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Abstract—Optimizing power control in multi-cell cellular net-
works with deep learning enables such a non-convex problem to
be implemented in real-time. When channels are time-varying,
the deep neural networks (DNNs) need to be re-trained fre-
quently, which calls for low training complexity. To reduce the
number of training samples and the size of DNN required to
achieve good performance, a promising approach is to embed the
DNNs with priori knowledge. Since cellular networks can be mod-
elled as a graph, it is natural to employ graph neural networks
(GNNs) for learning, which exhibit permutation invariance (PI)
and equivalence (PE) properties. Unlike the homogeneous GNNs
that have been used for wireless problems, whose outputs are
invariant or equivalent to arbitrary permutations of vertexes,
heterogeneous GNNs (HetGNNs), which are more appropriate
to model cellular networks, are only invariant or equivalent to
some permutations. If the PI or PE properties of the HetGNN
do not match the property of the task to be learned, the
performance degrades dramatically. In this paper, we show that
the power control policy has a combination of different PI and PE
properties, and existing HetGNN does not satisfy these properties.
We then design a parameter sharing scheme for HetGNN such
that the learned relationship satisfies the desired properties.
Simulation results show that the sample complexity and the
size of designed GNN for learning the optimal power control
policy in multi-user multi-cell networks are much lower than the
existing DNNs, when achieving the same sum rate loss from the
numerically obtained solutions.

Index Terms—Power control, Graph neural networks, permuta-
tion equivalence, permutation invariance, parameter sharing

I. INTRODUCTION

Optimizing power control in multi-cell networks is a well-
known non-convex problem. Significant efforts have been
devoted to find efficient solutions to this problem. Early works
resort to various approximations [1], which approximate the
problem as a geometric programming problem or convexify
the problem by using the monomial approximation for posyn-
omial. In [2], a weighted sum mean-square error minimization
(WMMSE) algorithm was proposed for optimizing coordi-
nated beamforming, which is applicable to the power control
problem. However, these numerical or iterative algorithms still
incur high complexity if the number of cells is large, which
are hard to be implemented for real-time applications.

To avoid solving the optimal solution repeatedly whenever
the channels change, an idea of using deep neural networks
(DNN) to learn the mapping from channels to the optimal solu-
tion has been proposed in [3]. While the online computational
complexity has been shown reduced remarkably [3], [4], the
off-line complexity of training is also not negligible. Although
this is less of a concern in static scenarios, wireless channels
are time-varying. The model parameters and even the size of a
DNN have to be updated when channels change. Thus, training
DNNs efficiently is critical for wireless applications.

Noticing the fact that generating labels for learning (espe-
cially non-convex) optimization problems is time-consuming,
unsupervised learning frameworks were proposed for learning

to optimize power control in [5], [6], both with fully connected
deep neural networks (FC-DNNs). To decrease the required
training samples, convolutional neural network (CNN) was
applied for power control problem in [4]. To allow the well-
trained DNN adaptive to the number of users and applicable
to large scale systems, graph neural networks (GNNs) were
introduced to power control or link scheduling problem in
[7]–[9]. Since cellular networks contain base stations (BSs)
and user equipments (UEs) and their relation depends on the
channels between BSs and the associated UEs, it is natural to
model such a network as a graph and hence apply GNN.

The architectures of GNNs are embedded with the priori
knowledge of graphs, whose vertexes are sets and hence GNNs
must be either invariant or equivalent to the permutation of the
vertexes [10]. While GNNs have been demonstrated to achieve
good performance in many learning tasks on homogeneous
graphs with only one type of vertexes and edges [11], [12],
cellular networks are with different types of vertexes (e.g.,
BSs and UEs) or edges. Such heterogeneous graphs should
be learned by heterogeneous GNN (HetGNN). Unlike the
homogeneous GNN (HomoGNN) that is invariant or equiv-
alent to arbitrary permutations, HetGNN is only invariant or
equivalent to some permutations. If the embedded knowledge
in the HetGNN does not match the property of the task to be
learned, the performance will degrade dramatically.

Inspired by the finding that the parameter sharing scheme of
a DNN determines the invariance or equivalence relationship
it can learn [13], in this paper we design a HetGNN (called
PGNN) for learning to optimize power control in multi-cell
cellular networks. We first find the permutation invariance
(PI) and permutation equivalence (PE) properties of the re-
lationship between the optimal transmit powers and channels.
After modeling the cellular network as a graph, we design a
parameter sharing scheme for the HetGNN such that it can
learn the desired PI and PE properties. Simulation results
show that the sample complexity for training the PGNN is
much lower than FC-DNN, vanilla HetGNN, as well as the
HomoGNN applied in [8], [9], and the model parameters of
PGNN are much less than FC-DNN and the HomoGNN.

Notations: (·)T and (·)H denotes transpose and Hermitian
transpose, respectively, |·| denotes the magnitude of a complex
number, and ‖ · ‖2 denotes two norm. Π or Πm denotes a
column permutation matrix.

II. SYSTEM MODEL

Consider a M -cell downlink cellular network, where each
BS serves multiple UEs with non-real-time service together
with other types of services. Each BS is equipped with
multiple antennas and each UE is with a single-antenna. The
mth BS (denoted as BSm) serves Nm UEs with total allowed
power of Pmax

m , which may be time-varying owing to the
dynamic traffic load of different services. If the number of
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antennas and the coverage are identical among all the BSs, the
network is a homogeneous network (HomoNet). Otherwise, it
is a heterogeneous network (HetNet), where each marco BS
is with more antennas and covers larger cell than each pico
BS.

To simplify the analysis, we consider zero-forcing (ZF)
beamforming and equal power allocation for the non-real-time
UEs, then the data rate of UEnm

over unit bandwidth can be
expressed as,

Rnm
= log2

(
1 +

|hnmm|2pm/Nm∑M
l=1,l 6=m |hnml|2pl/Nl + σ2

0

)
, (1)

where pm is the total transmit power to the UEs as-
sociated to BSm, σ2

0 is the noise power, hjim =√∑Nm

nm=1 gH
jim

wnm
wH

nm
gjim is the equivalent channel be-

tween UEji and BSm after beamforming, gjim is the channel
vector between BSm and UEji , wnm

is the beamforming
vector of BSm for UEnm

, ‖wnm
‖2 = 1 and

(
gjmm

)H
wnm

=
0, jm 6= nm.

To coordinate inter-cell interference, we optimize the trans-
mit powers at the BSs to maximize the sum-rate of all the
non-real-time UEs in the network over unit bandwidth, i.e.,

max
p1,··· ,pM

∑M
m=1

∑Nm

nm=1Rnm (2a)

s.t. 0 ≤ pm ≤ Pmax
m , (2b)

∀m = 1, · · · ,M, nm = 1, · · · , Nm. (2c)

This problem is non-convex, which can be solved by existing
numerical algorithm [1] or iterative algorithm [2].

To avoid solving the problem repeatedly whenever the
channels change, we learn the optimal power control policy,
i.e., the mapping from the relevant parameters to the optimized
transmit powers,

p∗ = F (pmax,H), (3)

where p∗ = [p∗1, · · · , p∗M ]T is the optimal solution of problem
(2), pmax = [Pmax

1 , · · · , Pmax
M ]T, and

H =


h11 · · · h1M

...
. . .

...
hM1 · · · hMM

 , (4)

with hmm′ = [h1mm′ , · · · , hnmm′ ]
T. The mth column of H

contains the channels between all the UEs and BSm, and the
mth row of H contains the channels between all the BSs and
the UEs associated with BSm.

III. PROPERTIES OF THE OPTIMAL POLICY

In this section, we show that the optimal power control
policy has a combinational PI and PE properties.

We start by providing the definition of several kinds of PI
and PE properties to be used in the sequel, including one-
dimension (1D)-PI, 1D-PE, two-dimension (2D)-PE and joint-
PE. Consider a function Y = f(X), where X = [xjk], Y =
[yjk], xjk and yjk are the elements in the jth row of the kth
column of matrices X and Y, respectively.

Definition 1. (1D-PI and 1D-PE) For arbitrary permutation
on the rows of X, i.e., ΠTX, if we have Y = f(ΠTX), then
Y = f(X) is 1D-PI to X. If we have ΠTY = f(ΠTX), then
Y = f(X) is 1D-PE to X.

Definition 2. (2D-PE) For arbitrary permutations on the
columns and rows of X, i.e., ΠT

1 XΠ2, if we have ΠT
1 YΠ2 =

f(ΠT
1 XΠ2) or ΠT

1 Y = f(ΠT
1 XΠ2), then Y = f(X) is

2D-PE to X.

Definition 3. (Joint-PE) For arbitrary permutation on both
the columns and rows of X, i.e., ΠTXΠ, if we have ΠTY =
f(ΠTXΠ), then Y = f(X) is joint-PE to X.

Remark 1. 1D-PE is a special case of 2D-PE, and joint-PE
is a special case of 2D-PE.

Remark 2. X in these definitions can also be vectors, and
Y can also be vectors or scalars, which are special cases of
matrices.

In what follows, we show the PI and PE properties of the
optimal power control policy.

1) PE property: The UEs in the network can be divided
into multiple subsets, the UEs in each subset associate to the
same BS. When the order of BSs changes meanwhile the order
of UE subsets change in the same way, only the order of
optimal transmit powers changes accordingly while the power
control policy (i.e., the mapping, or the multivariate function)
remains unchanged. Hence, the function in (3) has PE property.
Specifically, after changing the order of BSs, p∗, pmax and
the columns of H are permuted to ΠTp∗, ΠTpmax and HΠ.
After changing the order of UE subsets, the rows of HΠ are
permuted to ΠTHΠ. Then, we have

ΠTp∗ = F (ΠTpmax,ΠTHΠ), (5)

which indicates that the optimal power control policy in (3) is
1D-PE to pmax and is joint-PE to H.

2) PI property: For each subset of UEs associated to the
same BS, the total transmit power of the BS does not depend
on the order of UEs in the subset. Hence, the function in
(3) has PI property. The change of the order of the UEs
associated to BSm can be represented by the permutation
matrix Πm,m = 1, · · · ,M . After changing the order of UEs,
hmm′ in (4) becomes ΠT

mhmm′ ,m,m
′ = 1, · · · ,M . Then,

we have

p∗ = F (pmax,ΠT
1 h11, · · · ,ΠT

MhMM ), (6)

which indicates that the function F (pmax,H) is 1D-PI to
hmm′ , m,m′ = 1, · · · ,M .

IV. LEARNING THE OPTIMAL POLICY WITH GNN
In this section, we first formulate the problem of learning the

optimal power control policy as a heterogeneous graph. Then,
we introduce vanilla HetGNN and show that its properties do
not match the properties of the optimal policy. We proceed
to show how to design the HetGNN to satisfy the PI and PE
properties of the policy.

Definition 4. A graph, denoted as G = (V, E), consists of
a vertex set V and an edge set E . Each vertex and edge
belongs to a type, A denotes the set of vertex types and R
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denotes the set of edge types. When |A| = |R| = 1, G is a
homogeneous graph (HomoG), otherwise, it is a heterogeneous
graph (HetG).

In a graph G, each vertex and each edge may be associated
with a feature and an action. Whether or not two vertexes
belong to the same type is determined by whether their features
are in the same feature space [14].

In a machine learning task, the learning model (e.g., FC-
DNN) is required to learn a function between actions and
features. The problem to learn the optimal policy F (pmax,H)
can be formulated as a graph, where each BS and each UE is
a vertex, respectively, and the channels are edges. The actions
and features of the vertexes and the edges are respectively as
follows,

Actions:
• The action of each BS (say BSm) is its total transmit

power pm. The actions of all the BSs can be expressed
as a vector p = [p1, · · · , pM ]T.

Features:
• The feature of each BS (say BSm) is its available transmit

power Pmax
m . The features of all the BSs is pmax.

• The feature of the edge between BSm and UEn (denoted
as edge (m,n)) is the equivalent channel hmn. The
features of all the edges can be represented as H.

Since BSs and UEs are different types of vertexes, the graph
is a HetG, no matter if we consider HetNet or HomoNet. We
refer to this graph as wireless interference graph (WIG) in the
following. In Fig. 1, we illustrate the features and actions of
the WIGs in two cases, as well as the hidden outputs of each
UE and BS in the HetGNN (to be explained later).

BS1 BS2BS3

UE3

BS2

UE2

BS1

UE1

h11

h21

h31

h12 h22

h32

h13

h23

h33

Feature

Hidden output

Action

Hidden output

Single-UE-per-cell Multi-UE-per-cell

BSs

UEs

Fig. 1. Illustration of WIG and corresponding HetGNN in two cases.

A. Heterogeneous Graph Neural Networks

A GNN contains multiple layers. In each layer, the hidden
representations (also called hidden outputs) of all the vertexes
are generated. Denote the hidden output in the lth layer of the
ith vertex as d

(l)
i .

HetGNN has been proposed to learn on HetG, where d
(l)
i

is generated with two steps:

(i) Aggregation: For all the vertexes neighbored to the ith
vertex and with the same type (e.g., the tth type), their
hidden outputs in previous layer (i.e., the (l− 1)th layer)
and the feature of edges connecting the ith vertex and

the neighbor vertexes are aggregated with an aggregator.
The aggregated outputs of the tth type of vertexes is,

a
(l)
i,t = PLj∈Nt(i)

(
q(d

(l−1)
j , eij ,W

(l)
t )
)
, t ∈ A, (7)

where PL(·) denotes the pooling function used in the ag-
gregator, q(·, ·,W(l)

t ) is a parameterized function whose
form is determined by the neural network architecture,
W

(l)
t denotes the model parameters in the lth layer for

the tth type of vertexes that need to be trained, eij is
the feature of edge (i, j), and Nt(i) is the set of vertexes
neighbored to the ith vertex and with the tth type.

(ii) Combination: After aggregating the information from
neighbored vertexes of all types, they are combined with
the hidden output of the central vertex (i.e., the ith vertex)
in the (l− 1)th layer d

(l−1)
i to generate d

(l)
i , by using a

combiner as follows,

d
(l)
i = CB

(
d

(l−1)
i , {a(l)

i,t , t ∈ A}
)
, (8)

where CB(·) denotes the operation of combination.
In (7), since the order of neighbors with the same type does

not affect each vertex’s hidden output, q(·, ·,W(l)
t ) is identical

for all the vertexes in Nt(i), and PL(·) is a function satisfying
the commutative law, e.g., summation or maximization. We
can see from (7) that HetGNN uses different weight matrices
when aggregating the information from vertexes of different
types, i.e., W

(l)
t differs among types. This is because we

need to project different feature spaces to the same space for
combining the aggregated information in (8).

B. Properties of the HetGNN for WIG
For notational simplicity, we first consider the single-UE-

per-cell case, where hij = hij is the equivalent channel
between UEi and BSj . Then, the feature of edge (i, j) is
eij = hij . The WIG is a bipartite graph, where each BS is only
connected with UEs and each UE is only connected with BSs.
Then, (7) and (8) can be divided into two parts: BSs aggregate
information from UEs, and UEs aggregate information from
BSs.

For easy understanding, in the sequel we further specify
the functions CB(·), PL(·) and q(·) as the commonly used
counterparts in the literature [8], [9]. To distinguish the hidden
outputs between BSs and UEs, we denote b

(l)
i and u

(l)
i as the

hidden output of the BSi and UEi, respectively, i.e., d
(l)
i in

(7) and (8) is replaced by b
(l)
i or u

(l)
i when the ith vertex is

a BS or UE, respectively, as shown in Fig. 1. Then, for the
WIG, (7) and (8) become

BSs aggregating information from UEs

Aggregate: a
(l)
i,BS =

∑M
j=1

(
V(l)u

(l−1)
j + P(l)hij

)
,

Combine: b
(l)
i = σ

(
S(l)b

(l−1)
i + a

(l)
i,BS

)
,

(9a)

UEs aggregating information from BSs

Aggregate: a
(l)
i,UE =

∑M
j=1

(
U(l)b

(l−1)
j + Q(l)hji

)
,

Combine: u
(l)
i = σ

(
T(l)u

(l−1)
i + a

(l)
i,UE

)
,

(9b)

where σ(·) is an element-wise activation function, e.g., ReLU
(y = max(x, 0)) or Sigmoid (y = 1

1+exp(−x) ), S(l) and
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T(l) are model parameters in the combination function, V(l)

and U(l) are used to aggregate the information from UEs and
BSs, and P(l) and Q(l) are used to aggregate the information
from edges, respectively, which are also the model parameters
required to be trained.

Denote b(l) = [b
(l)T
1 , · · · ,b(l)T

M ]T and u(l) =

[u
(l)T
1 , · · · ,u(l)T

M ]T. Then, the relationship between hidden
outputs of the lth and the (l − 1)th layer can be expressed in
matrix form in (10) (see next page). For notational simplicity,
we omit the activation function σ(·) and the superscript (l) of
weight matrices. Since (9a) and (9b) have the same structure,
we only show the relationship where the BSs aggregate
information from UEs in (10). In (10), � is the Hadamard
product of two matrices, which makes element-wise product
of two matrices and outputs a matrix, 1 , [I, · · · , I]T.

From (10) we can obtain the following Proposition.

Proposition 1. When learning on WIG with HetGNN, b(l) is
1D-PE to b(l−1) and 2D-PE to H.

Proof: Due to limited space, we omit the proof and only
provide the intuition about why the proposition holds. Owing
to the parameter sharing in HetGNN, S̄ is a block diagonal
matrix with identical diagonal blocks, and V̄, P̄ are block
matrices with all blocks being identical. Hence, for arbitrary
permutation of BSs and UEs, when the order of blocks in
b(l−1), u(l−1) and H changes, only the order of blocks in
b(l) changes but its values remain unchanged.

Denote the relationship between the actions p and the fea-
tures pmax and H learned by HetGNN as p = GW(pmax,H),
where W contains all the model parameters in the HetGNN
that need to be trained. Then, the function G(·) has the
following PI and PE properties.

Proposition 2. p = GW(pmax,H) is 1D-PE to pmax, and is
2D-PE to H.

Proof: A HetGNN is stacked by multiple hidden layers
(e.g., L layers). The first layer is the input layer where the
features are inputted, b(1) = pmax. The last layer outputs
the learned actions, and hence b(L) = p (the corresponding
relationship between the actions, features and hidden outputs
of the vertexes is shown in Fig. 1). Since the PI and PE
properties in Proposition 1 can be preserved by stacking
multiple layers [13], the results in Proposition 2 hold.

C. Design HetGNN with Desired PE and PI Properties
By comparing the properties of GW(·) in Proposition 2 and

the properties of F (·) given in section III, we can see that the
PI and PE properties of GW(·) and F (·) does not match. This
is because the PI and PE properties of F (·) is determined by
the system model (e.g., user association), while the PI and PE
properties of GW(·) is determined by the parameter sharing
scheme of HetGNN, i.e., the hidden outputs of neighboring
vertexes of the same type are aggregated with the same weight
matrix (i.e., U,V,P and Q) in (9).

The training of HetGNN is to search the model parameters
W from its hypothesis space such that GW(·) can be as close
as F (·). However, when the PI and PE properties of GW(·)
and F (·) differ, F (·) may not lie in the hypothesis space of
the HetGNN. In this case, GW(·) can never approximate F (·)
no matter how well the model parameters W are trained.

To resolve this problem, we design a parameter sharing
scheme for HetGNN such that GW(pmax,H) satisfies the PI
and PE properties of F (pmax,H), which is called PGNN.

The relationship between the hidden output of the ith vertex
in the lth layer and the hidden outputs of the (l − 1)th
layer of PGNN is similar to (9). Note that the HetGNN
has a special architecture where the weight matrices used to
aggregate neighbor information are identical (see V̄ and P̄
in (10)), which makes the PE properties of GW(·) does not
match the PE properties of F (·). Hence in PGNN, we add
matrices U,V,P and Q with subscripts ij to indicate that
the matrices used to aggregate information from neighbored
vertexes and edges may differ. For easy exposition, we first
consider the case where each BS only serves one user, and
then extend to the case where each BS serves multiple users.

1) Single-UE-per-cell: The relationship between the hidden
outputs of the lth and the (l − 1)th layers of PGNN can be
expressed in matrix form as (11). Again, for notational sim-
plicity, we omit the activation function σ(·) and the superscript
(l) of weight matrices, and only show the relationship where
BSs aggregate information from UEs in (11).

In the following, we design the parameter sharing schemes
among Û, V̂, P̂ and Q̂ such that the relationship between the
two layers of PGNN satisfies the properties of F (pmax,H).
Here, we only discuss the parameter sharing scheme of V̂
and P̂ in (11), and the parameter sharing of Û = {Uij} and
Q̂ = {Qij} can be designed in the same way.

As shown in section III, F (·) is invariant to arbitrary
permutation of the elements in hij . When each BS only serves
one user, however, hij is a scalar with only one element.
Therefore, it is unnecessary to consider the PI property of F (·)
in this case. We only design the parameter sharing scheme to
satisfy the PE property of F (·), i.e., F (pmax,H) is 1D-PE to
pmax and joint-PE to H.

Proposition 3. Consider two functions y = f(x) = σ(Wx)
and y = g(H) = σ(W �H · 1), where y = [yT

1 , · · · ,yT
M ]T,

x = [xT
1 , · · · ,xT

M ]T and H is defined in (4). When W contains
M ×M sub-matrices with the following structure, y = f(x)
is 1D-PE to x, and y = g(H) is joint-PE to H,

W =


B C · · · C

C B · · · C
...

...
. . .

...
C C · · · B

 , (12)

where B and C are matrices.
Proof: Due to limited space, we omit the proof here. The

main idea of the proof is that by observing ΠTWΠ = W
for arbitrary permutation matrix Π, we can obtain ΠTy =
f(ΠTx) and ΠTy = g(ΠTHΠ).

We can see from Proposition 3 that by letting V̂ and Û in
(11) have the same structure of W in (12), b(l) is 1D-PE to
both b(l−1) and u(l−1), and joint-PE to H, i.e.,

ΠTb(l) = σ(S̄ ·ΠTb(l−1) + V̂ ·ΠTu(l−1) + P̂�ΠTHΠ ·1).
(13)

Then, by stacking L layers, we know that p = GW(pmax,H)
is 1D-PE to pmax and joint-PE to H, which has the same PE
properties as F (pmax,H).
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b(l)︷ ︸︸ ︷
b

(l)
1
...

b
(l)
M

 =

S̄︷ ︸︸ ︷
S · · · 0
...

. . .
...

0 · · · S


b(l−1)︷ ︸︸ ︷
b

(l−1)
1

...
b

(l−1)
M

+

V̄︷ ︸︸ ︷
V · · · V
...

. . .
...

V · · · V


u(l−1)︷ ︸︸ ︷
u

(l−1)
1

...
u

(l−1)
M

+

P̄︷ ︸︸ ︷
P · · · P
...

. . .
...

P · · · P

�
H︷ ︸︸ ︷

h11 · · · h1M

...
. . .

...
hM1 · · · hM1

 ·1, (10)


b

(l)
1
...

b
(l)
M

=


S · · · 0
...

. . .
...

0 · · · S




b
(l−1)
1

...
b

(l−1)
M

+

V̂︷ ︸︸ ︷
V11 · · · V1M

...
. . .

...
VM1 · · · VMM




u
(l−1)
1

...
u

(l−1)
M

+

P̂︷ ︸︸ ︷
P11 · · · P1M

...
. . .

...
PM1 · · · PMM

�


h11 · · · h1M

...
. . .

...
hM1 · · · hMM

·1.(11)

2) Multi-UE-per-cell: In this case, V̂ and P̂ should still
have the structure as in (12) such that GW(·) satisfies the PE
properties of F (·). Different from the single-UE-per-cell case,
we should further design the structure of sub-matrices Vij

and Pij in (11) such that GW(·) satisfies the PI properties of
F (·), i.e., p∗ = F (pmax,H) is 1D-PI to hij .

Proposition 4. A function y = f(x) = σ(Wx) will be 1D-PI
to x if W is composed of identical sub-matrices, i.e., with the
following structure,

W = [B,B, · · · ,B]. (14)

Proof: Since for arbitrary permutation matrix Π,
WΠT = W, we have y = f(x) = σ(Wx) = σ(WΠTx) =
f(ΠTx). Hence, y = f(x) is 1D-PI to x.

Similar to (13), we can see from Proposition 4 that by letting
the sub-matrices Vij and Pij be with the same structure as
W in (14) and then substituting them to (11), b(l) is 1D-PI
to hij and u

(l)
i , i, j = 1, · · · ,M , Then, by stacking L layers,

we know that p = GW(pmax,H) is 1D-PI to hij , which is
the same as the PI properties of F (pmax,H).

With the designed parameter sharing scheme, the structure
of weight matrices V̂, Û, P̂ and Q̂ in PGNN is shown in
Fig. 2 (a). Each weight matrix contains M ×M sub-matrices,
where the sub-matrices are identical on the diagonal and
non-diagonal positions, respectively. This parameter sharing
scheme aims to guarantee the PE properties of F (·). Each
sub-matrix further contains multiple mini-matrices, where all
of them are the same. This parameter sharing scheme is to
guarantee the PI properties of F (·). For comparison, we also
show the structure of weight matrices of the HetGNN in Fig.
2 (b), where all the sub-matrices are identical.

Sub-matrix

Mini-matrix

(a) PGNN

Sub-matrix

Mini-matrix

Sub-matrix

Mini-matrix

(b) HetGNN

Fig. 2. Parameter sharing scheme of weight matrices, where the same color
indicates the same sub-matrix or mini-matrix.

V. SIMULATION RESULTS

Consider a cellular network with MS marco BSs and MP

pico BSs. Each marco BS and pico BS is equipped with N tx
S

and N tx
P antennas, and serves NS and NP UEs, respectively,

where N tx
S ≥ NS and N tx

P ≥ NP such that the multi-user
interference can be completely eliminated by ZF beamforming.
The channels between UEs and BSs are subject to Rayleigh
fading. We compare the performance of the following DNNs.
• PGNN: This is the heterogeneous GNN with the param-

eter sharing scheme we designed in section IV-C.
• HetGNN: This is the vanilla heterogeneous GNN in

section IV-B, where the features of neighboring vertexes
of different types, i.e., BSs and UEs, are aggregated with
different aggregators.

• HomoGNN: This is a homogeneous GNN used in [8],
[9], which is designed for HomoG. To formulate the con-
sidered problem as a HomoG, each BS, all its associated
UEs and the channels between them are seen as a vertex,
while the interference channels are seen as edges.

• FC-DNN: The inputs of this FC-DNN are the features of
vertexes and edges, i.e., {pmax,H}, and the outputs are
the learned actions p∗.

For PGNN, HetGNN and HomoGNN, the inputs and out-
puts are the features and actions of the corresponding vertexes
and edges, respectively.

The fine-tuned hyper-parameters of the DNNs are shown in
Table I. The number of hidden nodes of PGNN and HetGNN
equals to the number of elements in the hidden output vector of
each vertex, e.g., b

(l)
m . The activation function of each hidden

layer is the commonly used ReLU, and the activation function
in the output layer is Sigmoid such that the constraint (2b)
can be satisfied. Each DNN is trained with 1000 epochs.

TABLE I
HYPER-PARAMETERS FOR THE DNNS.

Parameters Values
PGNN HetGNN HomoGNN FC-DNN

Number of hidden layers 1 1 1 1
Number of hidden nodes 5 5 10 200

Number of model parameters 65 40 420 97,808
Initial learning rate 0.0005 0.0005 0.0005 0.001
Learning algorithm RMSprop Adam

Decay rate of learning rate 0.9 0.9 0.9 —
Back propagation algorithm Iterative batch gradient descent

Each GNN is trained in a supervised manner to minimize the
empirical mean square errors between the outputs of the GNN
and the expected outputs over all the training samples. Each
sample is composed of an input containing all the features in
the graph, i.e., {pmax,H}, and an expected output of actions,



6

i.e., optimal transmit power p∗ obtained by solving (2) with
the WMMSE algorithm [2].

The performance metric is the ratio of the sum-rate achieved
by the learned policy to the sum-rate achieved by the WMMSE
algorithm, which is called performance ratio.

In Fig. 3, we compare the performance ratio of the PGNN
and HetGNN for HetNet and HomoNet. In the HetNet, MS =
3,MP = 5, N tx

S = 16, N tx
P = 8, NS = 10, NP = 6, In the

HomoNet, there are only marco BSs, and MS = 10, N tx
S =

16, NS = 10. It can be seen that the performance of PGNN
has dramatic gains over HetGNN, because GW(pmax,H) of
PGNN satisfies the PI and PE properties of F (pmax,H), but
the function learned by HetGNN does not.

The number of model parameters in a DNN affects the
computational complexity in training phase. In Table I, we
compare the number of model parameters in each DNN, which
is obtained in the HetNet scenario. It is shown that much
fewer model parameters (and hence the time for training)
are required by GNN than FC-DNN to achieve their best
performance. PGNN and HetGNN further reduce the model
size by more than 80% with respect to HomoGNN, which
indicates the importance of the proper formulation of a prob-
lem as a graph. To validate that learning the optimal power
control policy allows real-time online implementation, we also
compare the running time of the DNN-based solutions in the
test phase for 1,000 samples on a computer with Intel CoreTM
i9-9940X CPU (3.30GHz), again in the HetNet scenario. The
running time of the WMMSE algorithm is 14.3 s, and the time
of all the DNNs is less than 0.065 s.
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HetGNN in HomoNet

Fig. 3. Performance ratio achieved by the two HetGNNs.

In Table II, we compare the sample complexities of PGNN,
FC-DNN and HomoGNN to achieve the same performance.
The sample complexity is defined as the minimal number of
training samples required to achieve an expected performance,
set as 90% performance ratio for the three DNNs.

It is shown that the sample complexity of PGNN in both
cellular networks is much lower than FC-DNN. This is be-
cause PGNN incorporates the priori knowledge of the task it
intending to learn, hence the hypothesis space for the function
to be learned is smaller than FC-DNN. It is also shown that
the sample complexity of PGNN is lower than HomoGNN.
This is because HomoGNN models the multi-cell system as
a homogeneous graph where each vertex is a combination of
a BS, its associated UEs and all the channels between them,
which does not fully take the advantage of the PI and PE

properties of the considered task. As a result, the feature of
each vertex contains the information of all these components,
which is with high dimension and hence HomoGNN needs
more model parameters as shown in Table I.

TABLE II
SAMPLE COMPLEXITIES OF THE DNNS

PGNN HomoGNN FC-DNN
HetNet 100 300 8,000

HomoNet 50 300 5,000

VI. CONCLUSIONS

In this paper, we learned the optimal power control pol-
icy to coordinate inter-cell interference in cellular networks
with heterogeneous GNN. We first analyzed the PI and PE
properties of the optimal policy, which are used as the priori
knowledge to design the GNN. After modeling the multi-
cell cellular network as a heterogeneous graph, we designed
parameter sharing scheme for heterogeneous GNN such that
the learned input-output relationship satisfies the desired PI
and PE properties. Simulation results showed that both the
sample complexity for training and the model size of the
designed GNN are much lower than the existing DNNs.
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