
User-Centric Cooperative MEC Service Offloading
Ruoyun Chen, Hancheng Lu, Pengfei Ma

Department of Electrical Engineering and Information Science,
University of Science and Technology of China, Hefei, Anhui 230027 China

chenryun@mail.ustc.edu.cn, hclu@ustc.edu.cn, mpf916@mail.ustc.edu.cn

Abstract—Mobile edge computing provides users with a cloud
environment close to the edge of the wireless network, supporting
the computing intensive applications that have low latency
requirements. The combination of offloading with the wireless
communication brings new challenges. This paper investigates the
service caching problem during the long-term service offloading
in the user-centric wireless network. To meet the time-varying
service demands of a typical user, a cooperative service caching
strategy in the unit of the base station (BS) cluster is proposed.
We formulate the caching problem as a time-averaged completion
delay minimization problem and transform it into time-decoupled
instantaneous problems with a virtual caching cost queue at first.
Then we propose a distributed algorithm which is based on the
consensus-sharing alternating direction method of multipliers to
solve each instantaneous problem. The simulations validate that
the proposed online distributed service caching algorithm can
achieve the optimal time-averaged completion delay of offloading
tasks with the smallest caching cost in the unit of a BS cluster.

Index Terms—User-centric network, MEC service offloading,
online distributed caching.

I. INTRODUCTION

With more intelligent and big-data applications developed
on user terminals, the resources required by the computing
intensive tasks from these applications are getting higher. For
example, the popular virtual reality applications consume a
lot of computing and storage resources to construct realistic
images. However, the user terminals with extremely limited
resources are helpless. Meanwhile, offloading these tasks to the
remote cloud incurs non-negligible transmission delay through
the already-congested backbone network. Hopefully, mobile
edge computing (MEC) [1], [2] deploys small servers at the
edge of the network, which provides a cloud environment in
proximity of the user. Then the computation-intensive tasks
can be offloaded to MEC with a low response latency.

[3]–[6] have made some contributions to the MEC task
offloading. MEC-assisted vehicle platooning is considered in
[4], where the authors minimize the average total energy
consumption under the constraint of meeting the deadlines of
tasks, and propose a Lyapunov optimization algorithm to solve
it. Amit Samanta et al. in [6] try to solve the service offloading
problem considering tasks that have different delay require-
ments. Specifically, service offloading means prefetching the
dependent databases and libraries, i.e., services, to support
the computing-intensive tasks at first and then performing
computing. The caching process during service offloading
involves the joint allocation of both computing and storage
resources, which brings challenges that has not been solved
perfectly.

Furthermore, the wireless network plays a significant role in
many end-to-end services [7]–[10], which can also be perfor-
mance bottleneck in the offloading process. But it is ignored
and not well studied in existing works. Traditionally, multiple
users associate with one base station (BS) and offload their
tasks to the server deployed in the associated BS. The com-
petition for limited wireless communication resources causes
a non-negligible delay compared with the processing delay
when the load on servers is light. Furthermore, users located
at the edge of the conventional cells experience poor signal-
to-interference-plus-noise ratio (SINR). With the evolution of
5G ultra-dense network, the user-centric architecture [11], [12]
which replaces the traditional network-centric architecture,
enables each user to be served by a proprietary virtual network.
To implement this, multiple BSs form a cluster to serve a user
cooperatively [13], [14]. The data sent by the user will be
jointly decoded by the BS cluster. Combined with interference
cancellation technology, the uplink data rate can be increased.
Consequently, the wireless communication process will not be
the bottleneck of delay performance.

Nevertheless, service offloading in the user-centric network
brings new challenges. In order to meet the time-varying
offloading demands of the typical user in a long time span and
make full use of the limited resources on the edge servers, BSs
in the cluster that serves a typical user should conduct service
caching cooperatively. Although there exist some studies on
the cooperative service caching problem [15], [16], most of
them discuss the caching strategies based on the popularity
of multiple users, where the individual demands are not
considered. Combining the benefits of the user-centric network
for offloading process, we study the service caching problem
in the user-centric wireless network to provide customized
offloading for each user. In a word, this paper investigates
the cooperative caching problem from a long-term perspective
for a typical user. The main contributions are summarized as
follows:

1) We discuss the service offloading in the user-centric net-
work. The service caching strategy is developed by minimizing
the time-averaged completion delay of the offloading tasks in
a long time span, for a typical user who is served by a BS
cluster cooperatively.

2) In the absence of future information, a Lyapunov op-
timization based online algorithm is designed, which trans-
forms the long-term service caching problem into multiple
instantaneous optimization problems. Further to implement the
cooperative service caching in each time slot, a distributed

ar
X

iv
:2

10
3.

03
44

7v
1

 [
ee

ss
.S

Y
]

 5
 M

ar
 2

02
1

consensus-sharing algorithm under the alternating direction
method of multipliers (ADMM) framework is proposed.

3) We carry out extensive simulations to validate the op-
timality and the superior convergence performance of the
proposed algorithm. The results demonstrate that our algorithm
outperforms the instantaneous optimal caching strategy and
iteration based algorithm in terms of different metrics.

The rest of this paper is organized as follows. Section II
describes the system model. The problem is formulated and
analyzed in section III. Section IV proposes the algorithm to
solve the problem. The simulations are presented in Section
V. Finally, this paper is concluded in section VI.

II. SYSTEM MODEL

We consider a wireless network with M BSs, denoted by
set M. Each BS is equipped with A antennas and endowed
with cloud resources, i.e., processing and storage capabilities.
Constrained by the deployment overhead, the BS m (m ∈
M) has a CPU with maximum processing capacity Cm (CPU
cycles per Hz) and a storage with maximum space Sm.

There are U active users in this network, denoted by the set
U . Each user is served by a cluster of BSs. BSs in the cluster
receive user data and decode it jointly by exchanging channel
state information through the backhaul link. We assume that
each user generates the computing tasks that request for one
type of service each time. All K types of the services are
stored at remote cloud, denoted by the set K. The service k
(k ∈ K) has a size of sk, which will take up the storage space
on edge servers of size sk if it is cached. Furthermore, it has a
computing requirement of fk to process per unit of data. Fig.
1 describes the main elements of the system vividly. Each user
is served by 3 BSs, and overlapping between users is allowed
for maximizing the utility of resources.

To describe the dynamic of the communication system and
users’ requests, we separate the long time span T into discrete
time slots t (1 ≤ t ≤ T, t ∈ Z), and assume that the channel
state and users’ requests in each time slot remain constant.
The details of the system model are illustrated next.

MEC enabled BS

Service caching

BS cluster

User1

User2

Signal

Interference
Service types

Remote cloud

Fig. 1: MEC-enabled user-centric network model.

A. User-centric Communication model

Firstly, the user-centric wireless network model requires a
clear statement of BS clustering. We use a binary variable

cu,m(t) which indicates that the BS m belongs to the cluster
of the user u at time t with value 1, otherwise 0. The BS
cluster of the user u is denoted by Φu(t) and the users served
by Φu(t) is denoted by Ωu(t). Taking user u as the typical
user, the users belonging to {v : ∀v 6= u, v ∈ Ωu(t)} are called
intra-cluster users, while the remaining users are called inter-
cluster users. With the clustering model clarified, the signal
received by BS m is

bm(t) =
∑
u∈U

√
pugmu(t)au(t) + n(t)

=
√
pugmu(t)au(t) +

∑
v6=u,

v∈Ωu(t)

√
pvgmv(t)av(t)

+
∑
w6=u,

w/∈Ωu(t)

√
pwgmw(t)aw(t) + n(t),

(1)

where pu is the signal power of user u, gmu(t) ∈ CA×1 is the
complex channel coefficient between BS m and user u. au(t)
is the complex symbol transmitted by user u at time t and
n(t) is the white Gaussian noise with variance σ2

n and zero
mean. All the signals received by the BS m can be divided
into three parts: the first part is the useful signal of user u,
the second part consists of the signals sent by intra-cluster
users, i.e., intra-cluster interference, while the last part is the
inter-cluster interference.

There are multiple technologies that can mitigate the inter-
ference nowadays, e.g., non-orthogonal multiple access [17].
In this paper, to reflect the gain of BS clustering under the
user-centric mode, beamforming (or precoding) is an effective
interference cancellation technology. By designing the beam-
forming vector, the intra-cluster interference can be eliminated
at the receiving BS cluster [13].The projection transformation
zero-forcing beamformer for user u is calculated as follows

wu(t) =

(
IA|Φu(t)| −G−u(t)G†−u(t)

)
guu(t)∥∥∥(IA|Φu(t)| −G−u(t)G†−u(t)
)
guu(t)

∥∥∥
2

, (2)

where guv (t) = [· · · ,gmv(t), · · ·]Tm∈Φu(t) and G−u(t) =

[· · · ,guv (t)T , · · ·]Tv 6=u,v∈Ωu
. Then we have the uplink SINR

of user u as

SINRu(t)=
pu
∣∣wu(t)Hguu(t)

∣∣2∑
w/∈Ωu(t)

pw|wu(t)Hguw(t)|2+|wu(t)|2σ2
n

. (3)

The uplink data rate of user u is ru(t) = log2(1+SINRu(t)).

B. Offloading Task Model

The task generated by user u at time t is denoted by Tu(t),
which is characterized by (dTu(t), wTu(t)) representing the size
of data and workload separatively. The workload refers to the
computing resources required to process each unit of data,
e.g., CPU cycles per bit, which can be acquired from the
profile of the task. To clarify the type of service that the task
requests for, we use a binary variable ok,Tu(t) to indicate that
the task generated by user u at time t requests for service k
with value 1, otherwise 0. We assume that each user uploads
a computing task that requests for one type of service at each
time slot. A task which consists of multiple types of services
will be considered as several independent tasks generated by

different users. According to the above assumption, we have
the constraint

∑
k∈K ok,Tu(t) = 1.

C. Service Offloading Model

The process of service offloading includes uploading tasks,
processing tasks, and returning the computing results. Above
all, the BSs have to prefetch the services from remote cloud
to support the processing according to a caching strategy at
the beginning of each time slot. Then the tasks arrive in each
time slot.

Let xk,m(t) ∈ [−1, 1] be the caching strategy for service
k in BS m at time t. It indicates caching (xk,m(t) > 0)
or removing (xk,m(t) < 0) by the sign, and the abso-
lute value represent the corresponding probability. xm(t) =
[x1,m(t), · · · , xK,m(t)]T represents the caching strategy of BS
m. Xu(t) = [xm(t)|m ∈ Φu(t)] denote the caching strategy
of the BS clusterΦu(t).

We use hk,m(t) ∈ [0, 1] to denote the probability that
service k has been cached on BS m until time t. Services that
cached on servers will occupy resources. Consequently, limited
resources on the edge servers limit the number of services
that can be cached, which is represented by the constraints∑
k∈K hk,m(t+ 1)sk ≤ Sm and

∑
k∈K hk,m(t+ 1)fk ≤ Cm

∀m ∈ M. Services can be cached or removed by a certain
probability. Consequently, the next caching status is only
determined by the current caching status and decision, which
means that the probabilistic service caching process is a
Markov decision process. The state transition function in our
service caching model is

P[state(t+ 1)]=P(state(t), action(t))

=[xk,m(t)]++hk,m(t)−|xk,m(t)|hk,m(t),
(4)

where the [·]+ means max(·, 0). The last equation comes from
the independence between xk,m(t) and hk,m(t).

Obtaining services from the cloud costs money, e.g., pur-
chasing or transmitting. We assume that these costs differen-
tiated by service types are proportional to the size of services.
Let Costk = ξksk denote the cost for prefetching service k,
where ξk is the cost coefficient of per unit of service data,
then the expected prefetching cost of BS m is calculated as

Costm(t) =
∑
k∈K

ξksk[xk,m(t)]+(1− hk,m(t)).

In each time slot, the user sends the offloading task with the
size of dTu(t), which leads to an uplink communication delay

DUCN
Tu(t) =

dTu(t)

ru(t)
. (5)

The data will be received by all the BSs in the cluster and
decoded jointly, and the task dispatching strategy adopted in
this paper is that the BS in the cluster which has the highest
probability cached the requested service will process the task.
Other task dispatching strategy can be integrated, but it is not
our focus here. Let k̂ = arg maxk ok,Tu(t) denote the service
that Tu(t) requests for, and m̂ = arg maxm∈Φu(t) hk̂,m(t +
1) = arg maxm cu,m(t)hk̂,m(t + 1) denotes the BS that will
process Tu(t). The processing delay on the edge server is

Dedge
Tu(t) =

dTu(t)wTu(t)

fk̂
. (6)

Meanwhile, the task will be uploaded to the remote cloud with
probability 1−hk̂,m̂(t+1). Transmitting through the backbone
network incurs a large delay

DBKB
Tu(t) =

dTu(t)

R
, (7)

where R is the data rate of the backbone network which is
set as a small constant. We assume that the resources on
the remote cloud is ample, thus the processing delay on the
remote cloud is negligible. Then the delay that offloading to
the remote cloud mainly comes from the transmission.

Generally, the results of calculations are very small, so we
ignore the delay caused by returning the results. Summing
up all the delay generated during the offloading process, the
completion delay of Tu(t) is

Dtotal
Tu(t) =DUCN

Tu(t)+

hk̂,m̂(t+1)Dedge
Tu(t)+

(
1−hk̂,m̂(t+1)

)
DBKB
Tu(t) .

(8)

III. PROBLEM FORMULATION

After clarifying the system model, the long-term service
caching problem is formulated as a minimization of the
average task completion delay of the whole offloading process
for multiple time-slots in a long time span, which is illustrated
by problem P.

P : min
Xu(t)

1

T

∑
t∈T

Dtotal
Tu(t), (9a)

s.t.
1

T

∑
t∈T

∑
m∈M

cu,m(t)Costm(t) < Costth, (9b)∑
k∈K

hk,m(t+ 1)sk ≤ Sm, (9c)∑
k∈K

hk,m(t+ 1)fk ≤ Cm, (9d)

xu,m(t) ∈ [−1, 1]. (9e)

Among where, Costth is a hyperparameter deciding the cost
threshold of the service provider, we hope for a small caching
cost to guarantee the response latency during the service of-
floading process. Constraint (9b) is the average service caching
cost for multiple time slots. (9c) and (9d) are the expected
storage resources and computing resources constraints on the
edge servers, and (9e) indicates the domain of the variables.

Analyzing the above problem, the service caching strategy
Xu(t) = [xm(t)|m ∈ Φu(t)] is the decision variable of the
user-centric service caching problem. From (8) we can tell
that the delay of wireless communication is independent of
the caching process, while the processing delay is affected
by the caching strategy of the BS cluster, which means
that the service caching strategy depends on the clustering.
Consequently, we solve the service caching problem based
on the optimal BS clustering [18]. Naturally, our optimization
goal is to minimize the averaged processing delay

1/T
∑
t∈T

hk̂,m̂(t+ 1)Dedge
Tu(t)+

(
1−hk̂,m̂(t+ 1)

)
DBKB
Tu(t) .

The challenges of solving this problem come from the
unknown dynamic requests of the user and the huge decision
space of the BS cluster. For the unknown dynamic requests,
the prediction of requests in next several time slots is generally
more accurate, but it is difficult to predict the long-term

requests. An online algorithm is necessary in the absence of
future information. Troubled by the huge decision space, a
distributed solution is more effective. Taking the above two
points into consideration, we propose an online distributed
service caching algorithm which is elaborated next.

IV. ALGORITHMS: ON-CONSHAD

A. Online Service Caching

Assuming that we have acquired the optimal clustering
strategy for the typical user Cu∗(t) at the beginning of each
time slot, then we solve the service caching problem (9).

The long-term cluster-based service caching problem hopes
to improve the diversity of cached services through the col-
laborative caching between BSs, to handle the phenomenon
that services cached may not be requested immediately but
repeatedly in the future. To achieve this, the caching cost
should be as low as possible, which is reflected in the form
of constraint (9b) where the caching variables of different
time slots are coupled. Based on Lyapunov optimization, we
transform the long-term constraint (9b) into a queue stability
problem. Specifically, we construct a virtual caching cost
queue C(t) with the assumption that C(t) = 0, indicating
the deviation of current caching cost, and its dynamic evolves
as follows

C(t+ 1) = [C(t) + a(t)− b(t)]+, (10)

where a(t)=
∑
m∈Mcu,m(t)

(∑
k∈Kξksk[xk,m(t)]+

(
1−hk,m(t)

))
,

and b(t) = Costth.
The Lyapunov function is defined as L(t) = 1/2C(t)2 and

the Lyapunov drift is 4(t) = L(t + 1) − L(t). According to
the above definitions, we have

4(t) =
1

2
C(t+ 1)2 − 1

2
C(t)2

≤ 1

2

(
C(t) + a(t)− b(t)

)2 − 1

2
C(t)2

= Q(t) + C(t)
(
a(t)− b(t)

)
,

(11)

where Q(t) = 1/2
(
a(t) − b(t)

)2
, which can be proved

that Q(t) ≤ Q(t) = 1/2
((∑

m∈M cu,m(t)
∑
k∈K ξksk(1 −

hk,m(t))
)2

+ (Costth)2
)
. Consequently, the long-term con-

strained problem (9) is transformed into an instantaneous
problem of minimizing an upper bound on the drift-plus-
penalty expression under Lyapunov optimization framework

min
Xu(t)

Q(t) + C(t)
(
a(t)− b(t)

)
+ V Dpro

Tu(t), (12a)

s.t. (9c), (9d), (9e), (12b)

where V is a non-negative weight that is chosen as desired to
trade off between the completion delay of the users and the
caching cost of the edge computing service providers.

B. Distributed Parallel Caching: An ADMM Approach

As the dynamics of BS clustering, the service caching
problem of one user involves the strategies of the whole BS
set, which has the size of K×M . The large-scale problem calls
for a decentralized algorithm. According to [19], ADMM is
a widely used algorithm for solving large-scale optimization
problems. Furthermore, in order to improve the diversity of

cached services with a small caching cost from the perspective
of BS cluster, BSs in the same cluster should cooperate with
each other. To handle it, we introduce a cooperative service
caching algorithm based on the consensus-sharing framework
of ADMM.

To solve the online caching problem (12) using ADMM,
we analysis whether the optimization target (12a) is decom-
posable at first. On one hand, the drift item can be calculated
independently between each BS and then get together. It can
be rewritten as the sum of the decomposed items (the time
index t is omitted here)

f(X)=Q+
∑
m∈M

Cc∗u,mΞT
(
[xm]+�(1−hm)

)
−CCostth

=
∑
m∈M

Cc∗u,mΞT
(
[xm]+�(1−hm)

)
+

1

M
(Q−CCostth)

=
∑
m∈M

fm(xm),

(13)

where X is the caching strategy of all the BSs in the system.
ΞK×1 = [ξ1s1, · · · , ξKsK]T is the service cost vector and
hm(t)K×1 = [h1,m(t), · · · , hK,m(t)]T is the caching state
vector of BS m, � means that the corresponding elements
of two vectors or matrices are multiplied.

On the other hand, the penalty item in (12a), i.e., the
expected processing delay of Tu(t), is determined by the
probability hk̂,m̂(t + 1) = maxm{[xk̂,m(t)]+ + hk̂,m −∣∣∣xk̂,m(t)

∣∣∣hk̂,m}. Hence, the penalty depends on the caching
result of the whole BS cluster. This dependency prevents the
penalty item from being decomposed directly into multiple
agents. Therefore, we design a sharing optimization goal
according to this to promote the cooperation in the consensus-
sharing framework.

The penalty item in (12a) can be expressed as follows
P = Dpro

Tu(t) = max
m∈M

{
cu,m(t)∗oThm(t+1)

}
(Dedge
Tu(t)−D

BKB
Tu(t)), (14)

where oK×1 = [o1,Tu(t),· · · ,oK,Tu(t)]T is the service type
indicating vector of task Tu(t). According to the analysis of
processing delay, we design the shared minimization goal in
the form of a function related to the maximum of all the local
caching variables, which is elaborated as follows (the time
index t is omitted here and later)

g(L(X)) = max
m∈M

{Lm(xm)}(Dedge
Tu(t) −D

BKB
Tu(t)), (15)

where Lm(xm)=c∗u,moT
(
[xm]++hm−|xm|�hm) is a nonlinear

function of the local caching strategy of BS m.

With the above transformations, we can reformulate (12)
as a consensus-sharing problem by introducing a consensus
variable set {zm∈R}m∈M with constraint Lm(xm)=zm.

min
X

∑
m∈M

fm(xm) + V g(z), (16a)

s.t. Lm(xm) = zm, ∀m ∈M, (16b)(
[xm]+ + hm − |xm| � hm

)T
s ≤ Sm, (16c)(

[xm]+ + hm − |xm| � hm
)T

f ≤ Cm, (16d)

where sK×1 = [s1, · · · , sK]T is the size vector of services.

The augmented Lagrange function is
Lρ(X, z,y) = V g(z) +

∑
m∈M

(
fm(xm)

+ ym(Lm(xm)− zm) +
ρ

2
‖Lm(xm)− zm‖2

)
,

(17)

with dual variables ym ∈ R,∀m ∈M.
By defining the residual rτm = Lm(xτm) − zτm, the vari-

ables are updated iteratively by solving the following scaled
optimization problems

xτ+1
m := arg min

xm

fm(xm) +
ρ

2
‖rm + uτm‖2 (18a)

zτ+1 := arg min
z
V g(z) +

ρ

2

∑
m∈M

∥∥zm−Lm(xτ+1
m)−uτm

∥∥2

(18b)

uτ+1
m :=uτm + Lm(xτ+1

m)− zτ+1
m , (18c)

where um = 1/ρ ym. The minimization of (18a) can be
solved completely decentralized, i.e., each BS solves the local
minimization problem (18a) under the constraints (16c), (16d)
in parallel.

Finally, the Online Consensus and Sharing ADMM based
Distributed algorithm (On-ConShAD) which solves the prob-
lem (9) is performed as Algorithm. 1.

Algorithm 1 On-ConShAD.
1: Initialization: C(0) = 0, hk,m(0) = 0, xk,m(0) = 0, ∀k ∈
K,m ∈M;

2: for t = 1; t ≤ T ; t+ + do
3: Acquire the optimal BS clustering Cu∗(t), and calculate the

uplink delay;
4: Observe the caching state hm(t), ∀m ∈ M of last time slot,

and calculate the cost queue C(t) according to (10);
5: Predict the offloading task request Tu(t).
6: Initialization: τ = 0, error tolerance ε > 0, the maximum

iterations itermax, the dual variable u = 0;
7: repeat
8: Step1: ∀m ∈M, acquire xm(t)τ+1 by solving (18a) under

(16c), (16d) in parallel;
9: Step2: Gather xm(t)τ+1 from all BSs in cluster and

then update zm(t)τ+1 by solving (18b) and calculate dual
variable u according to (18c);

10: Step3: Set τ = τ + 1;
11: until the termination criterion is satisfied, i.e.,∑

m∈M ‖Lm(xτm)− zm(t)τ‖2 ≤ ε or τ > itermax

12: Calculate the time-averaged caching cost and the time-
averaged task completion delay.

13: end for

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of On-
ConShAD by some simulations. We set 10 BSs and 6 types

(a) Time-averaged performance. (b) Convergence of ADMM.

Fig. 2: Performance under different size of BS cluster.

of services. Each of the BS is equipped with 2 antennas and
is endowed with a resources-limited server. Each service has
specific configurations including size, cache overhead factor
and resources requirement. We introduce interferences by
setting 4 communication users.

First, we validate the superiority of serving user with BS
cluster. In Fig. 2(a), the size 1 represents the case of serving
user with single BS. On one hand, the decreasing circle line
shows that serving user with BS cluster has a better delay
performance. It is worth noting that the trend of the total
delay and the uplink delay is basically the same, which means
that the contribution of the BS cluster is mainly reflected in
the uplink communication process. The joint decoding and
interference elimination in the clustering mode lead to a higher
uplink data rate, thus the uplink communication delay is
smaller. On the other hand, the caching cost of BS cluster
keeps decreasing until the size gets up to 4 while it increases
when the size is larger. This reveals that the BSs in a larger
cluster are more likely to perform redundant caching because
of available resources, which aims at ensuring a minimum
processing delay.

Further to explore the influence of cluster’s size on our
algorithm, we test the convergence performance of distributed
consensus-sharing ADMM. As shown in Fig. 2(b), the conver-
gence always takes only several iterations as the size changes,
which reveals that the size of the BS cluster has slight effect
on the convergence performance of the distributed algorithm,
indicating that the algorithm is scalable and can be applied to
large-scale problems.

Second, although we take the advantage of the cooperations
of BS clusters, we did not discuss the division of BS clusters.
The proposed algorithm is based on the assumption that the
BS cluster is divided optimally and dynamically. Therefore,
we have to figure the degree how much the clusters’ division

(a) Time-averaged processing delay. (b) Time-averaged caching cost.

Fig. 3: Impact of the way the BS cluster is divided.

(a) Time-averaged total delay. (b) Time-averaged caching cost.

Fig. 4: Time-averaged performance comparison.

impacts on the caching performance. In Fig. 3, the circle
line represents the dynamic division while the diamond line
represents the fixed division. The size of cluster is set as 3.
The delay performance is unaffected (Fig. 3(a)). However, the
caching performance degraded when we divide the cluster dy-
namically (Fig. 3(b)). Though the dynamic clustering achieves
optimal uplink performance, it interrupts the long-term nature
of the caching status. The services cached in the history are no
longer useful due to re-clustering, which results in redundant
caching.

Further to verify the effectiveness and optimality of the
proposed On-ConShAD, we set the size of BS cluster as
3 and compare it with two algorithms. Single BS: This is
the baseline of our algorithm, in which the typical user is
served by a single BS. At each time slot, the typical user
chooses one BS following the rule of achieving the highest
uplink data rate, and offloads to that BS. By minimizing the
weighted sum of the completion delay and the caching cost
on the single BS to meet user’s requirement in each time slot,
the solution is instantaneous optimal. Gibbs: This is also an
iteration-based algorithm which adopts the variation of Gibbs
Sampling method [16]. It makes binary caching decisions
(cache with probability 1 or 0) and fractional offloading
decisions (percentage of tasks computed at the edge).

Fig. 4(a) shows the time-averaged completion delay of
these three algorithms. From which we can tell that the On-
ConShAD performs as excellent as the instantaneous delay-
optimal single BS performs. The completion delay of the
tasks obtained by On-ConShAD is a little bit smaller, which
has been validated in Fig. 2(a). Fig. 4(b) illustrates the
effectiveness of the online strategy, where the minimization
of the drift of the virtual caching cost queue limits the long-
term caching cost to a small value. At first, On-ConShAD and
single BS have equivalent caching cost. As time grows, single
BS performs frequent replacement of services to minimize
the completion delay, while On-ConShAD is gradually getting
lower by minimizing the cumulative drift of the virtual caching
cost queue. The poor performance of Gibbs is due to the
certain caching strategy and the slow convergence of gibbs
sampling. The convergence performance in [16] shows that it
takes hundreds of iterations to get convergence while ADMM
only takes a few iterations (2(b)).

VI. CONCLUSION

In this paper, we discussed the service offloading problem in
the user-centric wireless network, where each user is served by
several BSs cooperatively. We mainly studied the cooperative
service caching strategy during the offloading process from
a long-term perspective. An online distributed algorithm is
proposed to solve the problem. At last, the simulations show
the benefit of BS cluster and validate the effectiveness of
the proposed algorithm. Nevertheless, there are still some
limitations that can be completed in the future, e.g., the BS
clustering problem should be optimized together with the
caching problem thus acquiring the joint optimal offloading
solutions.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation of China (NSFC) (Grants 61771445, 61631017
and U19B2044).

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[2] Q. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W. Hwang,
and Z. Ding, “A survey of multi-access edge computing in 5g and
beyond: Fundamentals, technology integration, and state-of-the-art,”
IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

[3] Y. Zhu, Y. Hu, and A. Schmeink, “Delay minimization offloading
for interdependent tasks in energy-aware cooperative mec networks,”
in 2019 IEEE Wireless Communications and Networking Conference
(WCNC), April 2019, pp. 1–6.

[4] Y. Hu, T. Cui, X. Huang, and Q. Chen, “Task offloading based on
lyapunov optimization for mec-assisted platooning,” in 2019 11th Inter-
national Conference on Wireless Communications and Signal Processing
(WCSP), 2019, pp. 1–5.

[5] Z. Qin, S. Leng, J. Zhou, and S. Mao, “Collaborative edge computing
and caching in vehicular networks,” in 2020 IEEE Wireless Communi-
cations and Networking Conference (WCNC), May 2020, pp. 1–6.

[6] A. Samanta and Z. Chang, “Adaptive service offloading for revenue
maximization in mobile edge computing with delay-constraint,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3864–3872, 2019.

[7] H. Lu, M. Zhang, Y. Gui, and J. Liu, “Qoe-driven multi-user video trans-
mission over sm-noma integrated systems,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 9, pp. 2102–2116, 2019.

[8] Y. Fu, C.-A. Jiang, Y. Qin, and L. Yin, “Secure routing and transmission
scheme for space-ocean broadband wireless network,” Science China
Information Sciences, vol. 63, 04 2020.

[9] L. Gong and Z. Zhu, “Virtual optical network embedding (vone) over
elastic optical networks,” Journal of Lightwave Technology, vol. 32,
no. 3, pp. 450–460, 2014.

[10] P. Lu, L. Zhang, X. Liu, J. Yao, and Z. Zhu, “Highly efficient data
migration and backup for big data applications in elastic optical inter-
data-center networks,” IEEE Network, vol. 29, no. 5, pp. 36–42, 2015.

[11] S. Chen, F. Qin, B. Hu, X. Li, and Z. Chen, “User-centric ultra-
dense networks for 5g: challenges, methodologies, and directions,” IEEE
Wireless Communications, vol. 23, no. 2, pp. 78–85, 2016.

[12] C. Pan, M. Elkashlan, J. Wang, J. Yuan, and L. Hanzo, “User-centric
c-ran architecture for ultra-dense 5g networks: Challenges and method-
ologies,” IEEE Communications Magazine, vol. 56, no. 6, pp. 14–20,
2018.

[13] C. Zhu and W. Yu, “Stochastic modeling and analysis of user-centric net-
work mimo systems,” IEEE Transactions on Communications, vol. 66,
no. 12, pp. 6176–6189, 2018.

[14] D. Su and C. Yang, “User-centric downlink cooperative transmission
with orthogonal beamforming based limited feedback,” IEEE Transac-
tions on Communications, vol. 63, no. 8, pp. 2996–3007, 2015.

[15] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative
edge caching in user-centric clustered mobile networks,” IEEE Trans-
actions on Mobile Computing, vol. 17, no. 8, pp. 1791–1805, 2018.

[16] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, April 2018,
pp. 207–215.

[17] H. Lu, X. Jiang, and C. W. Chen, “Distortion-aware cross-layer power
allocation for video transmission over multi-user noma system,” IEEE
Transactions on Wireless Communications, pp. 1–1, 2020.

[18] J. Lin, Q. Li, Y. Li, and C. Jiang, “Dynamic base station clustering
and beamforming for an uplink simo cloud radio access network,” in
2014 IEEE International Conference on Communiction Problem-solving,
2014, pp. 421–424.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

	I Introduction
	II System Model
	II-A User-centric Communication model
	II-B Offloading Task Model
	II-C Service Offloading Model

	III Problem Formulation
	IV Algorithms: On-ConShAD
	IV-A Online Service Caching
	IV-B Distributed Parallel Caching: An ADMM Approach

	V Performance Evaluation
	VI Conclusion
	References

