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Abstract—The adoption of reconfigurable intelligent surface
(RIS) in wireless networks can enhance the spectrum- and
energy-efficiency by controlling the propagation environment.
Although the RIS does not consume any transmit power, the
circuit power of the RIS cannot be ignored, especially when the
number of reflecting elements is large. In this paper, we propose
the joint design of beamforming vectors at the base station, active
RIS set, and phase-shift matrices at the active RISs to minimize
the network power consumption, including the RIS circuit power
consumption, while taking into account each user’s target data
rate requirement and each reflecting element’s constant modulus
constraint. However, the formulated problem is a mixed-integer
quadratic programming (MIQP) problem, which is NP-hard.
To this end, we present an alternating optimization method,
which alternately solves second order cone programming (SOCP)
and MIQP problems to update the optimization variables.
Specifically, the MIQP problem is further transformed into a
semidefinite programming problem by applying binary relaxation
and semidefinite relaxation. Finally, an efficient algorithm is
developed to solve the problem. Simulation results show that
the proposed algorithm significantly reduces the network power
consumption and reveal the importance of taking into account
the RIS circuit power consumption.

I. INTRODUCTION

With the upsurge of various mobile services, especially the
services supported by artificial intelligence, the global mobile
data traffic is expected to grow rapidly and reach 77 exabytes
per month by 2022 [1]. To support those data-intensive mobile
services, various technologies have been proposed to improve
the capacity of the emerging fifth-generation (5G) wireless
systems. In particular, millimeter wave (mmWave) commu-
nication, ultra-dense network (UDN), and massive multiple-
input multiple-output (MIMO) are three most promising tech-
niques that can significantly enhance the spectrum-efficiency
[2]. However, the ultra-dense placement of base stations (BSs)
with the massive antenna arrays, especially in mmWave net-
works, generally incurs excessive energy consumption [3].
According to China Mobile, the power consumption of one
5G BS is three times higher than that of one BS in long-term
evolution (LTE). Thus, it is urgent to develop energy-efficient
techniques to realize green communications.

Deploying reconfigurable intelligent surfaces (RISs) in wire-
less networks has recently been recognized as a cost-effective
way to enhance the spectrum-efficiency and energy-efficiency
[4]–[6]. In particular, RIS is a flat man-made metasurface com-
posed of multiple passive reflecting elements, each of which is

capable of altering the phase shift of the incident signals in a
programmable manner, thereby enhancing the received signal
power at the receiver [7], [8]. Without containing active radio
frequency (RF) chains for power amplification, the RIS does
not consume any transmit power. Furthermore, due to its small
hardware footprint, the RIS can be flexibly deployed in both
indoors (e.g., ceilings) and outdoors (e.g., buildings), as well
as be integrated into the existing cellular systems [9].

The research on the beamforming design for RIS-assisted
wireless networks has attracted considerable attention recently
[10]–[14]. Specifically, the authors in [10] proposed the joint
design of the active beamforming at the BS and the passive
beamforming at the RIS to minimize the total transmit power
of multiple-input single-output (MISO) wireless networks. The
advantages of RIS were leveraged to reduce the transmit
power of downlink non-orthogonal multiple access (NOMA)
transmission in [11]. By taking into account the RIS circuit
power, the authors in [12] formulated an energy-efficiency
maximization problem, followed by proposing two efficient
algorithms based on alternating optimization, gradient descent
search, and fractional programming. Moreover, RIS was also
utilized to reduce the energy consumption of edge inference
systems in [13] and increase the minimum energy harvested
among multiple devices in [14]. The aforementioned studies
demonstrated that the BS transmit power can be reduced by
deploying a single RIS.

As the users are in general randomly distributed across the
network coverage area, deploying multiple RISs has the poten-
tial to further enhance the network performance by increasing
the probability of the signals being reflected. The authors in
[3] discussed the potential of deploying large-scale RISs to
alleviate the co-channel interference and suggested that the
RIS should be deployed to ensure high-rank MIMO channels
for achieving the spatial multiplexing gains. The authors in
[15] utilized multiple RISs for device positioning. The authors
in [16] modeled the environmental objects coated with meta-
surface with a random process and analytically derived the
probability that one randomly distributed object can act as a
reflector. In addition, multiple RISs were leveraged to enhance
the efficiency of simultaneous wireless information and power
transfer (SWIPT) in [17]. Although the BS transmit power
can be reduced with the assistance of RISs, the deployment
of multiple RISs incurs non-negligible RIS circuit power
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consumption, which is comparable to the transmit power of
the BS. However, most of the existing studies except [12] did
not taken into account the RIS circuit power consumption.
To provide on-demand services in networks with dynamic
traffic fluctuations and channel conditions, some RISs may
be dynamically switched off to reduce the RIS circuit power
consumption. However, only a single RIS that cannot be
switched off to save energy was considered in [12].

In this paper, we consider a multi-RIS-assisted multi-user
MISO system, where one BS serves multiple users with the
assistance of multiple RISs. The main objective is to minimize
the network power consumption, including the circuit power
consumption of the RISs and the transmit power consumption
of the BS, subject to the quality-of-service (QoS) constraints
of the users and the constant modulus constraints of the RISs.
The RIS circuit power consumption is determined by the set
of active RISs, while the transmit power consumption of the
BS can be minimized through optimizing the beamforming
vectors of the BS and the phase-shift matrices of the active
RISs. There exists a tradeoff between the RIS circuit power
consumption and the BS transmit power consumption. To this
end, we propose the joint design of the beamforming vectors
at the BS, the active RIS set, and the phase-shift matrices at
the active RISs.

The formulated problem turns out to be a mixed-integer
quadratic programming (MIQP) problem, which is NP-hard.
We present an alternating optimization framework that opti-
mizes the BS beamforming as well as active RIS set and the
corresponding phase shifts alternately. In each alternation, the
beamforming optimization problem is recast as a second order
cone programming (SOCP) problem, while the active RIS
set and the corresponding phase-shift matrices optimization
problem turns out to be a MIQP problem. In particular, we
transform the MIQP problem into a non-convex quadrati-
cally constrained quadratic programming (QCQP) problem via
binary relaxation, followed by recasting the resulting non-
convex QCQP problem as a rank-constrained semidefinite
programming (SDP) problem via matrix lifting. By utilizing
the powerful semidefinite relaxation (SDR) technique, we
propose an efficient algorithm to solve the problem. Simulation
results show that the proposed algorithm significantly reduces
the network power consumption and reveal the importance
of taking into account the RIS circuit power consumption in
designing RIS powered green wireless networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the downlink transmission of a multi-RIS-assisted
cellular network, where one M -antenna BS serves K single-
antenna users with the assistance of L distributed RISs, as
shown in Fig. 1. We denote K = {1, 2, . . . ,K} and L =
{1, 2, . . . , L} as the sets of user and RIS indices, respectively.
The number of passive reflecting elements on RIS l is denoted
as Nl,∀ l ∈ L. Each user is expected to receive a unicast signal
from the BS. With linear precoding, the signal transmitted by
the BS can be expressed as x =

∑
k∈K ωksk, where sk ∈ C

Fig. 1: An illustration of a multi-RIS-assisted multi-user MISO downlink
cellular network.

and ωk ∈ CM×1 denote the complex valued information
symbol and the beamforming vector for user k, respectively.
Without loss of generality, we assume that signals {sk|k ∈ K}
are independent, and have zero mean and unit variance, i.e.,
E[sksHk ] = 1, and E[sksHj ] = 0,∀ k 6= j, where (·)H denotes
the conjugate transpose. Besides, the BS has a maximum
transmit power constraint

∑
k∈K ‖ωk‖2 ≤ Pmax, where Pmax

denotes the maximum transmit power of BS.
With the assistance of RIS, the transmit power of the BS

can be significantly reduced [10]. However, the circuit power
consumption of the RIS is non-negligible, especially when
the number of reflecting elements is large, as demonstrated
in [12]. Hence, it becomes critical to dynamically switch off
some RISs to reduce the energy consumption while the QoS
requirements of all users can be satisfied. We denote A ⊆ L
as the index set of active RISs and Z ⊆ L as the index set
of inactive RISs with A∪Z = L. In addition, we denote the
channel responses from the BS to RIS l, from RIS l to user
k, and from the BS to user k as Gl ∈ CNl×M , hl,k ∈ CNl×1,
and gk ∈ CM×1,∀ l ∈ L,∀ k ∈ K, respectively. We consider
quasi-static block fading, i.e., all the channel responses remain
invariant during one transmission block. In addition, we as-
sume that perfect channel state information (CSI) is available
at the BS, as in [10]–[14]. The baseband signal, transmitted
from the BS and reflected by the active RISs in set A, received
at user k ∈ K can be expressed as

yk =

(∑
l∈A

hH
l,kΘlGl + gH

k

)∑
i∈K

ωisi + zk,∀ k, (1)

where Θl = diag(ρle
jϕl,1 , ρle

jϕl,2 . . . , ρle
jϕl,Nl ) ∈ CNl×Nl

represents the diagonal phase-shift matrix of RIS l, ρl denotes
the amplitude reflection coefficient of RIS l, ϕl,n ∈ [0, 2π) de-
notes the phase shift of passive reflecting element n equipped
on RIS l, and zk ∼ CN (0, σ2

k) denotes the additive white
Gaussian noise (AWGN) with σ2

k being the noise power of



user k. As in [10]–[14], we assume that the power of the
signals reflected by the RISs two or more times is negligible.

By assuming that each user adopts the single-user detection
strategy, the achievable signal-to-interference-plus-noise ratio
(SINR) at user k ∈ K can be expressed as

SINRk(A)=

∣∣∣(∑l∈A hH
l,kΘlGl + gH

k

)
ωk

∣∣∣2∑
j 6=k

∣∣∣(∑l∈A hH
l,kΘlGl + gH

k

)
ωj

∣∣∣2+σ2
k

. (2)

B. Power Consumption Model

The power consumption model is critical for the design
of a green wireless network. In particular, the total power
consumption of an RIS-assisted wireless network includes the
BS transmit power, the BS circuit power, and the RIS circuit
power. It is worth noting that each RIS, without the active RF
chains for power amplification, does not consume any transmit
power because of the passive nature of the reflecting elements.
By adopting an empirical linear power consumption model for
the BS, the total power consumption is defined as

p̂(A, {ωk}) =
∑
k∈K

1

η
‖ωk‖2 + PBS +

∑
l∈A

PRIS(Nl), (3)

where η is the drain efficiency of the RF power amplifier at
the BS, PBS denotes the circuit power consumption of the BS,
and PRIS(Nl) denotes the circuit power consumption of the
RIS l with Nl passive reflecting elements.

According to [18], the circuit power consumption of the
RIS depends on the resolution of each reflecting element.
In particular, the typical values of the power consumption
of each reflecting element with 3-bit, 4-bit, 5-bit, and 6-
bit phase-shift resolutions are 1.5 mW, 4.5 mW, 6 mW,
and 7.8 mW, respectively. With a large number of reflecting
elements on each RIS, the circuit power consumption of the
RIS cannot be ignored. For tractability, we consider the RIS
with continuous phase shifting in this paper. By denoting
PRE as the power consumption of each reflecting element,
the power consumption of an RIS with Nl passive elements
is PRIS(Nl) = NlPRE,∀ l ∈ A.

As the circuit power consumption of the BS is a constant,
minimizing the total network power consumption p̂(A, {ωk})
in (3) is equivalent to minimizing the following re-defined
network power consumption

p(A, {ωk}) =
∑
k∈K

1

η
‖ωk‖2 +

∑
l∈A

PRIS(Nl), (4)

where both the BS transmit power and RIS circuit power
consumption are considered.

C. Problem Formulation

The network power consumption model given in (4) indi-
cates that the power consumption can be minimized by reduc-
ing the transmit power of the BS and decreasing the number
of active RISs. However, there exists a tradeoff between these
two strategies. On one hand, to reduce the transmit power of
the BS, more RISs are required to be active to exploit the

passive array gain. On the other hand, increasing the number
of active RISs incurs a higher RIS circuit power consumption.

To this end, we propose a joint design of the beamforming
vectors at the BS, the active RIS set, and the phase-shift
matrices at the active RISs to minimize the network power
consumption in (4), while taking into account the target SINR
requirement of each user and the constant modulus constraint
of each passive reflecting element. To facilitate the problem
formulation, we denote θl,n = ρle

jϕl,n ,∀ l ∈ A,∀n ∈ Nl =
{1, 2, . . . , Nl}. As a result, the phase-shift matrix can be
rewritten as Θl = diag(θl,1, θl,2 . . . , θl,Nl

) ∈ CNl×Nl ,∀ l ∈
A. The formulated network power minimization problem is
given by

P : minimize
A,{ωk},{Θl}

p(A, {ωk}) (5a)

subject to SINRk(A) ≥ γk,∀ k ∈ K, (5b)∑
k∈K

‖ωk‖2 ≤ Pmax, (5c)

|θl,n| = ρl,∀ l ∈ A,∀n ∈ Nl, (5d)

where γk denotes the SINR threshold of signal sk,∀ k ∈ K.
Problem P is a joint BS beamformer, active RIS set, and

RIS phase shifts optimization problem. It turns out to be an
MIQP problem, which is intractable to be solved in general
and imposes the following three challenges. First, the objective
function (5a) is combinatorial due to the RIS set selection.
Second, the SINR constraints (5b) are non-convex, in which
the beamforming vectors (i.e., {ωk}) and the phase-shift
matrices (i.e., {Θl}) are coupled. Third, the constant modulus
constraints (5d) are non-convex. To tackle the aforementioned
challenges, we shall propose an efficient algorithm, which
alternately solves SOCP and MIQP problems, as presented
in the following section.

III. ALTERNATING SOCP AND MIQP ALGORITHM

In this section, we propose an alternating optimization al-
gorithm to solve the network power minimization problem. In
each alternating procedure, we optimize the BS beamforming
vectors by solving an SOCP problem and the active RIS
set as well as the corresponding RIS phase-shift matrices by
solving an MIQP problem. In particular, the MIQP problem
is transformed into an SDP problem by applying the binary
relaxation and SDR techniques.

A. SOCP for BS Beamforming Optimization
With given active RIS set A and phase-shift matrices {Θl}

of the active RISs, the composite channel responses of the
direct and reflect links between the BS and each user are fixed.
For notational ease, we define h̃H

k (A) ∈ C1×M as

h̃H
k (A) =

∑
l∈A

hH
l,kΘlGl + gH

k . (6)

Based on (2) and (6), the SINR constraints in (5b) can be
equivalently rewritten as∣∣∣h̃H

k (A)ωk
∣∣∣2 ≥ γk

∑
j 6=k

∣∣∣h̃H
k (A)ωj

∣∣∣2 + σ2
k

 ,∀ k ∈ K. (7)



By extracting the hidden convexity, constraints (7) can be
reformulated as the following second order cone (SOC) con-
straints [19]

C1(A) :
1√
γkσ2

k

<
(
h̃H
k (A)ωk

)
≥
√∑
j 6=k

1

σ2
k

∣∣∣h̃H
k (A)ωj

∣∣∣2+1,

∀ k ∈ K, (8)

where <(·) denotes the real part of a complex number.
When the active RIS set and the corresponding phase-shift

matrices are given, the network power minimization problem
P can be reduced to the following optimization problem

SOCP : minimize
{ωk}

∑
k∈K

1

η
‖ωk‖2 (9a)

subject to
∑
k∈K

‖ωk‖2 ≤ Pmax, (9b)

C1(A). (9c)

Note that problem (9) is an SOCP problem, which can be
solved by the existing solvers such as CVX [20].

B. MIQP for Active RIS Set and Phase Shifts Optimization

With given beamforming vectors {ωk}, problem P is re-
duced to the joint optimization of the active RIS set A and
the corresponding phase-shift matrices {Θl}, given by

minimize
A,{Θl}

∑
l∈A

PRIS(Nl) (10a)

subject to SINRk(A) ≥ γk,∀ k ∈ K, (10b)
|θl,n| = ρl,∀ l ∈ A,∀n ∈ Nl. (10c)

To address the combinatorial challenge, we introduce an
auxiliary binary variable al ∈ {0, 1} to indicate whether or not
RIS l is active, ∀ l ∈ L. In particular, we denote al = 1 if RIS l
is active, and al = 0 otherwise. For notational ease, we further
denote a = {a1, a2, . . . , aL} ∈ {0, 1}L. To facilitate the prob-
lem transformation, we denote vl,n = alθl,n,∀ l ∈ L,∀n ∈
Nl, and vl = [vl,1, vl,2, . . . , vl,Nl

]H ∈ CNl×1,∀ l ∈ L. With
given beamforming vectors {ωk}, bk,j = gH

k ωj and ck,j(l) =
diag(hH

l,k)Glωj are fixed, ∀ k, j ∈ K,∀ l ∈ L. Hence, we
have vH

l ck,j(l) = alh
H
l,kΘlGlωj ,∀ k, j ∈ K,∀ l ∈ L. With

these notations, the SINR constraints (5b) can be rewritten as

γk

∑
j 6=k

|
∑
l∈L

vH
l ck,j(l) + bk,j |2 + σ2

k


≤

∣∣∣∣∣∑
l∈L

vH
l ck,k(l) + bk,k

∣∣∣∣∣
2

,∀ k ∈ K. (11)

To address the non-convexity of constraint (11), we fur-
ther denote c̃k,j = [ck,j(1)

H, ck,j(2)
H, . . . , ck,j(L)

H]H ∈
CN̂×1,∀k, j ∈ K, and ṽ = [vH

1 ,v
H
2 , . . . ,v

H
L ]

H ∈ CN̂×1,
where N̂ =

∑
l∈LNl. As a result, we have

∑
l∈L v

H
l ck,j(l) =

ṽHc̃k,j ,∀ k, j ∈ K. By introducing an auxiliary variable t,
constraint (11) can be rewritten as

C2(L) : γk

∑
j 6=k

(
qHDk,jq + |bk,j |2

)
+ σ2

k


≤ qHDk,kq + |bk,k|2,∀ k ∈ K, (12)

where

Dk,j =

[
c̃k,j c̃

H
k,j c̃k,jb

H
k,j

bk,j c̃
H
k,j 0

]
∈ C(N̂+1)×(N̂+1), (13)

q =

[
ṽ
t

]
∈ C(N̂+1)×1, (14)

and Il = {
∑l−1
j=1Nj + 1, . . . ,

∑l
j=1Nj},∀ l ∈ L.

By introducing the auxiliary binary variable a, we replace
the active RIS set A with the complete RIS set L, and problem
(10) can be equivalently reformulated as follows

MIQP : minimize
a,q

∑
l∈L

a2l PRIS(Nl) (15a)

subject to C2(L), (15b)

|qi|2 = a2l ρ
2
l ,∀ l ∈ L,∀ i ∈ Il, (15c)

|qN̂+1| = 1, (15d)

a2l ∈ {0, 1},∀ l ∈ L. (15e)

We relax the non-convex binary constraints (15e) as the
unit interval constraints [21], thereby yielding the following
homogeneous non-convex QCQP problem [22]

minimize
a,q

∑
l∈L

a2l PRIS(Nl)

subject to C2(L),
constraints (15c), (15d),

0 ≤ a2l ≤ 1,∀ l ∈ L. (16)

To tackle this issue, we adopt the powerful SDR technique,
which reformulates problem (16) into the rank constrained
matrix optimization problem via matrix lifting, followed by
dropping the rank-one constraint. We denote positive semidef-
inite (PSD) matrix Q = qqH ∈ C(N̂+1)×(N̂+1) with Q � 0
and rank(Q) = 1. By further denoting âl = a2l ,∀ l ∈ L,
â = {â1, â2, . . . , âL}, Tr(Dk,jQ) = qHDk,jq and dropping
the rank-one constraint, problem (16) can be relaxed as the
following SDP problem

minimize
â,Q

∑
l∈L

âlPRIS(Nl)

subject to γk
∑
j 6=k

Tr(Dk,jQ) + γk

∑
j 6=k

|bk,j |2 + σ2
k


≤ Tr(Dk,kQ) + |bk,k|2,∀ k ∈ K,

Q(i, i) = âlρ
2
l ,∀ l ∈ L,∀ i ∈ Il,

Q(N̂ + 1, N̂ + 1) = 1,

Q � 0,



Algorithm 1: Proposed Algorithm for Solving Problem P
Input: Initial {Θ0

l } and threshold ε.
1 for t=1,2,. . . do
2 Given {Θt−1

l }, solve problem (9) to obtain {ωtk}.
3 Given {ωtk}, solve problem (17) to obtain ât and Qt,

and denote the solution as qt after using Gaussian
randomization on Qt.

4 Sort ât in the ascending order as ãt, where
ãtπ1
≤ ãtπ2

≤ · · · ≤ ãtπL
.

5 Initialize Jlow = 0, Jup = L, J0 = 0, f lag = 0.
6 while Jup − Jlow > 1 do
7 Set J0 = bJup+Jlow

2 c.
8 Set ãtj = 0,∀j ∈ {1, . . . , J0},

ãtj = 1,∀j ∈ {J0 + 1, . . . , L}.
9 Set |qt

N̂+1
|=1, |qti |= ãtπl

ρπl
,∀πl∈L,∀ i∈Iπl

.
10 Check the feasibility of problem (15).
11 if problem (15) is feasible then
12 Recover ṽt=[qt/qt

N̂+1
](1:N̂), split ṽt to get

{vt1,. . .,vtL}, At={πl|ãtπl
=1,∀πl∈L}, and

Θt
l = diag

(
(vtl )

H
)
,∀ l ∈ At.

13 Set Jlow = J0, f lag = 1.
14 else
15 Set Jup = J0.
16 end
17 end
18 if The decrease of the network power consumption is

below ε or flag=0 then
19 break.
20 end
21 end

Output: At, {ωtk}, {Θt
l}

0 ≤ âl ≤ 1,∀ l ∈ L. (17)

The resulting SDP problem can be efficiently solved by the
existing solvers such as CVX [20]. We denote Q∗ and q∗ as
the solution of problems (17) and (16), respectively. If Q∗ is
rank-one, q∗ can be recovered by using Cholesky decompo-
sition on Q∗. If Q∗ fails to be rank-one, q∗ can be obtained
by using Gaussian randomization on Q∗ [23]. After obtaining
the solution q∗, we can recover ṽ∗ = [q∗/q∗

N̂+1
](1:N̂), where

[f ](1:N̂) denotes the vector that contains the first N̂ elements in
f . By splitting ṽ∗, we obtain the set {v∗1 , . . . ,v∗L}, which can
be used to recover Θ∗l = diag((v∗l )

H),∀ l ∈ L. Besides, the
auxiliary binary variable set, denoted as â∗, can be obtained
to recover the active RIS set A∗ = {l | â∗l = 1,∀ l ∈ L}.
The proposed algorithm to solve problem P is summarized in
Algorithm 1, which solves problems (9) and (17) alternately
in an iterative manner until convergence.

IV. NUMERICAL RESULTS

In this section, we present the numerical results of the
proposed algorithm in a multi-RIS-assisted MISO cellular
network. We consider a three-dimensional (3D) coordinate
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Fig. 2: Network power consumption versus the number of users.

system consisting of one BS and L = 3 RISs. The BS, located
at (0, 0, 50) meters, is equipped with M = 10 antennas. The
RISs are deployed at (0, 40, 40), (40, 60, 40), and (60, 20, 40)
meters. Each RIS has Nl = 12 reflecting elements, ∀ l ∈ L. In
addition, K = 6 users are uniformly distributed in the range of
(0, 0, 0)×(10, 10, 0) meters. All the channels suffer from both
path loss and Rayleigh fading. As in [10], [12], we set the path
loss exponents of the BS-RIS link, the RIS-user link, and the
BS-user link as 2.5, 2.4, and 3.5, respectively. Without loss of
generality, we assume that all the users have the same SINR
threshold, i.e., γk = γ,∀ k ∈ K. Unless specified otherwise,
we set the target data rate Rmin

k = log(1 + γk) = 2 bits per
channel use, σ2

k = −40 dBm, ∀ k ∈ K, the drain efficiency
η = 0.6, the amplitude reflection coefficient ρl = 1,∀ l ∈ L,
the maximum transmit power Pmax = 1000 mW, and the
circuit power of each RIS element PRE = 10 mW [12].

To illustrate the effectiveness of the proposed algorithm, we
consider two baseline schemes, termed as all-RIS-active and
exhaustive search, respectively. For the all-RIS-active method,
all the RISs are active and only the BS transmit power is
minimized. For the exhaustive search method, all possible
combinations of active RISs are checked and the algorithm
complexity grows exponentially with the number of RISs.

Fig. 2 shows the impact of the number of users (i.e., K)
on the network power consumption of all algorithms under
consideration. By dynamically switching off some RISs, the
network power consumption of the proposed algorithm is
much lower than that of the all-RIS-active method. In addition,
the performance gap between the proposed algorithm and the
exhaustive search algorithm is small, which demonstrates the
effectiveness of the proposed algorithm. As the number of
users increases, the traffic load in the network also increases.
As a result, more network power consumption due to a larger
number of active RISs and/or a higher BS transmit power is
required to support the QoS requirements of all users.

Fig. 3 illustrates the impact of the number of BS antennas
(i.e., M ) on the network power consumption. As the value
of M increases, the BS transmit power of the all-RIS-active
method decreases due to the increased power gain. The re-
duction of the BS transmit power can also be achieved by
reducing the number of active RISs. By jointly optimizing the
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Fig. 3: Network power consumption versus number of BS antennas.
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Fig. 4: Network power consumption versus target data rate.

reduction of both the BS transmit power and the RIS circuit
power, the decreasing rate of the proposed algorithm is larger
than that of the all-RIS-active method.

Fig. 4 shows the impact of the target data rate (i.e.,
Rmin
k ,∀ k ∈ K) on the network power consumption. When the

target data rate is low, the proposed algorithm has a significant
performance gain over the all-RIS-active method, and achieves
almost the same performance as the exhaustive search method.
As the target data rate increases, more RISs are required to
be active to meet the target data rate requirements, and hence
the performance gap between the proposed algorithm and the
all-RIS-active method reduces.

V. CONCLUSIONS

In this paper, we formulated a new RIS selection and
beamforming optimization problem to minimize the network
power consumption of a multi-RIS-assisted multiuser MISO
system. To account for the tradeoff between the BS transmit
power consumption and the RIS circuit power consumption,
we proposed the joint design of the beamforming vectors at
the BS, the active RIS set, and the phase-shift matrices at
the active RISs. To solve the challenging MIQP problem, we
developed an efficient algorithm that alternately solves the
SOCP and MIQP problems, where the MIQP problem was
transformed to an SDP problem by applying binary relaxation
and SDR. Simulation results showed the effectiveness of the
proposed algorithm in reducing the network power consump-

tion and demonstrated that the RIS circuit power cannot be
ignored when designing green RIS-assisted wireless networks.
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