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Abstract—In this paper, we tackle the problem of remote
monitoring (e.g., remote factory) in which a number of sensor
nodes are transmitting time sensitive measurements to a remote
monitoring site. We assume that packets generated by different
sensors have different sizes. Moreover, different sensors have
different Maximum Allowable Transfer Intervals (MATIs). We
consider minimizing a metric that maintains a trade-off between
minimizing the average MATI violation of all sensors, and
minimizing the probability that the MATI violation of each sensor
exceeds a predefined threshold. We formulate the problem as
a stochastic optimization problem with integer constraints. In
order to solve this problem, we first relax the original intractable
formulation to a tractable problem. Then, we use the Lyapunov
stochastic optimization framework to solve the relaxed problem.
Simulation results show that the proposed algorithm outperforms
the considered baselines in terms of minimizing the probability
of the MATI violation for all sensors.

Index Terms—Wireless Networked Control Systems, URLLC,
Stochastic Optimization, loT, 5G

I. INTRODUCTION

Recent developments in wireless networks and the evolution
of 5G applications such as the Internet of Things (loT) enabled
a massive number of devices to be connected. This allows a
real time human interaction with the physical world under
various applications such as remote surgery, tactile internet
and industrial automation [1]. Industrial Internet of Things
(lloT) allows remote devices to sense, actuate and control
physical plants. First, sensors transmit measured data from
physical plants to a central monitoring/controlling system over
awireless network, then based on the received information, the
controller sends control commands to the remote actuators [2].

However, in control systems, sensing information and con-
trol commands must be delivered under Ultra Reliability and
Low Latency (URLLC) constraints, which is a challenging
problem when communication is over wireless links [3].
Moreover, in industrial automation, the typical playload size
ranges from 40 to 250 bytes [4]. Thus, using Shannon’s
channel capacity for system analysis, which assumes infinite
transmission blocklength, is not appropriate. To tackle this
issue, the finite blocklength regime’s transmission rate [5] was
addressed in [6], [7]. One metric that has been widely used
to relate the control system’s stability to the rate by which
messages are exchanged between the control and the plant is
the Maximum Allowable Transfer Interval (MATI) [8]. MATI
is the upper bound on the interval between two successful
packet receptions that guarantees system stability. In other
words, to ensure the system stability and avoid running into
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Fig. 1: lllustrative example comparing packet level and time
slot level scheduling.

unstable control system scenarios, at least one packet should
be received within the MATI. Recently, many works have
tackled the problem of scheduling sensors and optimizing
resources for wireless remote monitoring/controlling while
ensuring information freshness. One commonly used metric is
the Age of Information (Aol) which measures the elapsed time
since the last information update was received at the controller
[9]. In [10], ajoint time slot scheduling and sampling policy
was proposed for an loT monitoring system with non-uniform
status updates while minimizing Aol. [11] optimized both
wireless energy transfer and scheduling updates from loT
devices while minimizing the long-term weighted sum Aol
at the destination node. However, URLLC scenarios require
moving beyond average-based metrics. i,e. the works in [10],
[11] only considered minimizing the average Aol which is
ill-suited to guarantee high reliability. This is because a few
number of successive outdated packets can cause tremendous
performance degradation especially in automated factories.

On the other hand, the authors of [12] proposed a Reinforce-
ment Learning algorithm for scheduling sensors with different
packet sizes in an industrial automation scenario. Furthermore,
they considered URLLC requirements by minimizing the
sum Aol of all sensors while keeping the probability that
the age of every sensor exceeds a predefined threshold low.
However, since this work considered scheduling at the packet



level, scheduling long packets can prevent sensors with short
packets to meet their transmission deadlines, which affects the
reliability of the system.

MATI was studied in [13] where the authors formulated
a joint optimization problem of power control, rate and
scheduling, in which different sensors transmit packets with
different sizes. Moreover, the work of [14] proposed a general
protocol for both sensor to controller and controller to actuator
connections over a multihop network that satisfies the MATI
requirements and schedulability of resources. Nevertheless,
incorporating MATI with URLLC was not studied in these
works.

The main contribution of our work is to minimize a perfor-
mance metric that is composed of two terms: (i) the average
of the MAT!I violation of all sensors, and (ii) the probability of
the MATI violation of each sensor. In particular, we schedule
multiple sensors at the time slot level. This enables sensors
with different packet sizes to maintain their transmission time
within the MATI constraint. Fig. 1 illustrates the advantage of
the time slot scheduling over the packet level scheduling. We
consider sensor 1 with short packet size and tight MATI and
sensor 2 with long packet size and large MATI. In the case
of packet level, the controller keeps scheduling one sensor
until its full packet is received. We notice that when sensor
1 is scheduled, sensor 2 needs to wait for the reception
of packet 1 and that prevents packet 2 from meeting its
deadline. This incurs MAT] violations that degrade the overall
system reliability. On the other hand, time slot scheduling
allocates the bandwidth at every time slot. Thereby, instead of
waiting for packet 1 to be delivered, the controller alternatively
schedules the sensors every time slot such that sensor 2 avoids
running into the MATI violation. We formulate our problem
as a stochastic discrete (non-convex) optimization problem. In
order to solve it, we relax the non-convexity constraint, and
apply the Lyapunov stochastic optimization framework with
successive convex approximation to approximate the solution
of the original proposed optimization problem.

The rest of the paper is organized as follows. In section Il
we describe the system model. In section Il we present our
problem formulation and define our proposed framework. In
section IV, we present the simulation results and discussion.
Finally, in section V we conclude the paper.

Il. System MobEL

We consider a factory monitoring scenario consisting a
set N of N sensors that collect and transmit real-time data
packets to a monitoring/controlling unit over wireless links.
The controller schedules M < N sensors for transmission
by allocating orthogonal channels. Moreover, we assume that
sensors generate data packets at different sizes where sensor
n € {1, <+ N} generates packets of size Dn. We suppose
that the timeline is divided into equal and discrete time slots
indexed by t = 1,2, «««. Thus, one full packet transmission
may take several time slot durations. We assume a block fading
wireless channel that is invariant for every time slot duration.
We also assume that the controller has a perfect Channel

State Information (CSI) at each time slot from all sensors.
Let Rh(Ln,e) denotes the achievable finite blocklength rate of
sensor n at time slot t, where Ln and e are the blocklength for
sensor n and the decoding error, respectively. Thus, RA(Ln,e)
is defined as follows [5]:

R,(Ln,e) = Bn(<)[log, a + N il)y-/71< r1e

1
where Bn(t) is the assigned bandwidth to sensor n at tir(ng
slot t, Pn is the transmission power of sensor n, hn(t) is the
channel gain including the distance dependent path loss and
the channel fading between the controller and sensor n at time
slot t. NO is the power spectral density of the additive white

Gaussian noise. V = T77|)2++Y7| (+1 (loge)2 is the channel
dispersion, where vn(t) = NArTet) is the Signal to Noise
Ratio (SNR), and Q-1() is the inverse Q-function [5]. To
simplify the notation, we will refer to the finite blocklength
rate of sensor n at time slott as Rn(t) throughout the rest of
the paper.

Let rn(t) be the cumulative data size in bytes received at
the controller from the beginning until time slot t from sensor
n. rn(t) evolves according to the following equation.

r(t) = rn(t- 1)+ rRn(t), 2
where 1 is a one time slot duration.

We denote by Tn the MATI duration for sensor n. let Sn(t)
be the number of bytes received at the controller from sensor
n in the time between t and (t - Tn). Mathematically Sn(t)
is defined as follows:

Sa(t)y =ra(t)- ra(t- Tn), (3)
Let In(t) be the MATI violation of sensor n at time slot

t. Note that In(t) depends on Sn(t) and this relation can be
mathematically captured by the following equation:

0 if S (t) > Dn,

I (1 1 if Sa(t) <D,

4)

Equation (4) states that for the event I. (t) = 0 to occur, we
need to insure S, (t) > D. for every t.

I1. MATI-AWARE SENSOR SCHEDULING PROBLEM

It is important to maintain low MATI violations over the
sensors for stability. Therefore, we focus on minimizing the
average MATI violations while maintaining the probability
that the MATI violation of each sensor exceeding zero is
kept below a predefined threshold a. This probability can
be expressed as: pr I.(t) = 1 < a Vn. Note that the
occurrence of the event I (t) > 0 is associated with the event
Sn (t) < Dn. Thus, the MATI violation probability can be
replaced by Pr(S» (t) < Dn) < a Vn. In order to account



for such objective and constraint, we consider the following
optimization problem.

N T

minimize 5a
By Too T _qq IN) (%a)
subject to  (1(-(4) (5b)
Pr(Sn(t) < Dn) <a Vn (5¢)

N
vV Bn(t) < Bmax, VWt (5d)

n—+
Bn(t) > 0, Vn, Vt (5e)

where Bmax is the total available bandwidth.

A. Lyapunov Optimization-Based Scheduling Algorithm

The problem defined in (5) is a stochastic optimization
problem with non-convex constraints (4), (5¢) which is hard
to solve. Therefore, we first relax the formulation to a simpler
problem in order to find a tractable solution using stochastic
optimization methods, and then use the Lyapunov framework
to solve it. From (4), we know that I. (t) is a binary (non-
convex) variable. Hence, the first step is to minimize the
convex relaxation of I. (t). Therefore, we minimize /. ()
which is defined as follows:

I (t) =

where [x]+ = max(x, 0). Fig. 2 plots the dependence of
I (t) as a function of S. (). It can be noted that I. (t)
decreases as Sn (t) increases, until S. (t) reaches D . , where it
remains zero from that point onwards. Here, S (t) > D~ does
not contribute in decreasing |« () meaning that scheduling
resources to push more sensors to achieve S» (t) > D is more
preferable than increasing S» (t) for the sensors that already
have S. (t) > Dn. Hence, the problem in (5) can be well
approximated by the following formulation:

[Dn - Sn ()] +, (6)

N T
TEW AT T S0 (72)
subject to  (1)-(3), (5c)-(5e). (7b)
Since Sn(t) rn(t) rn(t Tn), and Rn(t Tn) are

already given at time slot t, (7a) is equivalent to maximizing
N=1 T1rn(t), which is in turn equivalent to maximizing

J2n= "2 1=1Rn(t). Therefore, our equivalent problem formu-
lation becomes:

N T
B0 T ®T . Rn() (8a)
subject to  (1)-(3), (5¢)-(5). (8b)

B. Proposed Solution Based on Lyapunov Framework

To solve the stochastic optimization problem in (8) we use
the tools form Lyapunov optimization framework, as presented
next. First, all time average constraints must be converted into
virtual queues. Henceforth, the reliability constraint in (5c)

t
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Fig. 2: Evolution of I n(t) with respect to received data Sn(t).

can be expressed as E[1(sn< o n)] < a for each sensor n, and
avirtual queue A. is introduced with the following dynamics
[15].
1+

An(t) + (I(S. (H)<D.) - a) ©)

Let A(t) = [An(t)JnGN, we define the Lyapunov function in
quadratic form as L(A(t)) = , A(t)TA(t). The one-slot drift
of the Lyapunov function is ALt = L(A(t + 1)) - L(A(t)).

1N [ ]
ALt=2X] Ant+ 1)-  (1)].
n:

An(t+ 1)

(10)
Using the relation,

(t+1) <
(11
The term (1(S. (t)<D. ) - e)2is bounded when queue stability
is satisfied. Hence, this term is replaced by a bounded value
U as follows:
N
ALt< U + A 1An(t)(I(Sh (t)<D.) - e).
n:
We define the conditional expected Lyapunov drift at time
slot t as E[L(A(t + 1)) - L(A(*))IA(t)]. Let W > 0
be a scalar variable that controls the tradoff between the
accuracy of the solution of (8) and the queue length. By
bringing the penalty term WE [Rn(t)|A(t)] to the inequality
(12), we minimize the upper bound of the drift plus penalty
E[ALt|A(t)] - WE[RN(t)|A(t)]. Consequently, our goal is
to solve the following:

(12)

N

- WRn(f) + V. An(f)(I(S~ (t)<D. ))
n=1

(1)-(3), (5d)-(5e), (9).

minimize
B (t)
subject to

(134)

(13b)
In our simulation setting, we assume that the SNR » 1.
This reduces the second term of the rate expression in (1) to

-B n(t)* (Pge)2Q-1 (e). Moreover, 1(S (t)<D. ) is a binary
(non-convex) variable, we introduce a new variable Zn(t)

(t)+ (1(S (t)<Dn )-e)2+ 2An(t)(1(Sn(t)<D. )-e ).



0.99999 r
—a—Proposed
—e—PL

EDF

0.99997

) < D]

0.999 |

0.99 |

(1.!}\ |
s

0! .
5 10 15 20

Number of Sensors N

Fig. 3: CDF of the received data within the MATI for (a)
sensor 1, (b) sensor 5, and (c) sensor 10.

-
~
=y

|
—

such that Zn(t) > 1(Snh(t)<Dn). Hence, our problem can be
rewritten as follows:

N

minimize - WRn(t)+ * An(t)Zn(t) (14a)

B (0 =1
subject to  (1)-(3), (5d)-(5e), (9), (14b)
Zn(t) > 1(S (t)<D.)  Vn- (14c)

Now, we replace 1(Sh(t)<Dn) by a continuous approximation
f (Sn(t)) = 1+ea(S1(t)-Dn). Since this approximation is non-
convex, we use successive convex approximation methods to
solve (14). Therein, at each iteration i, f (Sn(t)) is replaced
by its first order approximation over initial choice Sn,

1
1+ e«(S. () Dn)

where Ao(Sn) = f (Sn) and A1(Sn) = f'(Sn), respectively.
This approximation converts (14c) into a linear constraint, in
which (14) becomes a convex optimization problem. The so-
lution S *7is used as the initial choice S0+1 until convergence,
ie, |IS*m - S*'|< e

Ao(Sn) + A1(Sn)Sn (t), (15)

IV. NUMERICAL RESULTS

To validate our proposed scheduling algorithm numerically,
we use a set of simulations where we consider a group of 5
sensor clusters with every cluster containing 11to 4 sensors. i.e,
the total number of sensors varies from 5 to 20. The sensors
of each cluster generate packets of sizes 50 to 250 bytes,
with a 50 bytes step size. The clusters have different MATI
requirements. i.e, we vary Tn from 8 to 40ms with a step
size of 8 ms. The communication environment is simulated
for a factory (indoor) scenario with the path loss model:
33logr + 20logf + 32 (dB), r is the distance from the
controller, and f is the carrier frequency. In our simulation
f = 2625 GHz [16]. The other simulation parameters are:
NO = -174 dBm/Hz, Bmax = 1 MHz, W = 1, + = 1ms,
Ln = 500, e = 10-5, P = 1mW, a = 10-3,a = 1,

e = 10-3, and r = 5m. According to these choices, sensors
of cluster 1 have the tightest MATI and shortest packet size.
On the other hand, sensors of cluster 5 have the largest MATI
and the longest packet size. We run simulations over a large
number of realizations. Our proposed scheduling algorithm
allocates orthogonal channels for M < N sensors at every
time slot. This enables allocating more bandwidth for sensors
with different packet sizes and MATIs when necessary to
guarantee a minimum MATI violation.

On the other hand, we consider two baselines for com-
parison. The first baseline considers scheduling sensors at
the packet level. i.e, the controller schedules multiple sensors
and maintains the same allocated bandwidth for every sensor
until packets from all sensors have been received. We refer
to this baseline as packet level "PL”. Baseline two considers
scheduling one sensor at a time until its packet is successfully
received at the controller side. It follows the "Earliest Deadline
First” strategy by scheduling the closest sensor to violate its
MATI. We refer to this baseline as "EDF”.

Fig. 3 plots the reliability, which is the probability of
receiving a packet within the MATI, as a function of the
total number of sensors. For every choice of the number of
sensors, we plot the worst reliability obtained by a sensor. It
is noted that our proposed algorithm provides more reliable
communication compared to the baselines. For N = 5, our
algorithm reaches 99.991% reliability compared to 96.32%
achieved by EDF and 88.86% by PL. In the case of N =10,
the proposed algorithm reaches the reliability of 99.93% while
it is 92.40% and 74.83% for EDF and PL, respectively. We
notice that as the number of sensors increases, the reliability
decreases. The reason is that, the more sensors need to be
scheduled, the less bandwidth will be allocated per sensor. This
decreases the rate, which in turn increases the transmission
time that leads to more MATI violations. We observe that our
algorithm is more robust at large number of sensors. From
N = 15 onwards, we see that the reliability of EDF drops
drastically below the PL. This is due to the fact that EDF
focuses on delivering packets for sensors with tight MATIs,
which incurs very high MATI violations for sensors with larger
MATIs. One way to maintain system reliability above 99.9%
is to increase the transmit power.

Fig. 4a-c plots the CDF of Sn with N = 10 for sensors
1,5 and 10, respectively. The results show the performance
improvement of our proposed solution over both baselines for
different packet size cases. As can be seen in Fig. 4a, our
algorithm shows that 99.94% of packets were successfully
received within their MATIs. Whereas areliability of 98.33%,
and 74.83% is achieved for EDF and PL, respectively. In the
cases of Fig. 4b and Fig. 4c, our algorithm reaches areliability
0f 99.94% and 99.93%, respectively. Results from both Fig. 4b
and Fig. 4c illustrate the stability of our algorithm for medium
and long packet scenarios. Note that PL performs worse than
EDF. This is due to the fact that for PL, the controller updates
the bandwidth allocation decision only after receiving packets
from all sensors. Therefore, while waiting for the last packet
to be delivered, multiple short packets may have encountered
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MATI violations. From the CDF plots, we see that there are
events when no data is received within the MATI for the
baseline EDF. This is because EDF algorithm selects one
sensor for transmission at a time. Thus, some sensors may
violate their MATIs while waiting to be scheduled.

Fig. 5a-c plots the probability that packet transmission time
is greater than time t for one sensor from cluster 1,3 and
5, respectively. The results compare the performance of our
algorithm with both baselines for N E {5,15}. A is the
time needed to fully transmit one packet to the controller. In
Fig. 5a, for N = 5, EDF has a probability of 0.002% that
packet transmission time exceeds the MATI, whereas 0.005%
is obtained by our algorithm, and 12.95% by PL. We see
that the high performance of EDF for the sensor with shortest
packet and tightest MATI comes at the cost of performance
degradation for the other sensors with longer packet sizes and
larger MATIs, as depicted in Fig. 5b and Fig. 5c. The reason
is that EDF assigns the whole bandwidth when scheduling one
sensor at a time. This increases the transmission rate, which
in turn decreases the packet transmission time. Moreover, the
sensor with tight MATI reaches its deadline faster and this
makes the EDF algorithm tend to schedule it more frequently
than other sensors with larger MATIs. This is observed in Fig.
5b where the performance is compared given MATI = 24ms.
Our algorithm maintains a probability of 0.004% for packets
with transmission time larger than the MATI. For the baselines,
EDF obtained 2.82%, while for PL it is 9.31%, for N 5.
The performance limitation of EDF reflects the fact that the
sensor is less frequently scheduled compared to other sensors
with tighter MATIs. This results in along delay for the sensor
to be scheduled which increases the packet transmission time.
In Fig. 5¢c, the results for the last sensor (the one having the
longest packet size and largest MATI) are plotted. We can see
that our algorithm outperforms the baselines, with probability
of 0.008% and 0.48% of exceeding the MATI for both N = 5
and 15, respectively.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed an algorithm to schedule and
allocate resources in a factory scenario by minimizing the
MATI violation from the sensor to the controller. Our algo-
rithm allocates resources for sensors at every time slot in order
to meet URLLC constraints for all sensors. Results show that
our algorithm outperforms the baselines in terms of system
reliability when sensors with different packet sizes and MATIs
are scheduled. For future work, we will consider the joint
optimization of both bandwidth and power for packets with
stochastic arrivals.
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