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Abstract—With the mass deployment of computing-intensive
applications and delay-sensitive applications on end devices, only
adequate computing resources can meet differentiated services’
delay requirements. By offloading tasks to cloud servers or
edge servers, computation offloading can alleviate computing
and storage limitations and reduce delay and energy consump-
tion. However, few of the existing offloading schemes take into
consideration the cloud-edge collaboration and the constraint of
energy consumption and task dependency. This paper builds
a collaborative computation offloading model in cloud and
edge computing and formulates a multi-objective optimization
problem. Constructed by fusing optimal transport and Policy-
Based RL, we propose an Optimal-Transport-Based RL approach
to resolve the offloading problem and make the optimal offloading
decision for minimizing the overall cost of delay and energy con-
sumption. Simulation results show that the proposed approach
can effectively reduce the cost and significantly outperforms
existing optimization solutions.

Index Terms—computation offloading, reinforcement learn-
ing,optimal transport, cloud computing, edge computing

I. INTRODUCTION

With the further development of computing power’s
marginalization, the traffic from the end devices (EDs) has
increased dramatically. However, due to the limited resources
and computing performance, the EDs may face insufficient
capabilities when processing computation-intensive and time-
sensitive applications. To solve the problem mentioned above,
computation offloading allocates tasks with a large amount of
computing requirements to a server with sufficient computing
resources to process and retrieve the results. Computation
offloading in cloud computing transfers tasks to remote cloud
servers for execution and uses its computing and storage
resources to alleviate computing and storage limitations and
extend the EDs battery life [1], while offloading tasks to
cloud servers face problems such as unpredictable delays and
long transmission distances [2]. Unlike cloud computing, edge
computing that uses servers to process and analyze data has
emerged and is complementary to traditional cloud computing
[3], which provides cloud computing functions at the edge
of the wireless access network near mobile users, providing
computing services for EDs more quickly and efficiently while
alleviating the pressure on the core network [4].

From the perspective of computing, offloading can signif-
icantly shorten the tasks’ execution delay and reduce energy

consumption in local computing. In contrast, from the per-
spective of communication, the upload of data and feedback of
the results introduce additional time and energy consumption
[5]. To solve the deficiencies of EDs in resource storage,
computing performance, and energy efficiency, offloading the
task of EDs to cloud servers and edge servers has become
the mainstream direction of computation offloading. As the
dependencies between tasks become more complex, it is more
general to abstract them as Directed Acyclic Graph (DAG).
On the premise of not violating mutual dependence, tasks in
DAG applications can be executed in parallel in cloud servers
and edge servers [6].

Considering different application scenarios and require-
ments, researchers have researched the decision-making prob-
lem of offloading. From the perspective of minimizing de-
lay or energy consumption, many existing solutions propose
corresponding models for offloading based on mathematical
models, and solve NP-hard problems based on heuristic or
approximate algorithms [7], [8]. However, these solutions rely
heavily on accurate mathematical models. Therefore, it is dif-
ficult for one specific algorithm to fully adapt to the dynamic
scenarios from the increasing complexity of applications.If the
dynamic arrival of tasks, random changes in task attributes,
user movement, and dynamic changes of wireless channels
are not considered, the offloading decision process can be
abstracted as a Markov Decision Process (MDP) and requires
a State Transition Probability Matrix (STPM) to describe the
system state’s change probability under different offloading
decisions [9]. After that, the optimal offloading decision can
be obtained through value iteration or policy iteration.

As the STPM is difficult to obtain, the optimal policy can
be learned by using Reinforcement Learning (RL) methods
through continuous interaction. RL is a branch of machine
learning used to learn the optimal policy when there is no
information about the surrounding environment [10]–[12]. It
can directly predict the new state and action reward based
on the model without interacting with the environment. In
terms of update methods, MDP-Based RL can be divided into
two categories by focusing on policy or value. The Value-
Based RL outputs the action’s value, and chooses the action
with the highest value, while the Policy-Based RL outputs the
probability of the next action, and selects actions based on the
probability [13].
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The optimal transport (OT) focuses on solving the optimal
transport scheme between two different distributions, and its
distance optimization problem is highly similar to the offload-
ing problem that we need to solve, which is transferring tasks
from EDs to computation nodes providing computing services
[14]. We formulate joint optimization as an MDP problem and
develop an Optimal-Transport-Based RL approach to solve it
[15]. It is based on a Policy-Based RL to obtain a weighted
sum that minimizes the processing delay of all tasks and
end devices’ energy consumption. Fusing the RL and the
regularized annealing scheduling learning policy in the optimal
transport can adaptively adjust the policy space during the RL
exploration, thereby making the training process more stable.

The contributions of this paper are as follows:
• We propose a collaborative computation offloading model

considering both delay and energy consumption, which
can effectively utilize the computing resources among
cloud servers and edge servers, and we formulate it as
an optimization problem.

• To speed up the convergence, we introduce optimal
transport into the exploration of Policy-Based RL and
propose an Optimal-Transport-Based RL approach and
construct a corresponding hybrid algorithm to solve the
multi-objective optimization problem.

• We evaluate the performance of the proposed approach
compared to other three baselines, and simulation results
show that the proposed approach significantly reduces
delay and energy consumption.

The remainder of this paper is organized as follows. The
system model is presented in Section II. In Section III, we
describe the problem formulation for computation offloading.
In section IV, we propose the Optimal-Transport-Based RL
approach to solve our proposed problem. The proposed ap-
proach’s performance is evaluated and analyzed by simulation
experiments in Section V. Finally, in Section VI, we conclude
this paper.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a wireless pow-
ered cloud-edge-end network, including EDs and computation
nodes containing cloud servers and edge servers. In our com-
putation offloading model, EDs can upload their tasks to the
computation nodes for processing. Let ti = ci, si represents
the task from EDs, where ci represents the number of CPU
cycles required to complete the task, and si represents the
input data size of the task. We use di = −1, 0, 1 to represent
the offloading method of tasks, di = −1 means processing
tasks on EDs, di = 0 means that the task is offloaded by the
edge base station to a nearby edge server for processing, and
di = 1 means that the task is offloaded to the cloud server for
processing.

A. Communication Model

We assume that the channel state between EDs and base
stations (BS) containing Small-Cell BS or Macro-Cell BS
in the computation offloading model varies with time, that
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Fig. 1. Collaborative Computation Offloading Model.

is, the channel state is different in each time slot. There
is only one eNB in one BS, so the interval interference is
neglected. It’s assumed that if multiple applications choose
to offload the task simultaneously, the wireless bandwidth
would be equally allocated to the offloading EDs for uploading
data. If the user chooses the BS to execution task, the uplink
communications are serving multiple users. Let Rµ denotes
the channels’ upload rate of the wireless network channel and
can be obtained by:

Rµ =W log2(1 +
PµG

WV
), (1)

where W is the wireless channel bandwidth, Pµ is the
transmission power of the end device to upload data, Gis
the Channel gain of the wireless channel allocated to the end
device by the BS, and V is the variance of the channel with
Additive White Gaussian Noise.

B. Delay and Energy Consumption Model

In our work, different offloading methods correspond to
different delays and energy consumption. Specifically, when
EDs offloading tasks, the delay refers to the sum of the
transmission time of offloading data to the computation node,
the execution processing time at the computation node, and
the transmission time of receiving the data result processed by
the computation node, and the energy consumption refers to
the sum of the transmission energy consumption of offloading
data to the computation node and the transmission energy
consumption of receiving the data result processed by the
computation node.

a) Local Computing: When a task is offloaded for pro-
cessing locally, we denote the local computing delay of task
ti as T locali , and only relate to the computing capability fend



and the required CPU-cycle frequency ci. Therefore, the local
computing delay can be obtained by:

T locali =
ci
fend

. (2)

Let P c denotes the computing power, and the energy
consumption for task is denoted by Elocali and is defined as:

Elocali = P c
ci
fend

. (3)

b) Edge Computing: For the edge computing method, the
EDs can offload the task to the edge server through wireless
connection between EDs and Small-Cell BS. In addition, edge
computing needs to upload the required data to the edge server.
The execution time of task on the edge server is given by:

T edgei =
si
Ru

+
ci

fedge
, (4)

where fedge stands for the computing capability of the edge
server. Let Pu denotes the upload power, and P idle denotes
the idle power. To sum up, the energy consumption can be
obtained by:

Eedgei = Pu
si
Ru

+ P idle
ci

fedge
. (5)

c) Cloud Computing: In the case of offloading tasks
to cloud servers, the processing delay can be divided into
three aspects, including the transmission delay of the wireless
channel, the transmission delay of the base station to the cloud
servers, and the computational delay when the cloud server
processes the task. Thus, the total cloud computing delay for
task T cloudi is as follows:

T cloudi =
si
Ru

+
si

Rtrans
+

ci
f cloud

, (6)

where f cloud stands for the computing capability of the cloud
server, and Rtrans is the transmission rate of the Small-Cell
BS through the core network to cloud servers. To offload tasks
to cloud servers, there is no processing energy consumption on
EDs, but the transfer energy consumption of the data upload
and the idle energy consumption of EDs need to be considered.
Then, the total energy consumption of cloud computing can
be calculated by:

Ecloudi = Pu
si
Ru

+ P idle(
si

Rtrans
+

ci
f cloud

). (7)

III. PROBLEM FORMULATION

Based on the system model in the above section, our
objective is to minimize the overall cost of delay and energy
consumption of all tasks by optimally choosing an offloading
policy. We transform the original offloading problem into
solving the optimization problem of the optimal transport
scheme. We define C(α, β) as the objective cost function,
where α =

∑N
i=1 aiδxi denotes a discrete probability mea-

surement of the task to be offloaded by the end device, and
β =

∑N
i=1 biδxi denotes another discrete probability measure

for tasks that has already been processed [16]. According to

the definition of Monge-Kantorovich transport problem, the
optimization problem is formulated as follows:

min C(α, β) = min
T

∫
M

c(x, y)dγ(x, y)

s.t.



C1 : a = (1, 0, · · · 0) ∈ RN
C2 : b = (0, b2, · · · , bN ) ∈ RN

C3 : T#α =
N∑
i=1

aiδT−1(xi) = β

C4 :
N∑
i=1

bi = 1

(8)

In (8), C(α, β) represents the transmission distance, i.e. the
delay and energy consumption that comes with offloading.
γ(x, y) stands for the computing power of three different
compute nodes. Constraints C1 and C2 define the vectors
a and b that make up the discrete probability measurement
α and β. Constraints C3 enforce that the tasks assigned to
each compute node are consistent with the tasks waiting to be
offloaded and the matrix transformation T represents a many-
to-many mapping of offloading decision, and C4 means that a
task can only be processed by one compute node.

IV. PROPOSED SOLUTION

In the above section, we formulate the optimization problem
to optimize offloading performance. This section utilizes the
Optimal-Transport-Based RL approach to design the corre-
sponding algorithm and address the formulated optimization
problem.

A. Optimal Transport

When faced with large-scale offloading, solving how to map
multiple tasks from one space to another simultaneously, rather
than just thinking about one task, is the sticking point to
OT. Problem (8) is challenging to solve because constraint
C3 is not linear, and Kantorovich Relaxation can relax the
original constraint, allowing multiple tasks to be offloaded
to multiple servers [14], [16]. Since the convex optimization
problems are always paired, the convex maximization Problem
(9) corresponding to the convex minimization Problem (8) is
given as follows:

minC(α, β) = max
f

∫
M

f(x)dα(x) +

∫
M

f c(y)dβ(y), (9)

and the corresponding meaning of Problem (9) is to maximize
the total number of tasks that can be offloaded simultaneously
by changing the overall cost of delay and energy consumption.
Let c(x, y) = d(x, y) = ||x− y||2 , then, Problem (10) is the
dual problem of Problem (9) and can be solved by convex
optimization method [17].

minC(α, β) = min
s

∫
M

||s(x)||2dx,

s.t. ∇ · s(x) = α(x)− β(x).
(10)



B. RL for Computation Offloading

OT is suitable for offline environments. For real-time sys-
tems that need to obtain real-time computing resources, offline
offloading will bring an unbearable burden. RL methods can
provide online updating and are widely used in offloading
scheme, and the research emphasis of computation offloading
based on RL is the learning of offloading policy. Specifically,
first, observe its current state st, then take action at, and get
its practical information, namely the immediate reward rt and
new state st+1, will be used to adjust the offloading policy
and this process will be repeated until the policy is close
to the optimal policy. When the Policy-Based RL is used to
approximate the offloading policy, it can be described as a
policy function containing learning parameters θ [18].

πθ(s, a) = P (a|s, θ) ≈ π(a|s) (11)

To maximize the long-term cumulative reward, the reward
value ri can be defined as the cumulative reward after the
current moment.

ri = R(s, a) = γa
T local − T off

T local
+ γb

Elocal − Eoff

Elocal
(12)

where T local and Elocal indicate the delay and energy con-
sumption of directly processing locally. T off and Eoff indi-
cate the delay and energy consumption of offloading. γa and
γb denotes the value range of weight factors which balance
the delay and the energy consumption and avoid the infinite
total reward when the time is too long. Furthermore, in order
to evaluate the expected reward of the offloading policy,
we define the expected reward obtained after performing an
offloading action a under the state s as the State-Action Value
function and is expressed as:

Qπ(s, a) = Eπ[
∞∑
k=0

γkrt+k|St = s,At = a]. (13)

After expressing the offloading policy as a continuous func-
tion, the optimization methods of continuous function such as
the gradient ascent can be used to find the optimal policy. This
requires an objective function that can be optimized, which is
represented by the average reward for each step as:

JavR(θ) =
∑

s
dπθ (s)

∑
a
πθ(s, a)R(s, a), (14)

and the gradient of the derivative of (14) with respect to θ can
be expressed as:

∇θL(θ) = Eπθ[∇θ log πθ(s, a)Qπ(s, a)]. (15)

Here, based on the Softmax function [19], the policy function
πθ(s, a) uses the linear combination of the characteristics
describing the state s, action a and the parameter θ to weigh
the probability of next action is expressed as follows:

πθ(s, a) =
eφ(s,a)

T θ∑
b e
φ(s,b)T θ

. (16)

C. Optimal-Transport-Based RL

In the above subsections, we use OT and RL to solve offline
offloading and online updating, respectively. We combine OT
and Policy-Based RL to propose an Optimal-Transport-Based
RL (OTRL) approach, where OT is conducive to training a
stable model, and RL explore the best offloading policy in the
continuous learning process. The joint loss function LOTRL
is written as:

LOTRL = λ1C(α, β) + λ2JavR(θ). (17)

and the process can be divided into the following aspects:
• Offline training: The unique offloading decision obtained

by solving cost function C(α, β) under given computing
resources and tasks can train the offline model.

• RL exploration: RL acquires real-time computing and
communication resources through continuous interaction
and gradually expands the exploration space by introduc-
ing the Policy-Based RL objective function JavR(θ).

• OT fine-tune: We add cost function C(α, β) again into
the iterative process of RL to fine-tune the model and
accelerate the convergence of the model.

In addition, we can gradually increase or decrease λ1 and λ2
to achieve parameter annealing when training the offloading
model. The OTRL algorithm for computation offloading is
shown in Algorithm 1.

Algorithm 1 OTRL for Computation Offloading
Input: task probabilities α and β, parameters λ1 and λ2
Output: offloading model M and offloading policy θ
1: for each iteration ∈ [1,MaxIter] do
2: λ

′

1, λ
′

2 = AnnealingScheme(λ1, λ2)
3: for each i ∈ [1, N ] do
4: α =

∑N
i=1 aiδxi , β =

∑N
i=1 biδxi

5: D
′

i =M(ai, θ) //Explore offloading policy
6: ri = R(D

′

i) //Compute cumulative reward
7: // Convert model outputs to offloading policy
8: θ = argmax[softmax(ri)]
9: bi = D

′

iaiδ
T
xi //Computing nodes

10: end for
11: θ′ = argmax[softmax(C(α, β))] //Optimal policy
12: // Update offloading model
13:

∑m
i=1 [λ

′

1C(α, β) + λ
′

2JavR(θ, θ
′)]

14: end for
15: return result

V. SIMULATION EXPERIMENTS

In this section, we verify the offloading performance of the
Optimal-Transport-Based RL approach.

A. Simulation Settings

In simulation, we assume that the computation capacity
of the end device, edge server, and cloud server are set
to 1GHz, 10GHz, and 100GHz, respectively. The wireless
channel bandwidth is 50MHz, the number of channels is 50,
the number of the end device is 100, and they are randomly



distributed within the coverage of multiple base station. The
wireless transmission power is 0.1W, the computation power
of the end device is 0.5W, and the Additive White Gaussian
Noise is -100dBm. The number of CPU cycles required by
the edge server and cloud server are 200 cycles/bit and 50
cycles/bit. Moreover, we assume that the data size of tasks
obeys a uniform distribution between [100,500]. On the basis
of the above experimental parameter settings, we compare
the proposed OTRL algorithm with the following three latest
benchmark algorithms:
• DDPG algorithm: DDPG is a deep reinforcement learning

technique adopted to achieve the optimal solution of the
complicated nonlinear optimization problem [20].

• Greedy algorithm: For each task, a greedy strategy is used
to decide to execute a task at its EDs or offload it to
servers for processing to minimize the delay.

• Random algorithm: Without violating the original task
dependencies, the performance of other offloading al-
gorithms should be at least higher than this benchmark
algorithm.

B. Simulation Results and Analysis

The experiment first verifies the convergence performance
of the proposed OTRL algorithm in the offline training,
and we take the loss function to highlight the convergence
performance. As shown in Fig. 2, during the 50 rounds of
training, it can be seen from the fitting curve that the value of
loss function in two RL algorithms decreases rapidly. When
the number of training reaches 30, the joint loss function
LOTRL tends to be stable. With the help of both OT and RL,
it can be seen that the proposed OTRL algorithm converges
fast and is more stable than DDPG algorithm.

0 5 10 15 20 25 30 35 40 45 50

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lo
ss

Number of iterations

DDPG Algorithm
OTRL Algorithm

Fig. 2. Convergence curve of loss vs number of iterations.

Next, we consider how the the required data size during
offloading impacts the offloading performance. Fig.3 shows the
average cost under scenarios where the required data ranges
from 100 KB to 1000 KB. In particular, the average cost of

the Greedy algorithm and the Random algorithm increase rel-
atively fast as the data size increases, while the average cost of
the proposed OTRL algorithm increases relatively slowly. The
figure shows that the proposed OTRL algorithm and the DDPG
algorithm outperforms the other two benchmark algorithms
because the increasing data leads to a more extensive search
space for RL methods to obtain an optimal policy.
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Fig. 3. Average cost under different data size.

As shown in Figs. 4, we consider the impact of different
required CPU cycles to process the tasks, and the required
CPU cycles for processing tasks ranges from 10 Gcycles to
20 Gcycles. Except for the Random algorithm and the Greedy
algorithm, we can note that the average cost of the other
two methods are relatively stable as the required CPU cycles
change, which means they can adapt to different required
resources dynamically. Furthermore, the proposed OTRL al-
gorithm shows no clear sign of increasing. This is because the
proposed algorithm can make intelligent offloading decisions
to reduce the overall cost of delay and energy consumption.
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Fig. 4. Average cost under different required CPU cycles.



In the previous two simulations, we obtained different
average cost by changing task attributes containing data size
and required CPU cycles. After standardized the input of
the above two factors, we consider how the number of EDs
impacts the offloading ratio. Fig. 5 shows the variation of
offloading ratio as number of EDs change. We can observe
that offloading ratios decreases with the increasing EDs and
the OTRL algorithm outperforms the other three benchmark
algorithms. What makes this phenomenon is that the OTRL
algorithm can make full use of the collaborative resources of
cloud servers and edge servers.
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Fig. 5. Offloading ratio under different numbers of EDs.

VI. CONCLUSION

In this paper, we have studied the problem of computation
offloading in cloud and edge computing, where multiple EDs
have computation-intensive and time-sensitive tasks that need
to be executed either locally or remotely. Considering the
situation that EDs can offload tasks to edge stations, and edge
stations can further offload tasks to nearby edge server or cloud
server. The problem is formulated as the joint optimization of
delay and energy consumption. To solve the formulated multi-
objective optimization problem, we have proposed an Optimal-
Transport-Based RL (OTRL) approach to find a solution for
the intractable problem. Simulation results have demonstrated
that the proposed approach can achieve a better trade-off
performance on delay and energy consumption than other
computation offloading schemes and decrease the complexity
compared to the conventional RL methods.
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