
Deep Reinforcement Learning-based Task
Offloading in Satellite-Terrestrial Edge Computing

Networks

Dali Zhu1,2, Haitao Liu1,2, Ting Li1,2, Jiyan Sun1, Jie Liang1,2, Hangsheng Zhang1,2, Liru Geng1 and Yinlong Liu1,2,*

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

{zhudali, liuhaitao, liting0715, sunjiyan, liangjie, zhanghangsheng, gengliru, liuyinlong}@iie.ac.cn
*The corresponding author

Abstract—In remote regions (e.g., mountain and desert), cel-
lular networks are usually sparsely deployed or unavailable.
With the appearance of new applications (e.g., industrial automa-
tion and environment monitoring) in remote regions, resource-
constrained terminals become unable to meet the latency re-
quirements. Meanwhile, offloading tasks to urban terrestrial
cloud (TC) via satellite link will lead to high delay. To tackle
above issues, Satellite Edge Computing architecture is proposed,
i.e., users can offload computing tasks to visible satellites for
executing. However, existing works are usually limited to offload
tasks in pure satellite networks, and make offloading decisions
based on the predefined models of users. Besides, the runtime
consumption of existing algorithms is rather high.

In this paper, we study the task offloading problem in satellite-
terrestrial edge computing networks, where tasks can be executed
by satellite or urban TC. The proposed Deep Reinforcement
learning-based Task Offloading (DRTO) algorithm can accelerate
learning process by adjusting the number of candidate locations.
In addition, offloading location and bandwidth allocation only
depend on the current channel states. Simulation results show
that DRTO achieves near-optimal offloading cost performance
with much less runtime consumption, which is more suitable for
satellite-terrestrial network with fast fading channel.

Index Terms—Satellite-terrestrial networks, Edge computing,
Deep reinforcement learning, Computation offloading, Mixed-
integer programming

I. INTRODUCTION

With the emergence of 5G technology and the expansion of
human activities, new applications such as industrial automa-
tion [1] and real-time environmental monitoring [2] [3] appear
in remote regions. However, due to expensive construction and
maintenance costs, cellular base stations are usually sparsely
deployed or unavailable in remote regions [4]. When resource-
constrained terminals cannot meet the latency requirements
of these new applications, computing tasks are offloaded to
urban terrestrial cloud (TC) [5] for executing via satellites [6]
[7]. However, the long propagation distance between remote
terminals and urban TC will lead to high latency, which cannot
meet the requirements of some delay-sensitive applications.
Thanks to the emergence of low-earth-orbit (LEO) satellites,
the propagation delay is significantly reduced. Furthermore,

researchers proposed satellite edge computing (SatEC) archi-
tecture [8] [9] [10] by referring to mobile edge computing
(MEC) [11]. Remote terminals can directly offload computing
tasks to nearby visible satellites for executing, which further
reduces the offloading delay.

Recently, there are several efforts focusing on task offload-
ing in SatEC networks. Zhang et al. [12] proposed a satellite-
aerial integrated computing architecture, where ground/aerial
users offload tasks to high-altitude platforms or LEO satel-
lites. Considering the intermittent communication caused by
satellite orbiting, Wang et al. [13] proposed a IoT-to-Satellite
offloading method based on game theory. However, they
do not consider the cooperation between SatEC server and
urban terrestrial data centers. Actually, due to the limited
computing capacity and energy reservation of satellite, when
a large number of tasks are simultaneously offloaded, SatEC
servers need to cooperate with urban TC to provide satisfying
computing service. As shown in Fig. 1, in a satellite-terrestrial
integrated network, the LEO access satellite can choose to
locally execute the offloaded tasks, or transparently forward
them to its connected urban TC.

Furthermore, although some existing works focus on of-
floading in satellite-terrestrial integrated network, they require
some predefined models. For examples, the flight trajectories
of aerial users are required in [12], and the flight trajectory of
unmanned aerial vehicle is required in [14], which are usually
difficult to obtain in practice. Instead, we propose to make of-
floading decisions only based on current channel states, which
is more convenient to obtain. In addition, to optimize the delay
and energy consumption in SatEC network, researchers usually
formulate the offloading decision and bandwidth allocation
problem as a mixed-integer programming (MIP) problem
[15] [16]. The 3D hypergraph matching [12], game-theoretic
approach [13] and a multiple-satellite offloading method [17]
have been proposed to solve the hard MIP problem. However,
both of them require considerable number of iterations to
reach a satisfying optimum. Hence, they are not suitable for
making real-time offloading decisions, especially under the
fast fading channels [18] caused by high speed movement of

ar
X

iv
:2

10
2.

01
87

6v
1

 [
cs

.N
I]

 3
 F

eb
 2

02
1

LEO satellites [19].

ST 1 ST 2 Urban Terrestrial Cloud

LEO Access Satellite

with SatEC Server

ST 3 ST N

Remote Region

Task Task

Fig. 1. Task Offloading in Satellite-Terrestrial Edge Computing Networks

In this paper, we consider a satellite-terrestrial edge comput-
ing network and model the offloading cost as weighted sum of
latency and energy consumption. To minimize the offloading
cost, the offloading location decision and bandwidth allocation
is formulated as a MIP problem. Then, we propose a low-
complexity Deep Reinforcement learning-based Task Offload-
ing (DRTO) algorithm to solve it. Specifically, the deep neural
network (DNN) [20] only takes the current channel states
as inputs, and outputs a relaxed offloading location, which
is then quantized into a set of candidate binary offloading
locations. Given a candidate location, a bandwidth allocation
convex problem is solved by CVXPY [21] tool. The main
contributions of this paper are summarized as follows:
• Satellite-terrestrial cooperative offloading. We consider

a satellite-terrestrial cooperative edge computing archi-
tecture, where the tasks can be executed by either SatEC
server or urban TC. The offloading location decision and
bandwidth allocation is formulated as a MIP problem.

• Model-free learning. The proposed DRTO algorithm
makes offloading decision only based on the current chan-
nel states. Meanwhile, DRTO can improve its offloading
policy by learning from the real-time trend of channel
states, which adapts to the high dynamics of satellite-
terrestrial networks.

• Low time complexity. Compared with traditional opti-
mization methods, DRTO completely removes the need of
solving hard MIP problem. Furthermore, we dynamically
adjust the size of action space to speed up the learning
process. Simulation results show that the runtime con-
sumption of DRTO is significantly decreased, while the
offloading cost performance is not compromised.

The rest of this paper is organized as follows: We describe
the system model and formulates the offloading cost minimiza-
tion problem in Section II. The details of DRTO algorithm is
introduced in Section III. In Section IV, simulation results are
presented. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, LEO satellites fly above the surface of
earth at high speed, and connect the remote STs to ground
station. TC is directly connected to ground station via an

optical fiber and its transmission delay can be ignored. We as-
sume that the access satellite is always available, and consider
N STs denoted by N = {1, 2, ..., N} and a TC within the
coverage of the same access satellite. For simplicity, we denote
the wireless signal traveling from ST to its access satellite as
the 1st-hop, and the 2nd-hop from access satellite to TC. We
assume the access satellite can measure channel states before
deciding the offloading locations and allocating the bandwidth.
The notations used throughout the paper are list in Table I.

TABLE I
NOTATIONS USED IN THIS PAPER

Notation Description
xn Offloading location of n-th ST
αnB Bandwidth allocated for n-th ST

αN+nB Bandwidth allocated for forwarding the task of n-th ST
B Total bandwidth of access satellite
pn Transmission power of n-th ST

pSAT Transmission power of access satellite
hn Channel gain between n-th ST and its access satellite
hTC Channel gain between access satellite and TC
N0 Noise power at the receiver
L Size of task
k Computational intensity
f1 CPU frequency of SatEC server
f0 CPU frequency of TC
pc Computing Power Consumption of SatEC server
λ Latency-Energy Weight Parameter

A. Offloading Location

For the task offloaded by n-th ST, its access satellite
can choose to locally process or transparently forward to its
connected TC. We denote the offloading location of n-th ST
as xn, where xn = 1 and xn = 0 respectively denotes SatEC
server and TC.

B. Offloading Cost

The quality of service (QoS) mainly depends on user-
perceived latency and energy consumption. Moreover, con-
sidering the precious energy reservation of satellites, we also
include the energy consumption of satellites into cost. The
detailed definitions of offloading cost for different locations
are given as follows:

1) Offloaded to SatEC server: When tasks are offloaded
to SatEC server, the cost mainly consists of STs’ transmis-
sion cost and SatEC server’s computing cost. We denote
αn as the proportion of bandwidth allocated for n-th ST,
then the n-th ST’s 1-st hop transmission rate is given by
C1,n = αnB log2 (1 + pnhn/N0), where B denotes the total
bandwidth of access satellite, pn denotes the transmission
power of n-th ST, hn denotes the channel gain between n-
th ST and its access satellite, and N0 denotes the noise power
at the receiver.

Based on the 1st-hop transmission rate C1,n, the transmis-
sion latency is given by T1,n = L/C1,n, where L denotes the
task size (in bits). Then, the energy consumed by n-th ST for
transmission is given by E1,n = pnT1,n.

We simply ignore the queuing delay. The computing latency
at SatEC server is given by T c

1,n = kL/f1, where k denotes the
computational intensity (in cycles/bit) of task, and f1 denotes
the CPU frequency (in cycles/s) of SatEC server. The energy
consumed by SatEC server for computing is given by Ec

1,n =
pcT

c
1,n, where pc denotes the computing power consumption

(in Watt) of SatEC server.
Therefore, the total latency that n-th ST perceived and

energy consumed for n-th ST are respectively given by
TSAT
n = T1,n + T c

1,n and ESAT
n = E1,n + Ec

1,n.
2) Offloaded to TC: When tasks are offloaded to TC,

apart from the transmission cost of STs, the forwarding cost
of access satellite and computing cost of TC should be
included. We denote αN+n as the proportion of bandwidth
allocated for forwarding the task of n-th ST, then the 2nd-
hop transmission rate for n-th ST is given by C2,n =
αN+nB log2 (1 + pSAThTC/N0), where pSAT denotes the
transmission power of access satellite, hTC denotes the chan-
nel gain between access satellite and TC. Therefore, the
forwarding latency and energy consumption for n-th ST are
respectively given by T2,n = L/C2,n and E2,n = pSATT2,n.

The computing latency at TC is given by T c
2,n = kL/f0,

where f0 denotes the CPU frequency (in cycles/s) of TC.
Thanks to the continuous electrical power supply for TC,
we simply ignore the computing energy consumption of TC.
Therefore, the total latency that n-th ST perceived and energy
consumed for n-th ST are respectively given by TTC

n =
T1,n + T2,n + T c

2,n and ETC
n = E1,n + E2,n.

C. Problem Formulation

As mentioned above, the offloading cost is mainly composed
of latency and energy consumption, which depends on offload-
ing locations, current channel states and bandwidth allocation.
Therefore, the offloading cost minimization problem P is
formulated as following:

P : min
x,α

F (x,α) =

N∑
n=1

xn
[
λTSAT

n + (1− λ)ESAT
n

]
+ (1− xn)

[
λTTC

n + (1− λ)ETC
n

] (1a)

s.t. xn ∈ {0, 1},∀n ∈ N (1b)

0 ≤
2N∑
n=1

αn ≤ 1 (1c)

αn ≥ 0,∀n ∈ {1, ..., 2N} (1d)

where λ denotes the weight parameter for balancing the
latency and energy consumption.

It can be seen that problem P is a mixed-integer program-
ming problem, in which the 0− 1 integer variable x and the
continuous variable α are mutually coupled. This problem
is commonly reformulated by specific relaxation approach
and then solved by powerful convex optimization techniques.
However, these methods perform considerable iterations, and
the original problem cannot be solved within channel coher-
ent time, especially when many STs simultaneously offload

tasks. To tackle this dilemma, we are motivated to propose a
effective low-complexity Deep Reinforcement learning-based
Task Offloading algorithm to obtain the near-optimal solution.
Specifically, we adopt a DNN to map the current channel
states to offloading locations, and improve the DNN via
reinforcement learning.

III. DRTO: DEEP REINFORCEMENT LEARNING FOR TASK
OFFLOADING

To minimize the offloading cost, we design an offloading
algorithm π : h −→ x∗ that quickly selects the optimal
offloading location x∗ = [x∗1, x

∗
2, ..., x

∗
N] only based on the

current channel state h = [h1, h2, ..., hN , hTC].

𝒉

Channel

Gain

DNN

Solve the

bandwidth

allocation

problem 𝒙∗

𝜶∗

Input Output

Channel 𝒉 Location 𝒙∗

…

Sample

random

batch for

training

Memory

Channel 𝒉 Location 𝒙∗

Channel 𝒉 Location 𝒙∗

Channel 𝒉 Location 𝒙∗

Order-

preserving

quantizati

on

𝒙1

ෝ𝒙

𝒙2

𝒙𝐾

…

Fig. 2. The diagram of DRTO

The diagram of DRTO is shown in Fig. 2. First, the DNN
takes the current channel gain h as inputs, and generates a
relaxed offloading location x̂. Then, we quantize the relaxed
location x̂ into K candidate binary offloading locations,
namely x1,x2, ...,xK . The optimal location x∗ is obtained by
solving a series of bandwidth allocation convex problems. Sub-
sequently, the newly obtained channel state-offloading location
pair (h,x∗) is added into replay memory. A random batch
will be sampled from memory to improve the DNN every
δ time frames. To further reduce the runtime consumption,
we dynamically adjust K to speed up the learning process.
In the following subsections, the details of above stages are
described. The pseudocode of DRTO algorithm is summarized
in Algorithm 1.

A. Generate the Offloading Location

As shown in the upper part of Fig. 2, in each time
frame, the fully connected DNN takes the current channel
gain h as inputs, and generates a relaxed offloading location
x̂ = [x̂1, x̂2, ..., x̂N] (each entry is relaxed into [0, 1] interval).
Then, the relaxed location x̂ is quantized into K binary
locations. Given a candidate location xk, DRTO solves a
bandwidth allocation convex problem, and obtains the offload-
ing cost. Subsequently, the optimal offloading location x∗ is
selected according to the minimal offloading cost.

Although the mapping from channel state to offloading
location is unknown and complex, thanks to the universal
approximation theorem [22], we adopt a fully connected DNN
to approximate this mapping. The DNN is characterized by
the weights that connect the hidden neurons, and composed

Algorithm 1 The DRTO Algorithm
1: Input: Current channel gain h.
2: Output: Optimal Offloading location x∗ and correspond-

ing bandwidth allocation α∗.
3: for t = 1, 2, ..., T do
4: DNN generates a relaxed offloading location x̂.
5: Quantize x̂ into Kt candidate binary offloading loca-

tions xk, k ∈ 1, 2, ...,Kt.
6: for k = 1, 2, ...,Kt do
7: Given binary offloading location xk, the bandwidth

allocation αxk
and offloading cost F (xk,αxk

) are
obtained by solving P ′.

8: end for
9: Obtain the optimal offloading location with respect to

x∗ = arg minxk,k∈1,2,...,K F (xk,αxk).
10: Add newly obtained channel state-offloading location

pair (ht,x
∗) into replay memory.

11: if t mod δ == 0 then
12: Sample a random batch from memory for training

DNN.
13: end if
14: if t mod ∆ == 0 then
15: Adjust Kt using (6).
16: end if
17: end for

of four layers, namely input layer, two hidden layers and ouput
layer. Here, we respectively use ReLU and sigmoid activation
function in the hidden layers and output layer, thus each entry
of the output relaxed offloading location satisfies x̂n ∈ (0, 1).

Then, the x̂ is quantized into K candidate binary offloading
locations, where K ∈ [1, 2N]. Intuitively, a larger K creates
higher diversity in the candidate offloading location set, thus
increasing the chance of finding the global optimal offloading
location, but resulting in higher computational complexity.
We adopt an order-preserving quantization method proposed
in [23] for the trade-off of performance and complexity. In
order-preserving quantization, the K is relatively small, but
the diversity of candidate offloading locations is guaranteed.
Its main idea is preserving the order when quantization, i.e.,
for each quantized location xk = [xk,1, xk,2, ..., xk,N], xk,n ≤
xk,m should be held if x̂n ≤ x̂m for all n,m ∈ {1, 2, ..., N}.
Specifically, a series of K quantized locations {xk} are
generated as following:

1) Each entry of the 1st binary offloading location x1 is
given by

x1,n =

{
1 x̂n > 0.5,

0 x̂n ≤ 0.5.
n = 1, 2, ..., N (2)

2) As for the remaining K−1 offloading locations, we first
sort each entry of x̂ according to their distance to 0.5, i.e.,
|x̂(1) − 0.5| ≤ |x̂(2) − 0.5| ≤ ... ≤ |x̂(N) − 0.5|, where x̂(n)

denotes the sorted n-th entry. Hence, each entry of the k-th

offloading location xk, k = 2, 3, ...,K is given by

xk,n =

1 x̂n > x̂(k−1),

1 x̂n = x̂(k−1) and x̂(k−1) ≤ 0.5,

0 x̂n = x̂(k−1) and x̂(k−1) > 0.5,

0 x̂n < x̂(k−1).

n = 1, 2, ..., N

(3)
Here we obtain K candidate offloading locations, given a

candidate offloading location xk, the original offloading cost
minimization problem P is transformed into a convex problem
on α

P ′ : min
α
F (xk,α) (4a)

s.t. 0 ≤
2N∑
n=1

αn ≤ 1 (4b)

which can be solved by convex optimization tool like CVXPY
[21]. Then we obtain the optimal bandwidth allocation α∗xk

and minimum offloading cost F
(
xk,α

∗
xk

)
with the given

candidate offloading location xk. By repeatedly solving the
problem P ′ for each candidate offloading location, the best
offloading location is selected by

x∗ = arg min
{xk},k=1,2,...K

F
(
xk,α

∗
xk

)
(5)

along with its corresponding optimal bandwidth allocation α∗.

B. Update the Offloading Policy

Due to the rapid changes of satellite-terrestrial channel
states, in order to reduce the offloading cost, the offloading
policy should be updated in time. Different from traditional
deep learning, the training samples of DRTO are composed of
the latest channel state h and offloading location x∗. Since the
current offloading location is generated according to the policy
in the last time frame, the training samples in adjacent time
frames are strongly correlated. If the latest samples are used
to train the DNN immediately, the network will be updated
in an inefficient way, and the offloading policy even may not
converge. Thanks to the experience replay mechanism [24]
proposed by Google DeepMind, the newly obtained state-
location pair (h,x∗) is added to the replay memory, and
replaces the oldest one if the memory is full. Subsequently,
a random batch are sampled from the memory to improve
the DNN. The cross-entropy loss is reduced by utilizing the
Adam optimizer [25]. Such iterations repeat and the policy of
the DNN is gradually improved.

By utilizing the experience replay mechanism, we construct
a dynamic training dataset for DNN. Thanks to the random
sampling, the convergence is fastened because the correlation
between training samples is reduced. Since the memory space
is finite, the DNN is updated only according to the recent
experience, and the offloading policy π is always adapted to
the recent channel changes.

C. Dynamically Adjust K

For each candidate offloading location, a bandwidth allo-
cation convex problem is solved. Intuitively, a larger K can
lead to a better temporary offloading decision and a better
long-term offloading policy. However, to select the optimal
offloading location x∗ in each time frame, repeatedly solving
bandwidth allocation problem (P ′) K times leads to high
computational complexity. Therefore, there exists a trade-off
between performance and complexity according to the setting
of K.

0 5000 10000 15000 20000 25000 30000
Time Frames

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
de

x
of
 O

pt
im

al
 O

ffl
oa

di
ng

 L
oc

at
io
n

Fig. 3. The index of optimal offloading location with K = N = 5

With a fixed K = N , we plot the index of optimal
offloading location in each time frame. As shown in Fig.
3, at the very beginning of the learning process, the index
of the optimal offloading location is relatively large. As the
offloading policy improves, we observe that most of the
optimal offloading location are the first location generated
by above order-preserving quantization method. This indicates
that a large value of K is computationally inefficient and
unnecessary. In other words, most of the quantized offloading
location in each time frame are redundant. Therefore, to
speed up the algorithm, we can gradually adjust K, and the
performance will not be compromised.

We denote Kt as the number of quantized offloading loca-
tions at time frame t. Inspired by [23], we initially set K1 =
N . For every ∆ time frames, Kt will be adjusted once. In an
adjustment time frame, to increase the diversity of candidate
offloading locations, Kt is tuned to max

(
k∗t−1, ..., k

∗
t−∆

)
+ 1.

Therefore, Kt is given by

Kt =

N t = 1,

min
(
max

(
k∗t−1, ..., k

∗
t−∆

)
+ 1, N

)
t mod ∆ = 0,

Kt−1 otherwise.
(6)

IV. SIMULATION RESULTS

In this section, the performance of the proposed DRTO
algorithm is evaluated via simulations. The average channel

gain hn or hTC follows the free space path loss model

h = Ad

(
c

4πfcd

)de

. (7)

The first and second hidden layer of DNN have 120 and
80 hidden neurons, respectively. The initial parameters of
the DNN follow a normal distribution with zero-mean. The
DRTO algorithm is implemented in Python with TensorFlow
2.0. We respectively evaluate the performance of convergence,
offloading cost and runtime. Other default parameters are listed
in Tab. II.

TABLE II
SIMULATION PARAMETERS SETUP

Parameters Value
Transmission power of ST pn and satellite pSAT (W) 1, 3

Antenna gain Ad and path loss exponent de 4.11, 2.8
Carrier frequency fc (GHz) 30
Total bandwidth B (MHz) 800

Receiver noise power N0 (W) 10−9

Task size L (MB) 100
Computational intensity k (cycles/bit) 10

Computing Power Consumption of SatEC server pc (W) 0.5
CPU frequency of SatEC server f1 and TC f0 (GHz) 0.4, 3

Latency-energy weight parameter λ 0.5
Training interval δ 10
Random batch size 128

Replay memory size 1024
Learning rate 0.01

A. The Performance of Convergence

The DRTO algorithm is evaluated over 30000 time frames.
In Fig. 4, we plot the training loss of the DNN, which
gradually decreases and stabilizes at around 0.02, whose
fluctuation is mainly due to the random sampling of training
data.

Fig. 4. The traning loss of DRTO

In Fig. 5, we plot the normalized offloading cost, which is
defined as

F̂ (x∗,α∗) =
F (x∗,α∗)

minx′∈{0,1}N F (x′,αx′)
(8)

where the numerator denotes the optimal offloading cost by
DRTO algorithm, and the denominator denotes the optimal
offloading cost by greedily enumerating all the 2N offloading
locations. We set the update interval ∆ = 64. As we can see,
within the first 5000 time frames, the normalized offloading
cost significantly fluctuates, indicating that the offloading
policy has not fully converged. Finally, most of the normalized
offloading cost are converged to 1, only few frames slightly
fluctuates above 1 due to the rapid channel fading when
inter-satellite handover occurs. In spite of this fluctuation, the
DRTO algorithm can still achieve near-optimal offloading cost
performance.

0 5000 10000 15000 20000 25000 30000
Time Frames

1.0000

1.0005

1.0010

1.0015

1.0020

No
rm

al
ize

d
Of

flo
ad

in
g
Co

st

Fig. 5. Normalized offloading cost with ∆ = 64

B. The Performance of Offloading Cost

Regarding to the offloading cost performance, we compare
our DRTO algorithm with other five representative benchmarks
to demonstrate its superiority:
• Distributed Deep Learning-based Offloading (DDLO)

[26]. Multiple DNNs take the duplicated channel gain
as input, then each DNN generates a candidate offloading
location. Then, the optimal offloading location is selected
with respect to the minimum offloading cost. In the com-
parison with DRTO, we assume that DDLO is composed
of N DNNs.

• Coordinate Descent (CD) [27]. The CD algorithm is a tra-
ditional numerical optimization method, which iteratively
swaps the offloading location of each STs that leads to
the largest offloading cost decrement. The iteration stops
when the offloading cost cannot be further decreased by
swapping the offloading location.

• Enumeration. We enumerate all 2N offloading location
combinations and greedily select the best one.

• Pure TC Computing. The LEO access satellite forwards
all the tasks to TC for executing.

• Pure SatEC Computing. The LEO access satellite locally
execute all the tasks.

We consider N = 5 STs attaching to the same access
satellite. In Fig. 6, we compare the performance of average

DRTO DDLO CD Enume. Pure TC Pure Sat.

Different Algorithms

0

20

40

60

80

100

120

140

A
v
e
ra

g
e
 O

ff
lo

a
d
in

g
 C

o
s
t
p
e
r

T
im

e
 F

ra
m

e

Fig. 6. Average Offloading Cost by Different Algorithms (N = 5)

offloading cost per time frame achieved by different offloading
algorithms. As we can see, DRTO achieves similar perfor-
mance as the greedy enumeration method, which verifies the
optimality of DRTO. Since the optimal offloading location
combination is unique, any other random combinations will
lead to higher offloading cost. In addition, we see that DRTO
achieves lower offloading cost with about 17.5% and 23.6%
reduction compared to pure TC Computing and pure SatEC
Computing methods, which indicates the necessity of coop-
eration between SatEC servers and TCs to provide satisfying
computing service.

C. The Performance of Runtime Consumption

Finally, we evaluate the runtime performance of DRTO.
Since Pure TC Computing and Pure SatEC Computing are
static, we compare DRTO with other three dynamic bench-
marks. Specifically, we respectively record the total runtime
consumption of different algorithms running on 30000 time
frames, and compute the average runtime per time frame. The
runtime comparison is shown in Fig. 7.

Although four dynamic algorithms achieve similiar of-
floading cost performance (in Fig. 6), DRTO consumes the
lowest runtime with about 42.6%, 87.3% and 96.6% reduction
comparing to DDLO, CD and Enumeration when N = 7. In
addition, the runtime consumption of DRTO or DDLO does
not explode when network scale increases. This is because that
DNN can accurately fits the complex mapping from channel
states to offloading location, compared with traditional CD or
Enumeration methods, the action space of DRTO or DDLO
is significantly reduced, resulting in much less iterations.
In the comparison with DDLO, at the very beginning of
learning process, the action space of DRTO is the same as
that of DDLO. With the improvement of offloading policy, the
number of quantized candidate offloading locations in DRTO
is dynamically adjusted, thus the action space of DRTO is
further reduced.

Actually, the channel coherent time is extremely short due
to the high speed movement of satellites. DRTO can quickly

generates offloading location and bandwidth allocation with-
out compromising offloading cost performance, which better
adapts to the fast channel fading in satellite-terrestrial edge
computing networks.

5 6 7 8 9

Number of STs

0

0.2

0.4

0.6

0.8

1

1.2

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 L

a
te

n
c
y
 p

e
r

T
im

e
 F

ra
m

e
 (

s
) DRTO

DDLO

CD

Enumeration

Fig. 7. Average Execution Latency by Different Algorithms

V. CONCLUSION

In this paper, we investigate the joint offloading location de-
cision and bandwidth allocation problem in satellite-terrestrial
edge computing networks, and propose DRTO algorithm to
minimize the offloading cost based on current observed chan-
nel states. DRTO improves its offloading policy by learning
from the past offloading experiences via reinforcement learn-
ing. To achieve faster convergence, we preserve order when
generating candidate offloading locations and dynamically
adjust K during learning process. Simulation results show
that our DRTO algorithm achieves near-optimal offloading cost
performance as existing algorithms, but significantly reduces
runtime consumption, making real-time offloading optimiza-
tion truly viable under fast fading channel in satellite-terrestrial
edge computing networks.

ACKNOWLEDGEMENT

This work was supported by the National Key Research
and Development Program of China (No. 2017YFB0801900),
Priority Research Program of Chinese Academy of Sciences
(No. XDC02011000), Chinese National Key Laboratory of
Science and Technology on Information System Security (No.
6142111190303), and Confidential Research Program (No.
BMKY2018B17).

REFERENCES

[1] L. F. Abanto-Leon and G. H. A. Sim, “Fairness-aware hybrid precoding
for mmwave noma unicast/multicast transmissions in industrial iot,” in
IEEE ICC, 2020.

[3] Y. Wan, K. Xu, G. Xue, and F. Wang, “Iotargos: A multi-layer security
monitoring system for internet-of-things in smart homes,” in IEEE
INFOCOM, 2020.

[2] Z. Liu, X. Liu, and K. Li, “Deeper exercise monitoring for smart gym
using fused rfid and cv data,” in IEEE INFOCOM, 2020.

[4] Y. Jia, J. Zhang, P. Wang, L. Liu, X. Zhang, and W. Wang, “Collab-
orative transmission in hybrid satellite-terrestrial networks: Design and
implementation,” in IEEE WCNC, 2020.

[5] G. Guan, B. Li, Y. Gao, Y. Zhang, J. Bu, and W. Dong, “Tinylink 2.0:
Integrating device, cloud, and client development for iot applications,”
in ACM MobiCom, 2020.

[6] T. Lv, W. Liu, H. Huang, and X. Jia, “Optimal data downloading
by using inter-satellite offloading in leo satellite networks,” in IEEE
GLOBECOM, 2016.

[7] M. Zhang and W. Zhou, “Energy-efficient collaborative data download-
ing by using inter-satellite offloading,” in IEEE GLOBECOM, 2019.

[8] R. Xie, Q. Tang, Q. Wang, X. Liu, F. R. Yu, and T. Huang, “Satellite-
terrestrial integrated edge computing networks: Architecture, challenges,
and open issues,” IEEE Network, 2020.

[9] L. Yan, S. Cao, Y. Gong, H. Han, J. Wei, Y. Zhao, and S. Yang,
“Satec: A 5g satellite edge computing framework based on microservice
architecture,” Sensors, 2019.

[10] Y. Wang, J. Yang, X. Guo, and Z. Qu, “Satellite edge computing for the
internet of things in aerospace,” Sensors, 2019.

[11] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Communications Surveys and
Tutorials, 2017.

[12] L. Zhang, H. Zhang, C. Guo, H. Xu, L. Song, and Z. Han, “Satellite-
aerial integrated computing in disasters: User association and offloading
decision,” in IEEE ICC, 2020.

[13] Y. Wang, J. Yang, X. Guo, and Z. Qu, “A game-theoretic approach to
computation offloading in satellite edge computing,” IEEE Access, 2020.

[14] C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen, “Delay-
aware iot task scheduling in space-air-ground integrated network,” in
IEEE GLOBECOM, 2019.

[15] J. Kim, T. Kim, M. Hashemi, C. G. Brinton, and D. J. Love, “Joint
optimization of signal design and resource allocation in wireless d2d
edge computing,” in IEEE INFOCOM, 2020.

[16] S. Huang, G. Li, E. Ben-Awuah, B. O. Afum, and N. Hu, “A stochastic
mixed integer programming framework for underground mining pro-
duction scheduling optimization considering grade uncertainty,” IEEE
Access, 2020.

[17] J. Gao, L. Zhao, and X. Shen, “Service offloading in terrestrial-satellite
systems: User preference and network utility,” in IEEE GLOBECOM,
2019.

[18] P. Ramirez-Espinosa and F. J. Lopez-Martinez, “On the utility of the
inverse gamma distribution in modeling composite fading channels,” in
IEEE GLOBECOM, 2019.

[19] H. Maattanen, B. Hofstrom, S. Euler, J. Sedin, X. Lin, O. Liberg,
G. Masini, and M. Israelsson, “5g nr communication over geo or leo
satellite systems: 3gpp ran higher layer standardization aspects,” in IEEE
GLOBECOM, 2019.

[20] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in ACM Symposium on Cloud Computing, 2018.

[21] Welcome to cvxpy 1.1. [Online]. Available: https://www.cvxpy.org/
[22] S. Marsland, Machine learning: an algorithmic perspective. CRC press,

2015.
[23] L. Huang, S. Bi, and Y. J. A. Zhang, “Deep reinforcement learning

for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE TMC, 2020.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv, 2013.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv, 2014.

[26] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Mobile Networks and Applications, 2018.

[27] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE TWC, 2018.

