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Abstract—In this paper, we investigate potential synergies of
non-orthogonal multiple access (NOMA) and beam hopping (BH)
for multi-beam satellite systems. The coexistence of BH and
NOMA provides time-power-domain flexibilities in mitigating a
practical mismatch effect between offered capacity and requested
traffic per beam. We formulate the joint BH scheduling and
NOMA-based power allocation problem as mixed-integer non-
convex programming. We reveal the exponential-conic structure
for the original problem, and reformulate the problem to the
format of mixed-integer conic programming (MICP), where the
optimum can be obtained by exponential-complexity algorithms.
A greedy scheme is proposed to solve the problem on a timeslot-
by-timeslot basis with polynomial-time complexity. Numerical
results show the effectiveness of the proposed efficient suboptimal
algorithm in reducing the matching error by 62.57% in average
over the OMA scheme and achieving a good trade-off between
computational complexity and performance compared to the
optimal solution.

Index Terms—NOMA, beam hopping, multi-beam satellite
systems, resource allocation, mixed-integer conic programming.

I. INTRODUCTION

Satellite resources are scarce and expensive, necessitating the
improvement of resource utilization to embrace the dramatic
growth of broadband data traffic [1]. However, in conven-
tional multi-beam satellite systems, on-board resources (e.g.,
power or bandwidth) are evenly distributed and all beams are
permanently illuminated [2], often failing to match offered
capacity to heterogeneous traffic distribution among beams. In
this case, poor quality of service arises in beams with unmet
traffic demand while resources are wasted in beams with excess
capacity [1].

Beam hopping (BH) is a promising technique to provide
flexibility in resource management for satellite systems [3],
[4]. Unlike conventional systems, only a subset of spot beams
are illuminated at each timeslot in a BH system [1]. In this
way, power consumption and the mass of satellite payload
can be reduced for cost saving since fewer radio-frequency
chains are required [5]. Beam illumination pattern, or beam-
timeslot assignment, can be optimized based on traffic profile
to reduce unmet and unused capacity [6], [7]. Besides, by
illuminating beams that are distant from each other, beams
adjacent to these illuminated beams are inactive, and thus co-
channel interference can be largely alleviated [8]. Despite the

abovementioned advantages, the spectral efficiency of conven-
tional BH is inevitably limited by the existence of inactive
beams [1], which invites the question of how to further improve
spectral efficiency. The authors in [6] introduced precoding in
BH systems to mitigate the co-channel interference resulting
from illuminating a cluster of adjacent beams and, thus, further
improve the performance of offered-requested rate matching.
In [9], network coding was introduced to provide flexibility
in the link layer to adapt to short-term traffic variation. The
exploitation of more flexibility in resource management and
further improvement in spectral efficiency for satellite BH
systems is still an open issue [1].

Power-domain non-orthogonal multiple access (NOMA) is
potentially advantageous to BH systems by providing an extra
degree of freedom in the power domain [10]. With superpo-
sition coding and successive interference cancellation (SIC),
NOMA is capable of multiplexing more than one terminal
in the same frequency and time resource [11]. Compared to
orthogonal multiple access (OMA) techniques, NOMA can
obtain gains in spectral efficiency and accommodating more
terminals [11], attracting researchers to investigate how NOMA
can help multi-beam satellite systems [10]. The authors in
[12] studied the synergy of NOMA and precoding to improve
capacity in multi-beam satellite systems. In [13], NOMA was
applied to allow the cooperation among adjacent beams and
further accelerate the spectral efficiency. In [14], we investi-
gated flexible resource allocation in a NOMA-enabled multi-
beam satellite system to improve the performance of offered-
capacity-to-requested-traffic ratio. However, it is still unclear
how NOMA can cooperate with BH to further improve the
spectral efficiency for satellite systems. To the best of our
knowledge, this is the first work to investigate the potential
synergies of NOMA and BH to provide time-power-domain
flexibilities in overcoming the traffic-capacity mismatch issue.

In this paper, we consider a multi-beam satellite system
where NOMA is implemented within the illuminated beams
of a beam-hopped system in order to serve multiple terminals
with the same spectrum resource. The metric of matching error
[15], i.e., the square of the traffic-capacity gap, is adopted to
capture the mismatch performance of each beam. The smaller
the matching error is, the better match between traffic and
capacity is achieved, and specifically, zero reflects a perfect
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Fig. 1: An instance of one hopping window in a NOMA-assisted satellite BH system is illustrated. One snap-shot (of which the illuminated
beams are highlighted in colors) is scheduled at each timeslot. Within each illuminated beam, NOMA is applied to multiplex two terminals.
The figure presents beam illumination of 5 timeslots.

match. We formulate a problem to minimize the total matching
error by jointly optimizing power allocation and beam illumi-
nation. The problem appears as a mixed-integer non-convex
programming which is inherently complicated and with the
variables’ number exponentially growing as the number of
beams increases. We first design a pre-processing to eliminate
the combinations of illuminated beams that suffer from inter-
beam interference or do not meet payload constraints such
that the number of variables can be reduced and the problem
size can shrink. Then the problem is identified as a mixed-
integer conic programming (MICP). The optimal or near-
optimal solution can be obtained by conventional algorithms
but with exponential-time complexity. Thus we propose a
suboptimal algorithm to provide solutions of power allocation
and beam illumination timeslot by timeslot with polynomial-
time complexity. Numerical results show the effectiveness of
the proposed scheme compared to the benchmarks.

The remainders of this paper are organized as follows. The
considered NOMA-assisted satellite BH system is illustrated in
Section II. We formulate a joint problem of power allocation
and beam illumination in Section III. A suboptimal solution
on a timeslot-by-timeslot basis is designed in Section IV.
In Section V, we evaluate the performance of the proposed
algorithm. Section VI concludes the paper.

II. SYSTEM MODEL

We consider the forward-link transmission of a multi-beam
satellite system with a total number of B spot beams. In the
service range of the b-th beam, there are Kb ≥ 1 fixed ground
terminals. Denote B and Kb as the sets of the beams, and the
terminals in the b-th beam, respectively. Time granularity for
resource allocation is set as one timeslot. Denote T as the
set of the timeslots. The illustration of the considered system
is presented in Fig. 1. In the system, NOMA is implemented
within each selected active beam in order to multiplex more
than one terminal with the same frequency band. Due to large
propagation delay and flexible operation of beam illumination,
the synchronization among gateways, satellite, and terminals is
challenging [16]. For practical consideration, the pre-scheduled

(pre-selected) BH scheme [5] is adopted. Beam illumination
pattern is designed for long-term adaptation, e.g., from minutes
to hours, and it is operated periodically such that terminals can
remain stable in synchronization and receive signals at the right
time [5], [16]. The periodic cycle is defined as one hopping
window, consisting of T timeslots. Assuming that terminals’
channel gains have long coherence time and traffic demands
remain invariant [15], we focus on resource optimization within
one hopping window and replicate the allocation decision
across hopping windows.

Based on the basis of BH, one subset of B is selected at
each timeslot and the beams in this subset are illuminated.
Each subset is defined as one snap-shot. Denote Bj as the set
of the beams in the j-th snap-shot and J as the set of the
snap-shots, where Bj ⊆ B. The number of all the potential
snap-shots is J = 2B , which exponentially grows as B
increases. Such exponentially growing property is an undesired
issue for implementation. But the number of snap-shots can
be reduced in practice. First, snap-shots illuminating adjacent
beams since more inter-beam interference is introduced [7].
Second, practical limitations of satellite payload restrict beam
illumination, e.g., a limited number of illuminated beams for
cost-saving or energy-saving consideration [3]. Snap-shots that
break these limitations can be eliminated.

Within each illuminated beam, NOMA is adopted to multi-
plex one or more terminals. According to the NOMA basis,
signals of terminals in one beam are superimposed at the
transmitter side. Each terminal receives the combination of
the desired signals, intra-beam interference, inter-beam inter-
ference, and noise. The signal-to-interference-plus-noise ratio
(SINR) of terminal k in beam b at timeslot t when the beams
in Bj are illuminated is derived as,

γbktj =
|hbk|2ρbktjP

I intrabktj + I interbktj + σ2
. (1)

Here, |hbk|2 is the channel gain of terminal k in beam b. P
is the maximum beam power. σ2 is noise power. ρbktj , I intrabktj ,
and I interbktj are the power ratio, intra-beam interference, and
inter-beam interference of terminal k in beam b at timeslot
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t under snap-shot j, respectively. The inter-beam interference
can be largely reduced and maintained at a low level when the
illuminated beams are distant from each other. By eliminating
snap-shots with adjacent illuminated beams, the inter-beam
interference can be assumed negligible as I interbktj ≈ 0. To
mitigate intra-beam interference, SIC is adopted. For presen-
tation simplification, we assume that the index of terminals
is consistent with the descending order |hb1|2 > |hb2|2 >
· · · > |hbKb

|2. For any two terminals k1 and k2, where
k1 < k2, k1 decodes and removes k2’s signal whereas k2 treats
k1’s signal as noise. Intra-beam interference is expressed as
I intrabktj =

∑k−1
k′=1
|hbk|2ρbk′ tjP for k > 1 and I intrabktj = 0 for

k = 1.
If snap-shot j is scheduled, the rate of terminal k in beam

b at timeslot t is derived as

Rbktj = BW log(1 + γbktj), (2)

where BW is the occupied bandwidth. Denote Rbk as the
offered capacity of terminal k in beam b. The offered ca-
pacity is expressed as Rbk =

∑
t∈T

∑
j∈Jb

Rbktj , where
Jb = {j′ |b ∈ Bj′ ,∀j

′ ∈ J } denotes the set of the snap-shots
that includes beam b.

III. PROBLEM FORMULATION

In this section, we formulate an optimization problem to
minimize the total error in matching offered capacity to re-
quested traffic [15], i.e., (Rb−Db)

2, by beam illumination and
power allocation. Here, Rb =

∑
k∈Kb

Rbk and Db are denoted
as the aggregated capacity and demand of beam b, respectively.
The variables are defined as,

0 ≤ ρbktj ≤ 1, power ratio of terminal k in beam b at time-
slot t when the beams in Bj are illuminated.

αjt =

{
1, the beams in Bj are illuminated at timeslot t,
0, otherwise.

The problem is formulated as

P1 : min
αjt,ρbktj

∑
b∈B

(Rb −Db)
2 (3a)

s.t.
∑
j∈J

αjt = 1,∀t ∈ T , (3b)∑
k∈Kb

ρbktj ≤ αjt,∀b ∈ Bj , t ∈ T , j ∈ J , (3c)

Rbk ≥ Rmin
bk ,∀b ∈ B, k ∈ Kb, (3d)∑

j∈Jb

∑
t∈T

αjt ≥ 1,∀b ∈ B. (3e)

Constraints (3b) state that only one snap-shot is scheduled
at each timeslot. Constraints (3c) connect α-variables and ρ-
variables. If αjt = 1, snap-shot j is scheduled. Beam b in
Bj is illuminated at timeslot t and the corresponding sum
of the power ratio should be no larger than 1. If αjt = 0,∑
k∈Kb

ρbktj is confined to 0. Note that the constraints cannot
restrict that

∑
k∈Kb

ρbktj > 0, ∀b ∈ Bj , if αjt = 1. This
could result in the case that snap-shot j is scheduled but there

exists beam b ∈ Bj is allocated with zero power, which is
equivalent to illuminating beams in Bj′ = Bj \{b}. Thus these
two cases can achieve the same objective at the optimum.
Constraints (3d) restrict each terminal’s offered capacity no
smaller than the minimum rate limitation Rmin

bk . In (3e), each
beam should be illuminated at least once during each hopping
window. The reasons for introducing (3e) are two folds. On the
one hand, terminals should be revisited considering terminals’
capability of re-acquisition after a period of time without
receiving messages [5]. On the other hand, terminals need to
receive synchronization messages during each hopping window
for stable communications [16].

Due to the presence of binary variables and the non-
convexity of the expression of Rbk in (1) and (2), P1 appears
mixed-integer non-convex programming [17], which is difficult
to solve optimally. Before solving P1, two challenges need
to be addressed. First, the numbers of binary and continuous
variables are JT and

∑
j∈J

∑
b∈Bj

KbT , respectively, which
grow exponentially as B increases. This issue can be tackled
by removing the undesired snap-shots from J , as mentioned
in Section II. Specifically, we pre-process to omit snap-shots
with the following properties:
• Illumination pattern does not meet the constraints of

satellite payload, e.g., the number of illuminated beams
surpasses the maximum limitation;

• Beams that are either adjacent or with inter-beam inter-
ference larger than a threshold are illuminated.

After this pre-processing, the number of variables is reduced
so that the size of P1 can shrink to a certain extent.

Second, the convexity of P1 should be revealed. As inter-
beam interference is weak after the pre-processing, we assume
it is negligible. We express ρbktj as the function of Rbktj based
on (1) and (2) and derive the following equation [14],∑
k∈Kb

ρbktj =
∑
k∈Kb

(
σ2

|hbk|2
− σ2

|hb(k−1)|2

)
e

∑
l≥k

Rbltj
BW − σ2

|hbKb
|2
.

(4)
Then P1 is transformed equivalently into the following,

P2 : min
αjt,Rbktj

∑
b∈B

(Rb −Db)
2 (5a)

s.t. (3b), (3d), (3e), (5b)
Rbktj ≤ Rmaxαjt,∀b ∈ Bj , k ∈ Kb, t ∈ T , j ∈ J , (5c)∑
k∈Kb

(
σ2

|hbk|2
− σ2

|hb(k−1)|2

)
e

∑
l≥k

Rbltj
BW − σ2

|hbKb
|2
≤ αjt,

∀b ∈ Bj , t ∈ T , j ∈ J , (5d)

where αjt and Rbktj ≥ 0 are variables. Note that (5c) is
added to confine Rbktj = 0 if αjt = 0, where Rmax is no
smaller than all R-variables. P2 is identified as mixed-integer
convex programming. Specifically, it is a mixed-integer conic
programming (MICP) [17] with quadratic cone in the objective
and exponential cones in (5d).

MICP can be obtained by conventional outer approximation
or branch and bound approach, which can obtain the optimal or
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near-optimal solution. However, the computational complexity
of the above solutions grows exponentially as the number of
integer variables increases [18]. The inherent combinatorial
and non-linear properties entail the intractability of MICP. For
practical consideration, it is necessary to solve P2 with low
computational complexity.

IV. PROPOSED GREEDY ALGORITHM

Considering the difficulties of attaining the optimum or
near-optimum of MICP, we propose a suboptimal algorithm
to solve P2 with polynomial-time complexity. The proposed
algorithm is on the greedy basis to optimize power and beam
illumination timeslot by timeslot. At the t-th timeslot, we solve
the following subproblem,

P3(t) : min
αjt,Rbktj

∑
b∈B

(Rbt −Db)
2 +

∑
b∈B

φb(αjt, Rbktj) (6a)

s.t.
∑
j∈J

αjt = 1, (6b)

Rbktj ≤ Rmaxαjt,∀b ∈ Bj , k ∈ Kb, j ∈ J , (6c)∑
k∈Kb

(
σ2

|hbk|2
− σ2

|hb(k−1)|2

)
e

∑
l≥k

Rbltj
BW − σ2

|hbKb
|2
≤ αjt,

∀b ∈ B, j ∈ J , (6d)

where Rbt =
∑t
τ=1

∑
k∈Kb

∑
j∈J Rbkτj denotes the accu-

mulated offered capacity for beam b from timeslot 1 to t.
Besides, φb(αjt, Rbktj) is introduced as a penalty function of
beam b. The objective of P3(t) is to minimize the sum of total
matching error and the penalty at the t-th timeslot. The reason
of introducing φb(αjt, Rbktj) is that (3d) and (3e) are coupled
among timeslots and thus cannot be simply decomposed into
different timeslots. To guarantee the satisfaction of all the
constraints at the end of the hopping window, we introduce
φb(αjt, Rbktj) to increase the penalties of the beams that do
not meet (3d) and (3e) yet at the t-th timeslot. The penalty
function is defined in the method of exact penalty [17] as,

φb(αjt, Rbktj) =
∑
k∈K

λbk max{(Rmin
bk −

t∑
τ=1

∑
j∈J

Rbkτj), 0}

+ µb max{(1−
∑
j∈Jb

t∑
τ=1

αjτ ), 0}, (7)

where λbk > 0, µb > 0 are penalty parameters for (3d) and
(3e), respectively. The objective in P3(t) is penalized if any
terminals’ capacity has not met the minimum rate constraint
at timeslot t, and otherwise, the corresponding penalty is zero.
Similarly, if the beam has not been illuminated, the related
penalty is large. To minimize the objective, resources are prone
to be assigned to the beams with large penalties.
P3(t) is a MICP with J binary and

∑
j∈J

∑
b∈Bj

Kb contin-
uous variables and still seems complicated. The computational
complexity needs to be further reduced. By setting αjt = 1 and
αj′ t = 0, ∀j′ 6= j, we can decompose P3(t) into J snap-shots
as,

P4(t, j) : min
Rbktj

∑
b∈B

(Rbt −Db)
2 +

∑
b∈B

φb(αjt, Rbktj) (8a)

Algorithm 1 Greedy scheme of beam illumination and power
allocation
Input:

Penalty: λbk, µb.
1: for t = 1, . . . , T do
2: Obtain ybt by solving P5(t, b), ∀b ∈ B.
3: Calculate ȳjt =

∑
b∈Bj

ybt for each snap-shot.
4: Schedule the snap-shot with the minimum objective

value, i.e., j∗ = arg minj∈J {ȳjt}, and set αj∗t = 1.
5: end for
6: Obtain Rbktj and ρbktj by solving P1 with the determined

beam illumination pattern.
Output:

αjt, ρbktj , Rbktj .

s.t.
∑
k∈Kb

(
σ2

|hbk|2
− σ2

|hb(k−1)|2

)
e

∑
l≥k

Rbltj
BW − σ2

|hbKb
|2

≤ 1,∀b ∈ B, (8b)

where the variables are Rbktj ≥ 0. Note that for all j
′ 6= j,

Rbktj′ = 0. P4(t, j) targets at obtaining the optimal power
solution if the j-th snap-shot is scheduled. Define ȳjt as the
optimum of P4(t, j). Then P3(t) can be treated as the problem
to select the optimal snap-shot with the minimum ȳjt, i.e.,
j∗ = arg minj∈J {ȳjt}. P4(t, j) can be further divided into B
beams as follow,

P5(t, j, b) : min
Rbktj

(Rbt −Dbt)
2 + φb(αjt, Rbktj) (9a)

s.t.
∑
k∈Kb

(
σ2

|hbk|2
− σ2

|hb(k−1)|2

)
e

∑
l≥k

Rbltj
BW − σ2

|hbKb
|2
≤ 1,

(9b)

where Rbkt′ j′ = 0 for all b
′ 6= b and j

′ 6= j. P5(t, j, b)
is to optimize power allocation when beam b in snap-shot
j is illuminated at timeslot t. Since inter-beam interference
is negligible as we eliminate the undesired snap-shots, power
allocation within each illuminated beam is independent of other
illuminated beams. Thus the optimal power allocation in beam
b is the same for ∀j ∈ Jb. That means, for any two snap-shots,
say j1 and j2 in Jb, the optimum of P5(t, j1, b) is equivalent to
that of P5(t, j2, b). We omit the index j and rewrite P5(t, j, b)
as P5(t, b). The problem is identified as conic programming.
Denote the optimum of P5(t, b) as ybt. For each snap-shot, the
optimum of P4(t, j) can be derived as ȳjt =

∑
b∈Bj

ybt.
The proposed greedy scheme is presented in Alg. 1. The

algorithm behaves on a timeslot-by-timeslot basis. At each
timeslot, ybt, is obtained for each beam by solving P5(t, b)
in line 2. The optimum objective of each snap-shot, ȳjt, is
derived in line 3. In line 4, the snap-shot with the smallest
ȳjt is scheduled. After deciding all α-variables, power and
rate allocation is optimized by solving P2 with fixed binary
variables. The number of iterations is BT in total, where, in
each iteration, a conic programming needs to be solved. For
each conic programming, i.e., P5(t, b), we adopt interior-point
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TABLE I: Simulation parameters

Parameter Value
Frequency 20 GHz (Ka band)

Bandwidth, BW 500 MHz
Satellite location 13◦E
Satellite height 35,786 km

Beam radiation pattern Provided by ESA
in the context of [20]

Channel model [7]
Number of beams, B 16

Maximum transmit power per beam, P 20 dBW
Receive antenna gain 42.1 dBi

Noise power, σ2 -126.47 dBW
Number of timeslots, T 256

Number of terminals per beam, Kb 2
Maximum illuminated beams 4

TABLE II: The number of snap-shots versus ν after the pre-
processing

ν(∗10−14) 3.7 4.0 4.3 4.6 4.9 5.2
J 33 37 47 59 81 90

method [19], which guarantees ε-optimality with polynomial-
time complexity O(−η log(ε)) [19]. Here, ε > 0 denotes the
maximum gap between the solved objective value and the
optimum, and η ≥ 1 denotes the parameter to construct the
self-concordant barrier for the cones [19]. The total complexity
of Alg. 1 is O(−BTη log(ε)).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
beam illumination and power allocation scheme in NOMA-
enabled satellite BH systems. The simulation parameters are
summarized in TABLE I. The beam pattern is provided by
European Space Agency (ESA) in the context of [20]. In each
beam, 70 terminals are located. The simulation results are
averaged over 1000 instances. For each instance, we randomly
select Kb terminals from each beam and serve them during
the service period. The demand of each terminal is uniformly
distributed. To testify the performance of the proposed scheme,
we set the following schemes as benchmarks,
• NOMA opt: The optimal or near-optimal solution of P1 is

obtained by MOSEK 9.0 [21], a powerful solver for MICP.
NOMA-opt consumes large computational efforts but can
be viewed as a lower bound to check the performance for
the proposed scheme.

• OMA opt: The optimal solution is obtained when OMA
is adopted [7]. In the OMA scheme, the frequency band
is equally divided into Kb subbands. Each subband is
exclusively occupied by one terminal.

The number of all the possible snap-shots is 216. By the
pre-processing, we reduce the number to 2517 by omitting
the snap-shots with more than 4 illuminated beams as de-
fined in TABLE I. Then we eliminate the snap-shots with∑
b∈Bj

|hb′bk|2 ≥ ν, where hb′bk denotes the channel coeffi-
cient of terminal k in beam b when receiving the b

′
-th beam’s

signal and ν denotes the threshold. TABLE II presents the
number of snap-shots after the pre-processing, i.e., J , with
respect to ν.
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Fig. 2: Objective value versus average requested demand among
NOMA opt, NOMA greedy scheme, and OMA opt.
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Fig. 3: An instance of the distribution of each beam’s requested traffic
demand and offered capacity assigned by three algorithms.

We first evaluate the performance of the objective value
with respect to average requested demand among the three
algorithms in Fig. 2. The number of snap-shots is 33. In
general, the proposed greedy scheme can obtain about 62.57%
performance gain in reducing the matching error compared
to OMA opt scheme. When the average requested demand
is relatively small (from 1 Gbps to 1.5 Gbps), the proposed
greedy scheme can achieve almost the same performance with
NOMA opt. When the demand grows from 1.6 to 2 Gbps, the
gap between NOMA greedy and NOMA opt rises from 1.15
to 3.37. For OMA opt, the matching error increases faster than
both NOMA schemes. When the average demand reaches 2
Gbps, the gap between OMA opt and NOMA greedy scheme
is 22.07.

Next, Fig. 3 compares the distributions of each beam’s
requested demand and the offered capacity that is achieved by
the three algorithms. NOMA opt can match offered capacity
to requested demand better than the other two schemes, with
an average traffic-capacity gap of 0.07 Gbps. We observe that
NOMA greedy scheme performs worse in beams 2, 3, 5, 7, 11,
and 14 than NOMA opt. But the loss is compensated as NOMA
greedy scheme outperforms NOMA opt in beams 4, 6, and
15. The average gap between requested demand and offered
capacity in NOMA greedy scheme is 0.137 Gbps. The reason
for performance degradation is that NOMA greedy scheme
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Fig. 4: Objective value versus the number of snap-shots, J . The
average requested demand is 2 Gbps.

solves the problem of power allocation and beam illumination
on a timeslot-by-timeslot basis, which achieves a local opti-
mum with polynomial-time complexity while NOMA opt costs
exponential computational time to attain the global optimum.
OMA opt performs worse than both NOMA schemes with
an average traffic-capacity gap of 3.33 Gbps. The proposed
greedy scheme is able to achieve a good trade-off between
the performance gain in requested-offered rate matching and
computational efficiency.

At last, we verify that the pre-processing to eliminate the
undesired snap-shots has trivial influence on the performance in
Fig. 4. We observe that the objective values decrease slightly as
the number of snap-shots increases from 33 to 90 by adjusting
ν as shown in TABLE II. The percentages of the decrease in
NOMA opt, NOMA greedy, and OMA opt are 9.62%, 5.85%,
and 2.57%, respectively. Among all 216 possible snap-shots,
only a small proportion (approximately 0.05%) of snap-shots
are desired to be scheduled to achieve a good performance.
Meanwhile, the problem size and computational efforts are
largely reduced. This result demonstrates the effectiveness of
the pre-processing.

VI. CONCLUSION

We have investigated the resource management in a NOMA-
BH coexisting system where BH is applied at the beam
level while NOMA is implemented at the terminal level.
The problem has been formulated to minimize the error in
matching the requested-offered data rates by jointly allocating
power and scheduling snap-shots. To solve the inherently
complicated problem with low complexity, we have designed
a pre-processing to reduce the size of the original problem and
proposed a low-complexity suboptimal scheme to solve the
problem timeslot by timeslot. Numerical results have shown
the superiority of the proposed greedy scheme compared to
benchmarks.
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