make the patterns more visible.

Result: Decide whether xtest is an anomaly
Input: θ, xtest;
knearest ← argmink||ξk − xtest||;
I(xtest)←

||xtest−ξknearest ||−µknearest

σknearest
;

if ||xtest − ξknearest || > maxi ||x(k)
i − ξknearest || then

return(serious anomaly);
else

if I(xtest) > θ then
return(anomaly);

else
return(normal behavior);

end
end

Algorithm 2: KM2N test phase

B. Root Cause analysis of Noisy Neighbors: RC2N

Once a noisy neighbor is detected, the root cause of the
problem should be investigated. Hence, we propose a propaga-
tion path-based solution that observes the correlation between
events and seeks the most probable anomaly propagation
sequence. Propagation may occur following three scenarios:
VM to PM, PM to VM and PM to PM where VM is a virtual
machine and PM is a physical one. VM to VM propagations
are avoided as we believe propagation cannot occur unless
it passes through PMs. Besides, on a large scale, it is very
complicated to monitor every (VM − VM) couple in the
infrastructure.

Let xRC be the dataset composed of NRC instances and
of FRC = 6 features so that xRC

i = {xRC
i1 , ..., xRC

ij } where
1 ≤ i ≤ NRC and 1 ≤ j ≤ FRC . The features are the CPU
usage, the network inbound and the network outbound of two
machines M1 and M2. Each instance is labeled according
to the propagation path between these two machines that
belongs to {PMtoVM, VMtoPM,PMtoPM}. In order to
learn these propagation paths, we could use a multi-class
classification with the desired three labels. However, a case
where there is no propagation between the machines will
not be predicted as the model will always try to find the
closest class to the new data among the three labels. Besides,
adding a new label ”No propagation” to recognize the cases
where the machines do not experience any propagation implies
possessing data for all the couples that do not propagate
anomaly to each other. This is unfeasible because of the
variety of scenarios. Thus, we propose to use SVM one-class
classifier [15] in order to train the propagation paths between
each couple of machines. SVM one-class classifies new data
as similar or different to the training set by identifying the
smallest hypersphere that contains the majority of the training
data [16]. Different models per propagation path will decide
the type of the propagation for every new data as illustrated
in Fig. 3.

Once propagation paths are trained, the next step consists
of creating a propagation graph that represents the correlation
between abnormal system observations. Let G = (V,E) be a

Fig. 3. RC2N classifier for propagation path determination

direct graph, where V is the set of misbehaving components
and E represents the propagation paths. In order to select the
root cause, we assign a RCA score to each element of the
graph. RCA score represents the ability of the component to
propagate its anomaly to the rest of the affected entities. It is
the minimum distance that the entity needs in order to reach
every component n in the system. The score of a component c
in a graph G is the following: ScoreRCA(c)G =

∑
n∈G dc,n,

where dc,n represents the shortest path distance from the
component c to the component n using Dijkstra algorithm
[17]. If n is not accessible by c then dc,n =∞ as detailed by
Algorithm 3.

Result: Determine the root cause of noisy neighbor
Input: V , Couples;
Initialize: E ← [], G← G(V,E);
for couple ∈ Couples do

if RC2N classifier(couple) ∈
[VMtoPM,PMtoVM,PMtoPM] then

E ← E ∪ {couple} ;
end

end
for c ∈ V do

ScoreRCA(c)G =
∑

n∈V dc,n
end
return(argminc{ScoreRCA(c)})

Algorithm 3: RC2N algorithm where V is the set of
machines, E is the set of propagation paths, Couples is
the set of couples of machines (M1,M2) belonging to V .

IV. EXPERIMENTAL STUDY

Our testbed is set up in an Openstack environment as
illustrated in Fig. 4. Noise is a server containing the victim
machine suffering from noise and the noisy neighbor itself.
Asterisk is an open source VoIP application and it represents
our VNF deployed on a VM in order to receive calls. It is our
victim. Stress is the noisy neighbor VM that performs intense
calculations and consumes a lot of CPU. P-tour04 is another
server on which we deploy a traffic generator SipP. It is a free

Fig. 4. Testbed of the solution

Open Source test tool for the SIP protocol. The role of this
machine in the infrastructure is to generate calls to Asterisk. In
the testbed, we use Node Exporter as an agent in every VM
and PM. It allows collecting information from the machine
in the form of counters that are sent to Prometheus Server.
This server creates metrics that describe the utilization of the
component in order to create a dataset.

A. KM2N training and test phases

The training data are created following different scenarios
where components operate in different charges. Data are
collected into Prometheus every 5 seconds, for about 8 days,
for a total of 136920 instances per machine. In order to
evaluate our model, several performance metrics [18] are used:
(1) Accuracy is the ratio of correctly predicted data over total
data; (2) Recall is the fraction of the elements of a class
that are successfully predicted; (3) Precision is the fraction
of correct predictions among all the predictions of a class and
(4) F-score is a harmonic mean of precision and recall.

First, we need to identify the number of clusters K by
computing the score S(K). In order to evaluate the impact
of the parameter g on the performance of anomaly detection,
we determine the evolution of the number of clusters K
with respect to g in Asterisk machine, and its effect on the
performance of the model.

TABLE I
PERFORMANCE METRICS OF ASTERISK WITH RESPECT TO g FOR sw = 50

AND θ = 10−3

gain : g(%) 5 10 20 30 40 50
Nb of clusters K 11 9 6 6 6 2
Accuracy (%) 73 70 91.7 91.7 91.7 52.4
Positive recall (%) 61.1 55.5 96.5 96.5 96.5 89.3
Positive precision (%) 85.3 84.2 89.2 89.2 89.2 53.8
Positive Fscore (%) 71.2 67 92.7 92.7 92.7 67.2
Negative recall (%) 87.3 87.6 86 86 86 7.9
Negative precision (%) 65.2 62.1 95.3 95.3 95.3 38.4
Negative Fscore (%) 74.6 72.7 90.4 90.4 90.4 13.17

As illustrated in Table I, a very high gain (50%) is hardly
reached so the retained number of clusters is 2. As for g =
5%, we have 11 clusters because a significant gain is easily

achieved. In both cases, performance metrics are not the best.
As shown in Fig. 5, for g = 30, K = 6 is retained since the
score converges.

Fig. 5. Evolution of the score S(K) with respect to K for K-means clustering

The trained clusters represent different patterns of normal
usage of the machines.

The test phase aims to detect anomalies by identifying
the closest cluster to every new data and by examining its
distance to the centroid. An anomaly is decided by comparison
with the threshold θ. A test scenario is created with unseen
data in which normal scenarios are simulated where Asterisk
machine receives normal calls from sipP. Noise scenarios are
also generated where Stress machine starts to consume 100%
of its allocated CPU in the Noise server and it degrades the
performance of Asterisk.

Given that anomalies are positive results while normal
data are negative results, Table II presents the results of
the noisy neighbor detection with respect to the parameter θ
that describes the strictness of the model towards anomalies.
Several sliding windows have been testedµ. The window that
gives the best results is of size sw = 50.

TABLE II
PERFORMANCE METRICS OF ASTERISK WITH RESPECT TO θ WITH

sw = 50

θ 4 1 0.1 10−2 10−3 10−4

Accuracy (%) 44.1 69.4 88.6 91.6 91.7 91.7
Positive recall (%) 0.1 52.7 90.4 96.2 96.5 96.5
Positive precision (%) 4.5 85.7 88.9 89.2 89.2 89.2
Positive Fscore (%) 0.2 65.2 89.6 92.6 92.7 92.7
Negative recall (%) 96.8 89.4 86.4 86 86 86
Negative precision (%) 44.7 61.2 88.2 95 95.3 95.4
Negative Fscore (%) 61.1 72.7 87.3 90.3 90.4 90.4

As shown in Table II, increasing θ results in a greater
tolerance. For θ = 4, positive F-score is very low as every new
instance is considered as normal behavior. From θ = 10−3, the
model gives more stable results, with an accuracy of 91,7%.
Most of the noisy neighbor situations are detected with a
positive recall=96.5%. If an alert is generated, the model is
trustworthy with a precision up to 89.2% which means that
the model does not generate a lot of false alarms. The normal
usage of the machines is also detected with promising results
which proves the efficiency of the model.

In Table III, we compare our unsupervised model KM2N to
the results presented in [3] in which a supervised learning is
applied with SVM and random forests (RF). In [3], similar
features are used and also a similar testbed, except that
Fibonacci is the machine that simulates the noise while it
is Linux stress in our case. We notice that although KM2N

TABLE III
PERFORMANCE METRICS COMPARISON BETWEEN KM2N, SVM AND

RANDOM FOREST (RF) [3]

Model SVM [3] RF [3] KM2N
Precision (%) 86.16 92.32 96.5

Recall (%) 88.56 90 89.2
F1-score (%) 87.34 91.44 92.7

detects a little bit less anomalies than RF since it has a lower
recall, it is still more precise and trustworthy since it generates
fewer false alarms as it has a higher precision and a better F1-
score metric.

A second comparison is applied by running several super-
vised models over the same data sets used by KM2N, extracted
from our testbed. Three popular supervised techniques are
used: SVM, RF and Multi-Layer Perceptron (MLP). The
comparison is presented in Table IV.

TABLE IV
RESULTS COMPARISON BETWEEN KM2N, SVM, RF AND MLP

Model SVM RF MLP KM2N
Precision (%) 80 100 81 96.5

Recall (%) 88 99 100 89.2
F1-score (%) 84 99 89 92.7

Execution time > 1 hour 6.5 seconds 7.5 seconds 3.6 seconds

We notice that SVM model suffers from a very long
execution time even with a linear kernel. Regarding random
forests, given that the size of data is not immense and that
we got a precision of 100%, we suspected that it is suffering
from overfitting. This can be checked by applying on a larger
volume of data. Multi-layer perceptron with 3 layers and 13
neurons in each layer is less precise than KM2N i.e it generates
more false alarms.

Once a noisy neighbor situation is detected, the next step
consists of launching the investigation of the whole infrastruc-
ture in order to identify all the involved machines.

B. RC2N training and test phases

The training data for RCA is collected from the couples
of machines (Stress, Noise) labeled as VMtoPM and from
the couple (Asterisk, Noise) labeled as PMtoVM. Once SVM
one-class model is trained, the propagation paths between the
machines are determined. The results are presented in Table V.
It shows that the model succeeds to determine the propagation
paths with an accuracy that is equal to 86%. Among all PM
to VM propagations, 80% are detected. Besides, 78% of all
VM to PM propagations are discovered by the model as well.

TABLE V
PERFORMANCE METRICS FOR PROPAGATION PATH DETERMINATION

Accuracy (%) 86
Propagation PMtoVM VMtoPM
Recall (%) 80 78

Precision (%) 100 100
F1-score (%) 89 88

In Table VI, we compare one-class SVM to a similar one-
class classifier called isolation forests [19].

TABLE VI
RESULTS COMPARISON BETWEEN ONE-CLASS SVM AND ISOLATION

FOREST IN RC2N-CLASSIFIER

Model (%) one-class SVM Isolation forest
Accuracy (%) 86 81

Propagation type PMtoVM VMtoPM PMtoVM VMtoPM
Precision (%) 100 100 100 100

Recall (%) 80 78 64 80
F1-score (%) 89 88 78 89

The comparison shows that although one-class SVM gives
similar performances as isolation forests regarding VMtoPM
isolation, it still gives better results regarding PMtoVM prop-
agation.

After determining the propagation paths, we create a direct
graph that represents reachable components through propaga-
tion paths, using Algorithm 3. Later, a RCA score is calculated
in every node to describe the ability of that node to propagate
its anomaly to the rest of the machines: 3 for Stress, ∞ for
Asterisk, and ∞ for Noise. Both Asterisk machine and Noise
server have infinite scores so they are unable to propagate their
anomaly to all the machines. However, Stress machine gives
a finite score so it represents the root cause of our problem,
it is then the noisy neighbor. ¨

This experimental study proves that our model is capable
of detecting anomalies in the VNF by comparing its usage
to historical data. Morever, the problem can be solved not by
migrating the VNF to another server, as this is not always
reliable, but by pinpointing the root cause of the problem and
by asking the cloud manager to solve the issue from its source.

V. CONCLUSION AND FUTURE WORKS

Thanks to 5G technology, network functions will no longer
be tightly connected to the hardware on which they operate.
Therefore, network becomes more agile. Nevertheless, cloud
computing systems continue to provide poor isolation, so
noisy neighbor phenomenon remains a major problem. Not
detecting and correcting this anomaly in real time may result
in some economic losses at the cloud provider level. This work
highlights the noisy neighbor issue and it proposes a complete
solution that allows performing a RCA in order to determine
the source of the noise. To do so, a testbed in Openstack
environment is created. An anomaly detection model KM2N
is proposed to catch anomalies in the infrastructure. A RCA is

later performed by creating RC2N model that operates using
a propagation graph. Experimentation was held on real data
and the results are promising which prove the efficiency of the
proposed approach.

Further work should include testing other types of anomaly
such as overload and in more complex infrastructure. It would
be also interesting to test the model on other VNFs (different
from Asterisk) because only system metrics are used in our
model so it is not specific to one application. Finally, another
future direction is to propose an automated solution for tuning
the model’s parameters.

REFERENCES

[1] “Ericsson Mobility Report,” Ericsson, Tech. Rep., june 2019. [On-
line]. Available: https://www.ericsson.com/49d1d9/assets/local/mobility-
report/documents/2019/ericsson-mobility-report-june-2019.pdf

[2] NFV White Paper, “Network Functions Virtualisation: An Introduction,
Benefits, Enablers, Challenges & Call for Action. Issue 1,” Oct. 2012.

[3] U. Margolin, A. Mozo, B. O. Rubio, D. Raz, E. J. Rosensweig, and
I. Segall, “Using machine learning to detect noisy neighbors in 5g
networks,” CoRR, vol. abs/1610.07419, 2016.

[4] B. Ordozgoiti, A. Mozo, S. G. Canaval, U. Margolin, E. J. Rosensweig,
and I. Segall, “Deep convolutional neural networks for detecting noisy
neighbours in cloud infrastructure,” in ESANN, 2017.

[5] P. Veitch, E. Curley, and T. Kantecki, “Performance evaluation of cache
allocation technology for nfv noisy neighbor mitigation,” 2017 IEEE
Conference on Network Softwarization (NetSoft), pp. 1–5, 2017.

[6] S. H. Nikounia and S. Mohammadi, “Hypervisor and neighbors’ noise:
Performance degradation in virtualized environments,” IEEE Transac-
tions on Services Computing, vol. 11, no. 5, pp. 757–767, Sep. 2018.

[7] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan, “Online detec-
tion of utility cloud anomalies using metric distributions,” 2010 IEEE
Network Operations and Management Symposium - NOMS 2010, pp.
96–103, 2010.

[8] E. Alpaydin, Introduction to Machine Learning. The MIT Press, 2014.
[9] M. Ruiz, F. Fresi, A. P. Vela, G. Meloni, N. Sambo, F. Cugini,

L. Poti, L. Velasco, and P. Castoldi, “Service-triggered failure iden-
tification/localization through monitoring of multiple parameters,” in
ECOC 2016; 42nd European Conference on Optical Communication,
Sep. 2016, pp. 1–3.

[10] J. Lin, Q. Zhang, H. Bannazadeh, and A. Leon-Garcia, “Automated
anomaly detection and root cause analysis in virtualized cloud infras-
tructures,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium, April 2016, pp. 550–556.

[11] K. Wang, C. Fung, C. Ding, P. Pei, S. Huang, Z. Luan, and D. Qian,
“A methodology for root-cause analysis in component based systems,”
in 2015 IEEE 23rd International Symposium on Quality of Service
(IWQoS), June 2015, pp. 243–248.

[12] J. M. N. Gonzalez, J. A. Jimenez, J. C. D. Lopez, and H. A. P. G.,
“Root cause analysis of network failures using machine learning and
summarization techniques,” IEEE Communications Magazine, vol. 55,
no. 9, pp. 126–131, Sep. 2017.

[13] “Openstack open source cloud computing software,”
https://www.openstack.org/, accessed: 2019-10-02.

[14] “Prometheus overview,” https://prometheus.io/docs/introduction/overview/,
accessed: 2019-10-02.

[15] P. Oliveri, “Class-modelling in food analytical chemistry: Development,
sampling, optimisation and validation issues – a tutorial,” Analytica
Chimica Acta, vol. 982, 05 2017.

[16] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, Sep 1995.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[18] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Classi-
fication Perspective. Cambridge University Press, 2011.

[19] F. T. Liu, K. M. Ting, and Z. hua Zhou, “Isolation forest,” in In ICDM
’08: Proceedings of the 2008 Eighth IEEE International Conference on
Data Mining. IEEE Computer Society, pp. 413–422.

