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Abstract—In this paper, we study the interference exploita-
tion precoding for the scenario where the number of streams
simultaneously transmitted by the base station (BS) is larger
than that of transmit antennas at the BS, and derive the
optimal precoding structure by employing the pseudo inverse.
We show that the optimal pre-scaling vector is equal to a linear
combination of the right singular vectors that correspond to zero
singular values of the coefficient matrix. By formulating the dual
problem, the optimal precoding matrix can be expressed as a
function of the dual variables in a closed form, and an equivalent
quadratic programming (QP) formulation is further derived for
computational complexity reduction. Numerical results validate
our analysis and demonstrate significant performance improve-
ments for interference exploitation precoding for the considered
scenario.

Index Terms—MIMO, symbol-level precoding, constructive
interference, optimization, Lagrangian.

I. INTRODUCTION

Multi-antenna wireless communication systems have re-

ceived extensive research attention due to their significant per-

formance gains over single-antenna systems, where precoding

has been widely acknowledged as a promising application [1].

When the channel state information (CSI) is available at the

transmitter side, precoding is able to support data transmission

to multiple users simultaneously. Well-known precoding ap-

proaches include theoretically capacity-achieving dirty paper

coding (DPC) [2], non-linear precoding such as Tomlinson-

Harashima precoding (THP) [3] and vector perturbation (VP)

precoding [4], and low-complexity linear precoding such

as zero-forcing (ZF) and regularized ZF (RZF) [5]. Mean-

while, downlink precoding based on optimization has also

received increasing research attention in recent years [6]-[8].

Among optimization-based precoding approaches, signal-to-

interference-plus-noise ratio (SINR) balancing [7] and power

minimization [8] are two most popular designs. These precod-

ing schemes exploit the information of the channel to design

the precoding matrices that target at avoiding or limiting the

interference.

Compared to the above studies that treat interference as

detrimental, recent studies show that interference can also be

beneficial and provide further performance improvements on

a symbol level [9]. By exploiting the information of the data

symbols and their corresponding constellation, the instanta-

neous interference can be divided into constructive interfer-

ence (CI) and destructive interference [10]. More specifically,

CI is defined as the interference that pushes the received

signals away from the detection thresholds, which further

improves the detection performance. Based on the above, CI-

based precoding for PSK modulations has been proposed in

[11], [12] as a modification of ZF precoding. Optimization-

based CI precoding has further been proposed in [13] based

on symbol scaling and [14]-[16] based on phase rotation, and

their extension to multi-level modulations such as QAM is

discussed in [17], [18]. More recently, it has been revealed

in [19] that there exists an optimal precoding structure for CI

precoding. In addition to the performance improvements of CI

precoding over traditional precoding approaches, another ad-

vantage of CI precoding is its capability of supporting a larger

number of streams (single-antenna users) than the number

of transmit antennas at the base station (BS) simultaneously,

which has only been numerically shown in [14]. Nevertheless,

it is still not clear whether the analysis and results in [19] can

be extended to this scenario.

Therefore in this paper, we focus on the scenario where the

number of streams simultaneously transmitted by the BS is

larger than that of transmit antennas at the BS. Based on the

Karush-Kuhn-Tucker (KKT) conditions, we derive the optimal

precoding structure at the BS and transform the problem into

an optimization on the pre-scaling vector. In the derivation,

the exact matrix inverse is not applicable due to the rank defi-

ciency, and accordingly we employ the pseudo inverse instead,

which introduces an additional constraint to the optimization

problem. We further show that the optimal pre-scaling vector

is equal to a linear combination of the right singular vectors

corresponding to zero singular values of the coefficient matrix.

Subsequently, the optimization problem is further transformed

into an optimization on the weights for each singular vector,

which is finally shown to be a quadratic programming (QP)

optimization and can be more efficiently solved than the

original second-order cone programming (SOCP) formulation.

Based on the QP formulation, we also discuss the condition

under which multiplexing more streams than the number

of transmit antennas at the BS is feasible with interference

exploitation precoding. Numerical results validate our analysis

and demonstrate significant performance gains of interference

exploitation precoding over traditional precoding methods in

the considered scenario.

Notations: a, a, and A denote scalar, column vector and
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matrix, respectively. (·)∗, (·)T , (·)H , (·)−1, and (·)+ denote

conjugate, transposition, conjugate transposition, inverse, and

pseudo inverse of a matrix, respectively. diag (·) is the trans-

formation of a column vector into a diagonal matrix, and

vec (·) denotes the vectorization operation. |·| denotes the

absolute value or the modulus, and ‖·‖
2

is the l2-norm. Cn×n

and Rn×n represent an n× n matrix in the complex and real

set, respectively. j is the imaginary unit.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We focus on a multi-user multiple-input single-ouput (MU-

MISO) system in the downlink, where the BS with Nt

transmit antennas transmits a total number of K streams

simultanesouly, and K > Nt. The data symbol vector s =
[s1, s2, · · · , sK ]

T
∈ CK×1 is assumed to be from a normalized

PSK constellation, and therefore sks
H
k = 1 for each stream k

[14]. The received signal at user k can be expressed as

rk = hT
kWs+ nk, (1)

where hk ∈ CNt×1 denotes the flat-fading Rayleigh channel

between user k and the BS, and perfect CSI is assumed

throughout this paper. W ∈ CNt×K is the precoding matrix,

and nk is the additive Gaussian nose with zero mean and

variance σ2.

B. Problem Formulation

The optimization of CI precoding can be formulated based

on the geometry of the PSK constellation, as shown in Fig.

1 where we employ 8PSK as an example. As discussed in

[19], we denote ~OS = sk and ~OA = t · sk, where t > 0
is the objective to be maximized. ~OB is the received signal

excluding noise, and based on (1) ~OB is expressed as

~OB = hT
kWs = λksk, (2)

where λk is an introduced complex scalar that represents the

interference effect on user k’s data symbol. Based on the

geometry in Fig. 1 and [19], the CI constraint is to locate

the noiseless received signal ~OB within the constructive area,

i.e, | ~CB| ≤ | ~CD|, which mathematically leads to

tan θAB ≤ tan θt ⇒
(
λℜ
k − t

)
tan θt ≥

∣
∣λℑ

k

∣
∣ , (3)

Fig. 1: The phase-rotation metric for 8PSK constellation

where λℜ
k and λℑ

k represent the real and imaginary part of

λk, respectively. Throughout this paper, we focus on the non-

strict phase-rotation CI, while the strict phase-rotation CI can

be regarded as a special case by setting each λℑ
k to zero

[19]. Based on the constellation, we also obtain θt = π
M

for M-PSK modulation. Accordingly, the optimization on CI

precoding that maximizes the CI effect subject to the total

available transmit power can be constructed as:

P1 : max
W

t

s.t. hT
k Ws = λksk, ∀k ∈ K
(
λℜ
k − t

)
tan θt ≥

∣
∣λℑ

k

∣
∣ , ∀k ∈ K

‖Ws‖
2

2
≤ p0

(4)

where K = {1, 2, · · · ,K}. In P1, we have enforced a symbol-

level power constraint, since the interference exploitation pre-

coding is dependent on the data symbol vector s. P1 belongs

to the second-order cone programming (SOCP) and can be

solved via existing convex optimization tools.

III. INTERFERENCE EXPLOITATION PRECODING

In this section, we analyze the interference exploitation pre-

coding problem P1 based on the KKT conditions. Specifically,

our derivations in this section and the numerical results in

Section IV show that, by exploiting the information of both

the channel and the data symbols, CI precoding is capable of

spatially multiplexing more data streams than the number of

transmit antennas at the BS simultaneously.

Following [14], [19] and based on the observation that Ws

can be viewed as a single vector in the formulation of P1, it

is safe to assume that each wisi is identical, which leads to a

simpler power constraint in the subsequent analysis, given by

K∑

i=1

s∗iw
H
i wisi ≤

p0

K
. (5)

We then express P1 in a standard minimization form as

P2 : min
W

− t

s.t. hT
k

K∑

i=1

wisi − λksk = 0, ∀k ∈ K

∣
∣λℑ

k

∣
∣−
(
λℜ
k − t

)
tan θt ≤ 0, ∀k ∈ K

K∑

i=1

s∗iw
H
i wisi ≤

p0

K

(6)

and the Lagrangian of P1 is given by [20]

L (W, t, δk, τk, δ0) =− t+
K∑

k=1

δk

(

hk

K∑

i=1

wisi − λksk

)

+
K∑

k=1

τk
[∣
∣λℑ

k

∣
∣−
(
λℜ
k − t

)
tan θt

]

+ δ0

(
K∑

i=1

sHi wH
i wisi −

p0

K

)

,

(7)



where δk, τk ≥ 0 and δ0 ≥ 0 are the dual variables

corresponding to each constraint of P2. Based on (6) and

the fact that sis
H
i = 1, ∀i ∈ K, the KKT conditions can

be formulated as [20]

∂L

∂t
= −1 + tan θt

K∑

k=1

τk = 0 (8a)

∂L

∂wi

=

(
K∑

k=1

δk · hk

)

si + δ0 ·w
H
i = 0, ∀i ∈ K (8b)

δk

(

hk

K∑

i=1

wisi − λksk

)

= 0, ∀k ∈ K (8c)

τk
[∣
∣λℑ

k

∣
∣−
(
λℜ
k − t

)
tan θt

]
= 0, ∀k ∈ K (8d)

δ0

(
K∑

i=1

sHi wH
i wisi −

p0

K

)

= 0 (8e)

We first obtain that δ0 6= 0 based on (8b), and accordingly we

can express wH
i as

wH
i = −

(
K∑

k=1

δk

δ0
· hk

)

si, ∀i ∈ K. (9)

By introducing a new variable υk = −
δH
k

δ0
, where we note that

δk can be complex, we can further obtain the expression of

wi, given by

wi =

(
K∑

k=1

υk · h
H
k

)

sHi , ∀i ∈ K, (10)

and we can further obtain the expression of each wisi as

wisi =

K∑

k=1

υk · h
H
k , (11)

which is constant for ∀i ∈ K and is consistent with our premise

for the power constraint transformation in (5). Based on (10),

we are now able to express the precoding matrix W as

W = [w1,w2, · · · ,wK ]

=

(
K∑

k=1

υk · h
H
k

)

·
[
sH1 , sH2 , · · · , sHK

]

=
[
hH
1 ,hH

2 , · · · ,hH
K

]
[υ1, υ2, · · · , υK ]

T [
sH1 , sH2 , · · · , sHK

]

= HHΥsH ,
(12)

Based on (1) and (2), we can express the received signal vector

excluding noise HWs as

HWs = diag (Λ) s, (13)

where Λ = [λ1, λ2, · · · , λK ]
T

∈ CK×1 denotes the pre-

scaling vector. By substituting (12) into (13), we further obtain

HHHΥsHs = diag (Λ) s

⇒Υ =
1

K
·
(
HHH

)+
diag (Λ) s,

(14)

where we note that based on the premise that K > Nt, the

matrix HHH is rank-deficient and the exact matrix inverse is

inapplicable. Therefore, pseudo inverse has to be employed in

(14), and subsequently we can obtain the optimal precoding

structure as a function of the pre-scaling vector, given by

W =
1

K
·HH

(
HHH

)+
diag (Λ) ssH . (15)

Based on the fact that δ0 6= 0, we obtain that the power

constraint is strictly active. Similar to the analysis for the

case of K ≤ Nt in [19], by substituting the expression of

W into the power constraint ‖Ws‖
2

2
= p0, one can similarly

transform the power constraint on W into a power constraint

on the pre-scaling vector Λ, given by

‖Ws‖
2

2
= p0

⇒ sHWHWs = p0

⇒ sHdiag
(
ΛH
) (

HHH
)+

diag (Λ) s = p0

⇒ΛH diag
(
sH
) (

HHH
)+

diag (s)
︸ ︷︷ ︸

P

Λ = p0.

(16)

Then, one can follow a similar approach in [19] to obtain an

equivalent QP formulation.

However, in the case of K > Nt considered in this paper,

we note that following the above procedure and using (16) will

only lead to an erroneous solution for CI precoding, which is

due to the fact that the inclusion of the pseudo inverse does

not guarantee equality to the original constraint. To be more

specific, let’s first consider the conventional case of K ≤ Nt,

where the optimal precoding structure is given by [19]

W =
1

K
·HH

(
HHH

)−1
diag (Λ) ssH . (17)

In this case, by substituting the expression of W in (17) into

(13), we obtain

HWs = diag (Λ) s

⇒H

[
1

K
·HH

(
HHH

)−1
diag (Λ) ssH

]

s = diag (Λ) s

⇒ diag (Λ) s = diag (Λ) s,
(18)

which is always true. This in fact means that the pre-scaling

constraint in (13) is already included in the power constraint

implicitly, for the case of K ≤ Nt. On the contrary, in the

considered scenario of K > Nt in this paper where the pseudo

inverse is included, the above equality will not hold, and

simply following a similar approach to the case of K ≤ Nt in

[19] will lead to invalid and erroneous solutions. Therefore, an

additional constraint is required to guarantee that the inclusion

of pseudo inverse still meets the pre-scaling requirement, given



by

HWs = diag (Λ) s

⇒H

[
1

K
·HH

(
HHH

)+
diag (Λ) ssH

]

s = diag (Λ) s

⇒HHH
(
HHH

)+
diag (Λ) s = diag (Λ) s

⇒
[

HHH
(
HHH

)+
− I
]

diag (Λ) s = 0

⇒
[

HHH
(
HHH

)+
− I
]

diag (s)
︸ ︷︷ ︸

T

Λ = 0

(19)

Based on (19), first we observe that Λ = 0 is obviously not a

valid solution to the original CI precoding. Accordingly, this

additional constraint is equivalent to finding non-zero solutions

to the linear equation set TΛ = 0. Noting that both T

and Λ are complex, we first transform them into their real

equivalence, given by

TE =

[
ℜ (T) −ℑ (T)
ℑ (T) ℜ (T)

]

, ΛE =

[
ℜ (Λ)
ℑ (Λ)

]

, (20)

and we further express the singular value decomposition

(SVD) of TE as

TE = SΣD̂H , (21)

where D̂ =
[

d̂1, d̂2, · · · , d̂2K

]

is the right singular matrix that

consists of right singular vectors. Based on the linear algebra

theory [21], the non-zero solution ΛE is therefore in the null

space of TE, which can be expressed as a linear combination

of the right singular vectors that correspond to zero singular

values, given by

ΛE =

2K−rank{TE}
∑

n=1

βn · d̂rank{TE}+n = Dβ, (22)

where each βn is real and β =
[
β1, β2, · · · , β2K−rank{TE}

]T
.

D consists of right singular vectors corresponding to zero

singular values, given by

D =
[

d̂rank{TE}+1, d̂rank{TE}+2, · · · , d̂2K

]

=
[
dT
1 ,d

T
2 , · · · ,d

T
2K

]T
,

(23)

where each dT
k represents the k-th row of D. Subsequently,

we expand the left-hand side of (16) into its real equivalence,

given by

ΛT
E

[
ℜ (P) −ℑ (P)
ℑ (P) ℜ (P)

]

︸ ︷︷ ︸

PE

ΛE = p0 ⇒ βT DTPED
︸ ︷︷ ︸

QE

β = p0,

(24)

which is the valid power constraint for the case of K > Nt

considered in this paper, and we further note that QE is

symmetric.

Based on the above analysis, we can now formulate an

equivalent optimization on the weight vector β, given by

P3 : min
β

− t

s.t. βTQEβ − p0 = 0

dT
k+Kβ

tan θt
+ t− dT

k β ≤ 0, ∀k ∈ K

−
dT
k+Kβ

tan θt
+ t− dT

k β ≤ 0, ∀k ∈ K

(25)

where we have transformed the CI constraint with the absolute

value into two separate constraints. The Lagrangian of P3 is

constructed as

L (β, t, α0, µk, νk) =− t+ α0

(
βTQEβ − p0

)

+

K∑

k=1

µk

(

dT
k+Kβ

tan θt
+ t− dT

k β

)

+

K∑

k=1

νk

(

−
dT
k+Kβ

tan θt
+ t− dT

k β

)

,

(26)

where α0, µk ≥ 0 and νk ≥ 0 are the corresponding dual

variables. By defining

u = [µ1, · · · , µK , ν1, · · · , νK ]
T
, S =

[
I − 1

tan θt
· I

I 1

tan θt
· I

]

,

(27)

where u ∈ R2K×1 and S ∈ R2K×2K . The Lagrangian of P3

can be further simplified into

L (β, t, α0,u) =
(
1Tu− 1

)
t+α0·β

TQEβ−uTSDβ−α0p0,

(28)

based on which the KKT conditions for P3 are given by

∂L

∂t
= 1Tu− 1 = 0 (29a)

∂L

∂β
= 2α0 ·QEβ −DTSTu = 0 (29b)

βTQEβ − p0 = 0 (29c)

µk

(

dT
k+Kβ

tan θt
+ t− dT

k β ≤ 0

)

= 0, ∀k ∈ K (29d)

νk

(

−
dT
k+Kβ

tan θt
+ t− dT

k β ≤ 0

)

= 0, ∀k ∈ K (29e)

Based on (29b) we obtain α0 6= 0 and the expression of β as

a function of u, given by

β =
1

2α0

·Q−1

E DTSTu. (30)

By substituting the expression of β into (24), we can further

obtain the expression of α0, given by

(
1

2α0

·Q−1

E DTSTu

)T

QE

(
1

2α0

·Q−1

E DTSTu

)

= p0

⇒ α0 =

√

uTSDQ−1

E DTSTu

4p0
(31)



W =
1

K
·HH

(
HHH

)+
diag

{
√

p0

uTSDQ−1

E DTSTu
·UDQ−1

E DTSTu

}

ssH (34)

For P3, it is easy to verify that the Slater’s condition is

satisfied, and therefore we consider the dual problem of P3:

D =max
α0,u

min
β,t

L (β, t, α0,u)

=max
α0,u

α0

(
1

2α0

Q−1

E DTSTu

)T

QE

(
1

2α0

Q−1

E DTSTu

)

− uTSD

(
1

2α0

Q−1

E DTSTu

)

− α0p0

=max
α0,u

1

4α0

· uTSDQ−1

E DTSTu− α0p0

=max
u

−
uTSDQ−1

E DTSTu

4

√
uTSDQ

−1

E
DTSTu

4p0

− p0

√

uTSDQ−1

E DTSTu

4p0

=max
u

−

√

p0 · uTSDQ−1

E DTSTu.

(32)

Based on the monotonicity of the square root function, the

maximization on the dual in (32) is equivalent to the following

optimization:

P4 : min
u

uT
(
SDQ−1

E DTST
)
u

s.t. 1Tu− 1 = 0

uk ≥ 0, ∀k ∈ K̂

(33)

where the first constraint is from (29a), K̂ = {1, 2, · · · , 2K},

and uk is the k-th entry in u.

Based on our above transformations and analysis, we have

shown that the original CI precoding problem P1 can be

equivalently solved by a simplified optimization P4. Moreover,

based on the expression of ΛE in (22), β in (30), and α0 in

(31), we can express the optimal precoding matrix W as a

function of the dual vector u in a closed form, which is shown

in (34) at the top of this page, where U =
[
I j · I

]
trans-

forms the expanded pre-scaling vector ΛE into its complex

equivalence Λ.

Compared to the original CI precoding optimization in P1

which is a SOCP optimization, it is observed that P4 is a

standard QP optimization over a simplex. It has been shown

in the literature that such a QP formulation can be more

efficiently solved than the SOCP formulation using the simplex

or interior-point methods [22], [23], and the iterative closed-

form algorithm proposed in [19] can also be directly employed

to solve P4 with reduced computational costs.

A. Condition for Spatially Multiplexing K > Nt Streams

Based on the above, we can also obtain the expression of

t∗ when the optimality of P3 is achieved, given by

t∗ = min
k

{

dTk β −
dTk+Kβ

tan θt
, dTk β +

dTk+Kβ

tan θt

}

, ∀k ∈ K̂.

(35)

If t∗ > 0, we obtain a valid pre-scaling vector Λ and a

corresponding valid precoding matrix W. Otherwise if t∗ ≤ 0,

it means that the data symbols will be scaled and rotated to

other three quarters of the constellation, which only leads to

erroneous detection. Accordingly, whether the obtained

min
k

{

dTk β −
dTk+Kβ

tan θt
, dTk β +

dTk+Kβ

tan θt

}

> 0 (36)

is the condition under which multiplexing K > Nt streams is

feasible.

IV. NUMERICAL RESULTS

Numerical results are presented based on Monte Carlo

simulations in this section. We assume the total transmit power

p0 = 1, and define the transmit SNR as ρ = 1
/
σ2. Since

ZF precoding and SINR balancing precoding are not feasible

for the scenario of K > Nt, we compare our QP-based CI

precoding with closed-form RZF precoding and traditional

SOCP-based CI precoding. Both QPSK and 8PSK modulations

are considered in the simulations.

Before we present the bit error rate (BER) performance,

we first depict the feasibility probability with respect to the

number of streams K in Fig. 2, where the number of transmit

antennas Nt varies from Nt = 4 to Nt = 12. Generally, for

a specific feasibility target, we observe that a larger number

of transmit antennas at the BS can support more streams than

that of transmit antennas, i.e., a larger Nt leads to a larger

(K −Nt). Specifically when Nt = 12 for QPSK, CI precod-

ing is able to support K = 18 streams simultaneously with a

feasibility probability higher than 95%. For the following BER

results in Fig. 3 and 4, RZF precoding is employed instead

when CI precoding is not feasible in the simulations.

The BER results of CI precoding are presented in Fig. 3

with respect to the transmit SNR ρ, where we consider two

scenarios K = 9, Nt = 8 and K = 10, Nt = 8 for both

QPSK and 8PSK modulation. When K > Nt, traditional ZF
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Fig. 3: BER v.s. transmit SNR, Nt = 8
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Fig. 4: BER v.s. number of streams K , Nt = 8, SNR=40dB

precoding and SINR balancing precoding are inapplicable, and

therefore we compare with RZF precoding only. In Fig. 3,

compared to RZF precoding where an error floor is observed,

CI precoding achieves a significant performance gain in the

medium-to-high SNR regime, which validates the superiority

of CI precoding over traditional RZF precoding.

In Fig. 4, we show the BER results of CI precoding

with an increasing number of users K for both QPSK and

8PSK modulation, where Nt = 8 and ρ = 40dB. For both

modulations considered in Fig. 4, we observe a significant

gain of CI precoding over traditional RZF precoding, when

K > Nt. The performance gains become less significant when

K increases, which is due to a lower feasibility probability for

CI precoding, as observed in Fig. 2.

V. CONCLUSION

In this paper, the interference exploitation precoding for

the scenario where the BS serves a larger number of users

than that of the transmit antennas is studied. By analyzing

the optimization problem with KKT conditions and by for-

mulating the dual problem, we obtain the closed-form optimal

precoding matrix as a function of the dual vector, as well a QP

optimization that efficiently obtains the optimal dual vector.

Numerical results validate the optimality of the closed-form

precoding matrix, and reveal significant performance gains

of interference exploitation precoding over traditional RZF

precoding.
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