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Abstract—Millimeter-wave (mm-wave) communication, which
has already been a part of the fifth generation of mobile
communication networks (5G), would result in ultra dense small
cell deployments due to its limited coverage characteristics.
To enable seamless handovers between indoor and outdoor
environments, a mobility prediction of an indoor user is studied
by deploying Markov chains. Based on the effect of external
factors on the user’s mobility, a simulation scenario is created
to model the trajectory of an indoor user w.r.t the most visited
areas before leaving the indoor environment. Based on that, a
method for initializing the transition matrix of Markov chains
is proposed, via Q-learning. The proposed solution is compared
to a standard online learning Markov chain model in terms of
different mobility models and learning rates. Results show that
the proposed solution is always able to outperform the standard
method in terms of prediction accuracy.

Index Terms—mm-wave 5G, Markov Chain, Q-Learning,
indoor mobility, user trajectory, predictive handover, femtocells.

I. INTRODUCTION

5G is already being deployed in major cities of China
and the UK with the promise of achieving high data
rate communications with minimum latency [1]. Millimeter
wave frequencies, ranging in the spectrum from 3 to 300
GHz, are being exploited in 5G to meet the increased
wireless data traffic coming from a range of smart connected
devices. In spite of having a promising feature for wireless
communication with a higher frequency range, mm-waves
come along with a serious issue of penetration losses, due to
the physical nature of high frequency radio communications
with shorter wavelengths. A simple solution to this issue is the
deployment of small cells (SCs), where mm-wave frequency
driven BSs are placed closer, in order to provide a robust
coverage in mm-wave frequencies [2]. However, without a
careful management and regulation, the dense deployment of
SCs may cause frequent handovers (HO). Switching from one
BS’s coverage to another BS based only on received signal
strength (RSS), may degrade the Quality of Service (QoS)

and Quality of Experience (QoE) of users. Additionally, the
studies by 3GPP verify that the HO failure rate in a macro-
pico heterogeneous network is high as 60%, which is doubled
compared in a macro-only network [3]. Moreover, interference
management, spectrum sharing, resource management, energy
efficiency, user association, and the economics of this ultra
dense network are some of the challenging areas that still need
to be addressed.

In this respect, predictive mobility management is a
promising candidate to provide seamless connectivity by
predicting future locations and anticipating user equipment
(UE) HOs as well as triggering the network BSs to make
them ready for incoming HO requests. Predictive mobility
management requires some input from the environment or
the network itself, which can be fed, for example, into
machine learning algorithms. Due to its importance, numerous
studies have investigated mobility prediction in wireless
communications. In [4] the authors performed mobility
prediction via Markov chains, to show the influence of the
transition probability matrix, which is created based on their
assumptions on user movement. The authors in [5], expanded
their work in [4] by using user’s mobility history as an input to
a transition probability matrix, to discover the most frequently
visited base station. In [6], a machine learning based mobility
management scheme for 4G X2 HO process is proposed to
predict future HOs in order to reduce the HO delay. The
authors introduced the concept of 3D transition matrix to
address the path dependency problem of classical Markov
chain, which occurs when users perform the HOs to the same
cell. In [7], a mobility prediction model was developed where
they assigned Markov Chains to the data plane network in
4G. They proposed a trajectory dependency parameter that
can control their proposed model’s reaction to random and
less frequent movements.

However, most studies consider mobility prediction only in
outdoor environments, ignoring the fact that almost 80% of
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Fig. 1: System Model showing Indoor Regions as Markov
Chain states.

mobile traffic is generated by indoor users [8]. Thus, given
that 5G networks are expected to be much more dense, with
the deployment of mm-wave SCs occurring both indoors and
outdoors, it is essential that mobility prediction capabilities are
provided, especially when users are transitioning from indoors
to outdoors as high penetration loss prone mm-wave driven
indoor environment expected to become isolated from the
outdoor [9]. Based on that, in this article we propose a user-
centric indoor mobility prediction algorithm for preemptive
handovers based on Markov chains. Given that indoor user
mobility is not completely random, we propose a novel method
for indoor user mobility prediction and compare it with
traditional Markov chains from [7].

The remainder of this paper is as follows: Section II
describes the methodology for indoor mobility prediction,
Section III presents the proposed solution, Section IV
discusses simulation results, and conclusions are drawn in
Section V.

II. METHODOLOGY

A. Markov Chain for Mobility

Since almost 80% of mobile traffic is generated by indoor
users, the simulations in this study are based on tracking the
user’s mobility in an indoor environment [8]. In addition, it is
well known that user movements have some pattern and are
not completely spontaneous, but rather target oriented, such
as going to the train station or heading to the kitchen from
the living room [10]–[12]. In [12], user mobility is modelled
in a non-random manner, inspired by the process of human
decision making in [13]. The authors in [13] looked that
process by taking into account internal and external factors
where the former is represented by individual characteristics

and the latter is indicated by environment stimulus and
group behaviour. Motivated by the above mentioned studies,
our hypothesis is that a user has more regularities in their
movement within an indoor environment, where degrees of
freedoms are lower as compared to an outdoor scenario.
Considering these regularities, we designate a special area in
our indoor model, called the cloak room, where users usually
visit to take his/her coat, shoes, keys, umbrella etc., before
going outdoor, or vice-versa. Therefore, we model an indoor
environment segmenting indoor regions (IR) into Markov
Chain states as shown in Fig. 1, and prediction algorithms
are implemented to track the probabilities of user following
the given scenario trajectory. Moreover, we also consider in
this environment that a single BS is located in the outdoor
environment, positioned at a distance of d from the left wall
of the user’s building. Regarding the indoor environment, a
building with an area of A is considered, with a single small
cell providing coverage for the entire region.

B. Markov Chain for Mobility Prediction

Markov chain is a stochastic process and is referred as
memory-less, since the next state relies on the current state
rather than the previous state [5]. A Markov chain consists of
a set of states, which in our scenario are S={IR1, IR2,..IRn},
where being the states’indices I = {1, 2, ..., n} and transitions,
ti,j, represent the movement probabilities from one state to
another, as illustrated in Fig. 2. Markov chains are mainly
used for predictions in a randomly changing system, and
mathematically models the probabilities of transitions to the
next states, as:

P(Sn+1 = sn+1|Sn = sn, ..., S1 = s1) =

P(Sn+1 = sn+1|Sn = sn). (1)

Contrary to the studies mentioned in Section I where the states
are defined as base stations; our proposed scheme defines the
Markov chain states as indoor regions (IR) within an indoor
environment. Received signal strength (RSS) approach which
is one of the simplest and broadly used techniques for indoor
localization [14] is utilized to determine in which state UE is.

The probability distribution is derived from:

pk = p0T
k, (2)

T =


t1,1 t1,2 · · · t1,n

t2,1 t2,2 · · · t2,n
...

...
...

...
tn,1 tn,2 · · · tn,n

, (3)



Fig. 2: Discrete-time Markov Chain with 6 finite state spaces
(i.e., IRs).

where pk is the kth transition probability vector, p0 is the initial
distribution vector and T is the transition probability matrix.

III. PROPOSED SOLUTION

Given that user movements are goal oriented, in this paper
we propose a novel concept for initialising the transition
matrix of a Markov chain, and evaluate its impact in indoor
mobility prediction. However, before presenting the proposed
solution, it is important to give an overview on how Markov
chains can be used for mobility prediction.

1) Online Learning Transition Matrix: There are some
steps needed to be set before initializing the transition matrix
such as: 1) A transition from any state to itself is prohibited,
making the transition matrix hollow, such that ti,i = 0,∀i ∈ I;
and 2) The transition matrix should be a right stochastic
matrix, satisfying the condition

∑n
j=1 ti,j = 1,∀i ∈ I.

Since the UE initiates the HO transition, we assume that the
transition matrix T is updated according to the user’s tracked
movement. The idea is to assign higher probabilities to the
most common routes followed by the user as compared to the
other routes. A trajectory dependency parameter Rd is used to
control the model’s learning rate and reaction to random or less
frequent movements as proposed by [7], where 0 ≤ Rd ≤ 1.
Consequently, small values of Rd update the transition matrix
more slowly, giving more weight to the overall path of a user
(minimizing the randomness). In the case of Rd = 0, T is
not updated making the prediction independent of the past
movement, whereas, in the case of Rd = 1, the prediction is
biased towards the most recent trajectory.

To further explain the update procedure of T, let us consider
an example where a user follows the path: IR1 −→ IR2 −→
IR3. For each movement between a region, e.g., from IR1

to IR2 the UE will update the probabilities of outbound
movements from IR1 to all neighbouring IRs in a game

scheme of several stages. In the first stage, the outbound
movement probability of UE from IR1 to IR2 is increased
by an amount controlled by Rd, while the probabilities of
direct movement of UE from IR1 towards all playing IRs are
decreased. This is expressed as:

t1,2 = t1,2 +
∑
j

t1,jRd, j ∈ NIR1
, (4)

t1,j = t1,j −
∑

j t1,jRd

|NIR1
| − 1

, j ∈ NIR1 , (5)

where |NIR1
| is the cardinality of the set of neighbouring

IRs for IR1 which are taking part in the game. To satisfy
the condition of inclusivity (0 ≤ ti,j ≤ 1), a lower bound of
0 and an upper bound of 1 is set for each entry in T. This
brings in the challenge of satisfying the condition of right
stochastic matrix. This is solved by adding additional stages
that approach equilibrium without violating the conditions of
transition matrix [7].

2) Q-Learning Initialization of the Transition Matrix:
Based on the model proposed by [7] and the fact that user
mobility is not totally random, but rather goal oriented, in this
paper we propose to initialize the transition matrix T according
to a Q-learning algorithm. Q-learning, is a reinforcement
learning technique that learns an action-value function that
gives the expected utility of taking a given action in a
given state and following a fixed policy thereafter [15]. Since
reinforcement learning algorithms are goal oriented by nature,
it is deemed as a suitable fit for this problem.

Considering our Markov chain model with finite state
spaces represented by S, a finite set of possible actions U(i)

where i ∈ S and transition probabilities represented by ti,j

such that
∑

i,j ti,j = 1 for all j ∈ S. It is assumed that before
using the Markov chain for mobility prediction, the user would
gather some data based on its movement. As such, in this
context we have trained a Q-learning model according to the
scenario from Fig. 1, where a user could start in any state and
its goal was to reach the outside region (state 6). Based on
that, Q-learning is able to update its function according to

Q(st, at)← Q(st, at) + α[rt+1+

φmax
a

Q(st+1, a)−Q(st, at)] , (6)

where Q(st, at) is the current action-value function, α, is the
learning rate, rt+1 is the expected reward at the next time step,
φ is the discount factor and maxaQ(st+1, a) is an estimate of



the optimal future action-value function at the next state over
all possible actions.

Based on this model, given any starting state, Q-learning
learns the next action of a user in order for it to reach the
outside (the goal). Thus, by training this model and counting
how many times each state action pair were visited, a transition
matrix can be built, given by ti,j = Ni/

∑
j Nj .

IV. SIMULATION RESULTS

The simulation environment contains six Markov states, the
states from one to five belongs in the indoor environment
and state six represents the outdoor environment, as illustrated
in Fig. 1. The transition between the states are evaluated to
examine the accuracy of the initial values of transition matrix.
The system checks the probabilities for a sequence of 100 days
with 6 transitions each day. Four different mobility scenarios
are applied for each day for a single user: 0% of random data,
where users follow predefined routes every day; 10%, 20%
and 50% random data, in which random routes are followed
with the the given percentages and evenly distributed across
the 100 day period. The proposed solution with Q-learning
initialization is compared to the solution in [7] in terms of
prediction accuracy, identified as the ratio between the number
of correct and total number of predictions. For the Q-learning,
a learning rate of α = 1, a discount factor of φ = 0.8 and an
ε-greedy policy with ε decaying from 1 to 0.3 are assumed. A
total of 500 episodes are simulated, with varying number of
iterations (the algorithm would stop when the outside region
is reached). In terms of the reward, a reward of 0 is assumed
for every step the user would take, except in states 5 (door)
and 6 (outside), where a reward of 25 and 100 is given.

Fig.3 illustrates the average prediction accuracy values w.r.t
different Rd values for the solution from [7] and our proposed
Q-learning method. In the first scenario, shown in the solid
line, since the transition matrix is initialized with equiprobable
values over all possible states, it can be seen that for low values
of Rd, the prediction accuracy is very low, with accuracy
ranging from 25% to 40% for the different mobility models
when Rd = 0. This occurs because the Markov chain model
does not assume any prior knowledge of user mobility, which
results in an initial learning time, in which the algorithm makes
wrong predictions more often than correct ones. However, as
Rd increases, we can see that the prediction accuracy reaches
values of 98 - 99% when no randomness is considered and
declines for higher values of Rd for the other mobility models.
This occurs because when Rd is higher the transition matrix
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Fig. 3: Accuracy for different values of Rd for both methods.

updates faster, thus when randomness is introduced, it is less
reliable [7].

For the proposed scenario, shown in the dashed line, it can
be seen that the prediction accuracy without any randomness,
has the maximum accuracy of 100% as the system already
had the initial transition matrix value, which is derived from
the Q-Learning method. In addition, this method gives more
robust estimate of the accuracy with respect to lower Rd

values. However, the increment in the random data, reduces
the accuracy comparatively with the higher values in Rd, for
the same reasons as mentioned above.

TABLE I: Accuracy gain in percentage.

Rd Values 0 0.2 0.4 0.6 0.8 1

0% Random Data 300 1.78 1.01 0.75 0.75 0.75
10% Random Data 244 1.89 1.06 0.72 0.73 0.78
20% Random Data 188 2.13 1.18 0.40 0.61 0.68
50% Random Data 74 2.74 0.83 0.50 0.51 0.51

Table I shows the gain in terms of accuracy between the
proposed solution and the solution in [7], for different values
of Rd. It can be seen that, initializing the Markov transition
matrix with values from Q-learning yields higher gains when
Rd is smaller, with gains over 1% for values of Rd ≥ 0.4
whereas when Rd is larger, the two solutions converge to
each other. This occurs when Rd is larger as the values in
transition matrix are updated more quickly, therefore only the
most recent paths are considered important than previous one.
Therefore, the initialization is not as effective as when smaller
values of Rd are considered. Lastly, Fig. 4a demonstrates a
heatmap of the path that the user follows according to the Q-
learning mobility pattern, which is then used to initialize the
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Fig. 4: Markov Chain Transition Matrix.

transition matrix in the Markov chain algorithm. On the other
hand, Fig. 4b shows a heatmap of what the proposed solution
has learned, for a value of Rd = 0.2 and a 50% randomness
in user mobility.

V. CONCLUSIONS

In this paper, we proposed a user-based indoor mobility
predictions via Markov chain with an initial transition matrix,
acquired from Q-learning. Results show that, the model
with using an initial transition matrix has slightly higher
accuracy however, this model would come at the price of
more complexity as system needs to be trained based on some
data. Therefore, we propose the online learning method for
the transition matrix when there is no data available about the
user’s movement. Based on this acquired knowledge of the
user’s movement pattern in the indoor environment, among
other functionalities, preemptive handovers for mmWave

communications can be applied to reduce handover latency
in the next generation densely deployed small cell networks.
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