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ABSTRACT
The user clustering problem in an uplink MIMO Non-
Orthogonal Multiple Access (NOMA) scheme is considered
here. The receiver is assumed to operate in two sequential
stages that employ Linear Minimum Mean Squared Error
(LMMSE) receivers. At the first stage, the receiver is de-
signed to recover the transmission from a cluster of selected
users/nodes. The contribution of these users is then subtracted
from the received signal and the remaining user transmissions
are then linearly recovered. The determination of which users
should be detected during the first stage is formulated as a
deep learning based multiple classification problem. In or-
der to guarantee that the selection is robust to fast fading,
the input to the neural network is based on second order
channel statistics. Furthermore, the training process is sim-
plified by using a large system approximation of the resulting
sum-rates. Simulation results indicate that the proposed deep
learning-based solution is able to achieve a significant rate
advantage with respect to other lazy approaches, such as fixed
or random cluster assignments.

1. INTRODUCTION

The future increase in the Internet of Things (IoT) market re-
quires the emergence of technical solutions that specifically
address the challenges of this scenario [1]. Traffic generated
by Machine Type Communications (MTC) devices is gener-
ally considered sporadic and may potentially entail a large
volume of nodes that simultaneously communicate to a base
station in grant-free manner. Furthermore, the simplicity of
the MTC devices typically precludes any use of advanced
power control and resource allocation strategies. In this con-
text, the use of Non Orthogonal Multiple Access (NOMA) ar-
chitectures [2] can provide significant advantages, since they
do not really require advanced coordination among the differ-
ent nodes and can potentially handle multiple users with very
different received powers. Furthermore, NOMA architectures

THIS WORK IS SUPPORTED BY THE SPANISH GOVERNMENT
THROUGH THE ARISTIDES PROJECT ( RTI2018-099722-B-I00).

exhibit high spectral efficiency and can be easily combined
with multi-antenna techniques.

The combination of MIMO and NOMA for the downlink
has been deeply studied both for the downlink [3, 4] and for
the uplink [5, 6]. In both cases, one of the most important
problems is node pairing, namely grouping users in pairs so
that they share a common resource, be it a frequency band
or a spatial beam. In order to pair nodes, numerous methods
have been proposed in the literature, where most of which
specifically focus on the single antenna or the downlink sce-
nario [5, 7, 13]. Our focus here is on the multi-antenna uplink
scenario, where the number of studies is more scarce. Of par-
ticular interest is the work in [5], which considers the same
scenario as the one in our paper, although with a slight mod-
ification in the user detection mechanism. Instead of consid-
ering successive interference cancellation, [5] considers joint
decoding of the two paired user signals. This optimum decod-
ing strategy is much more complex than conventional succes-
sive interference cancellation. Contrary to [5], we adopt a
much simpler NOMA decoding strategy, whereby a selected
subset of node transmissions are first linearly detected, indi-
vidually decoded, and then subtracted from the received sig-
nal. Thereafter, the rest of the node transmissions are linearly
detected from the “cleaned” version of the signal, and then in-
dividually decoded. We will assume a fixed power allocation
and a slotted, grant-free, multiple access architecture.

For a total ofN active nodes, there exist 2N possible Clus-
tering Solutions (CSs), which can lead to very different sum-
rates. Here, we depart from other greedy/heuristic approaches
attempting to e.g., minimize inter-cluster interference [19] or
maximize channel gain disparity [20] in order to accomplish
the task in a computationally-affordable manner. Instead, we
design a clustering strategy based on Deep Learning (DL)
tools, which generally offer a good trade-off between perfor-
mance and computational complexity [11, 12]. DL has also
been used in [14] to enhance the performance of grant-free
NOMA, although in this work the goal was to design an end-
to-end system rather than the user grouping stage. Another
machine learning based approach for user clustering was pro-



posed in [8], this time resorting to an unsupervised learning
methodology based on K-means.

All the above learning methods, estimate the optimum
NOMA user grouping based on instantaneous channel real-
izations which is computationally complex and expensive to
implement. Here, instead, we propose a method using only
the channel second order statistics (covariance matrices),
which mostly depend on the geometry of the scenario and
therefore remain constant over large periods of time.

2. SIGNAL AND SYSTEM MODEL

Consider the uplink of a multi-user SIMO system where a
Base Station (BS) equipped with M antennas (Uniform Lin-
ear Array, ULA) serves N single-antenna active IoT devices
(nodes). The received signal at the BS can be expressed as

y = Hs + n (1)

where H = [h1,h2, ...,hN ] ∈ CM×N is the channel matrix
with hn ∈ CM standing for the (column) channel vector asso-
ciated to the nth node; vector s ∈ CN accounts for the trans-
mit signal, with its elements fulfilling E

[
‖si‖2

]
= pt;∀i, that

is, transmit power is identical for all nodes and no power allo-
cation or control mechanisms are in place. Finally, n ∈ CM
denotes zero-mean i.i.d. additive white Gaussian noise of
variance σ2, namely, n ∼ CN (0, σ2IM ). Nodes operate at
a central frequency fc and follow a uniform spatial distribu-
tion in the served cell. We also assume that full Channel State
Information (CSI) is available at the BS.

2.1. Channel model

Each column in the channel matrix H = [h1,h2, ...,hN ]
can be statistically modeled as hn ∼ CN (0, 1

MCn) where
Cn ∈ CM×M denotes the channel covariance matrix of the
n-th node. We adopt a geometric channel model with Lp scat-
tering paths that is widely used in the literature (see e.g., [22]).
For large Lp, matrix Cn can thus be estimated as

Cn =
1

ρnLp

Lp∑
l=1

|αn,l|2a(θn,l)a(θn,l)
H . (2)

with ρn accounting for the path-loss and shadow-fading asso-
ciated to the n-th node. Consequently, we have that ρn = (1+

dηn)/10
βn
10 , where dn is the node-to-BS distance, η denotes the

path-loss exponent (typically, η ∈ [2, 6]); and βn ∼ N (0, σ2
β)

is the spatially-uncorrelated shadow-fading coefficient, with
σ2
β typically ranging from 6 dB (free-space propagation) to

10 dB (indoor environments) [16]. Further, the coefficient
αn,l of (2) is the complex gain (with E

[
|αn,l|2

]
= 1) of the

l-th path; and θn,l ∼ N (θ̄n, σθ) denotes the angle-of-arrival
(AoA) of the l-th path of node n, with θ̄n associated to the ac-
tual location of such node. Vector a(θn,l) ∈ CM×1 accounts
for the antenna array response at the BS. For a ULA, it reads

a (θn,l) =
[
1, e−j

2π
λ d sin(θn,l), . . . , e−j(M−1)

2π
λ d sin(θn,l)

]T

where λ is the signal wavelength, and d is the distance be-
tween antenna elements. In the sequel, we assume d = 0.5λ.
From all the above, the channel vector hn can be computed
as

hn =

(
1

M
Cn

)1/2

ωωωn (3)

where ωωωn ∼ CN (0, IM ). It is important to note that, in the
above expression, the covariance matrix models the impact of
path-loss and slow fading which, in turn, are associated to the
physical location of the node. On the contrary, ωωωn models the
effect of fast fading.

2.2. Multiple-access and decoding strategies

Let N denote the set of N active nodes in the system. We
partition N into two disjoint subsets (clusters) N1 and N2 of
cardinalities N1 and N2, and such that N = N1 + N2. The
subsetN1 is decoded first. After detection, the received signal
associated to those nodes is reconstructed and its contribution
removed from y (i.e., Successive Interference Cancellation,
SIC, is performed) [15]. After this interference cancellation
step, the nodes in the N2 subset are finally decoded. For a
Linear Minimum Mean Square Error (LMMSE) receiver, the
optimal beamformers w(1,2)

n ∈ CM associated to an arbitrary
node n in N1 or N2 read, respectively,

w(1)
n = (HHH + σ2IM )−1hn (4)

w(2)
n = (H(N1)H

H
(N1)

+ σ2IM )−1hn (5)

where matrix H(N1) contains all the columns of H except for
those corresponding to nodes from subset N1. Based on (4)
and (5), one can easily prove that the instantaneous SINR for
an arbitrary node in the first or second subsets read, respec-
tively

γ(1)n = pnh
H
n (H(n)H

H
(n) + σ2IM )−1hn (6)

γ(2)n = pnh
H
n (H(N1∪{n})H

H
(N1∪{n}) + σ2IM )−1hn .(7)

Finally, the ergodic sum-rate per node R (i.e, normalized to
the number of active nodes) can be expressed as:

R = E ωωωn

 1

N

∑
n∈N

log2(1 + φnγ
(1)
n + φnγ

(2)
n )

 (8)

where φn ∈ 0, 1 is an indicator variable such that φn = 1 if
node n belongs to subsetN1 and 0 otherwise; and φn denotes
the opposite of φn. Note also that (i) the expectation term in
(8) is taken with respect to fast fading only; and (ii) the par-
titioning of nodes into subsets does not vary with fast fading.

3. ASYMPTOTIC SINRS AND ERGODIC SUM-RATE

Computing the ergodic sum-rate per node from the analytical
expression (8) is computationally very intensive. To realize



that, it suffices to observe the matrix channel inversions of
(6) and (7) and, also, the corresponding expected value that
needs to be computed over the realizations of the fast fading
(using, e.g. numerical integration or Monte-Carlo averaging).
Interestingly enough, Random Matrix Theory (RMT) allows
us to point out that, for large-enough values ofN andM (i.e.,
the dimensions of matrix H), the individual realizations of
the SINRs almost surely converge to their average values [9].
More formally, we have γ(i) − γ(i) → 0, i = 1, 2 with prob-
ability one for a deterministic quantity γ(i). Hence, the ex-
pectation in (8) can be dropped and the ergodic sum-rate per
node becomes asymptotically equivalent to the quantity

R̄ =
1

N

∑
n∈N

log2(1 + φnγ
(1)
n + φnγ

(2)
n ). (9)

From [10] it follows that the asymptotic SINR for all the
nodes belonging to the first subset can be computed in closed-
form as

γ(1)n =
1

M
tr

Cn

 1

M

N∑
j=1
j 6=n

Cj

(1 + δnj )
+ σ2IM


−1 (10)

where {δi}ni∈N\{n} are the unique positive solutions to the
system of N − 1 equations given by

δni =
1

M
tr

Ci

 1

M

N∑
j=1
j 6=n

Cj

(1 + δnj )
+ σ2IM


−1 (11)

with i = 1, . . . , N −1. Similarly, for the nodes in subset two:

γ(2)n =
1

M
tr

Cn

 1

M

∑
j∈K2\{n}

Cj

(1 + ζnj )
+ σ2IM

−1


(12)
where {ζi}ni∈N2\{n} are, in turn, the unique positive solutions
to the following system of N2 − 1 equations:

ζni =
1

M
tr

Ci

 1

M

∑
j∈K2\{n}

Cj

(1 + ζnj )
+ σ2IM

−1

(13)

where i = 1, . . . , N2 − 1. As in [9], the systems of equa-
tions (11) and (13) can be efficiently solved via fixed point
methods. Besides, it is important to note that in order to solve
the aforementioned systems of equations, only the covariance
matrices are needed as CSI. As discussed in Section 2.1, co-
variance matrices exclusively depend on the actual path-loss
and slow fading (or, equivalently, on the physical location of
nodes). In other words, the re-computation of γ(i) is only
needed whenever the system scenario changes and not for
each realization of fast fading (i.e., at a slower rate).

Figure 1 illustrates the accuracy of the asymptotic approx-
imation for the ergodic sum-rate per node for an increasing
number of nodes (N ) and BS antennas (M ). This is accom-
plished via Monte Carlo simulations. For each tuple (M,N),
results are averaged over system scenarios as well as all pos-
sible mappings of nodes onto subsets (clusters). As expected,
for larger values of M and N , the asymptotic sum-rate per
node converges to the analytic sum-rate. Specifically, for
M ≥ 4 and N ≥ 6, the approximation becomes very ac-
curate.
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Fig. 1: Sum-rate per node for a varying number of nodes and
antennas (SNR = 15 dB, σβ = 7 dB, η = 2, pt = 0.1 W,
Lp = 10, σθ = 5◦).

4. PROBLEM FORMULATION

As discussed in previous sections, we aim at defining a parti-
tion of the set N of N nodes into two disjoint subsets (clus-
ters) N1 and N2. Our goal is to maximize the ergodic sum-
rate of a MIMO-NOMA system based on a LMMSE receiver
and successive interference cancellation. In the sequel, we
will refer to each of those possible node partitions as a Clus-
tering Solution (CS). More formally, the problem can be for-
mulated as follows:

max
{φ1,... φN}

1
N

∑
n∈N log2(1 + φnγ

(1)
n + φnγ

(2)
n ) (14)

s.t. φn ∈ {0, 1} for n = 1 . . . N

where in the above expression we have already replaced
the analytical sum-rate of (8) by its asymptotic approxima-
tion (9). From Section 3, the ergodic SINRs γn can be
expressed as a function of the set of covariance matrices
Cn ∈ CM×M n = 1 . . . N (see equations (6) and (7)). In the
sequel, we will thus consider the set of N covariance matri-
ces {Cn} as a Sufficient Statistic (SS) to solve problem (14).
This is in line with [21] where covariance matrices where
used for learning-based antenna selection. Clearly, the num-
ber of inputs to the learning scheme Ns, which are typically
stacked in a column vector (see next section), depends on the



number of elements in the SS. Since covariance matrices are
Hermitian, half of the off-diagonal elements can be dropped
and, thus, we have that Ns = NM2.

5. DEEP LEARNING-BASED CLUSTERING

The task of selecting the optimal CS can be modeled as a
supervised learning problem. Specifically it can be cast into a
multi-class classification task where:

• The input for the p-th example is given by the suf-
ficient statistics (i..e, the covariance matrices) asso-
ciated to active nodes, namely, the row vector tp =
[t1,p, . . . , tNs,p] ∈ R1×Ns .

• The output is an index to the CS cp ∈ [1, . . . , NCS]
yielding the highest sum-rate per node, withNCS = 2N

denoting the total number of Clustering Solutions.

5.1. Description of the training dataset

The training dataset comprises a total of P examples tp

stacked in a training matrix T =
[
tT1 , . . . , t

T
P

]T ∈ RP×Ns

and a class label vector c = [c1, . . . , cP ]
T ∈ NP×1 that gath-

ers the corresponding outputs. Its generation comprises the
following steps:

1. Generation of the received signal for P realizations of
system scenario (locations, path-loss, shadow-fading).

2. Computation of the covariance matrices Cn as a SS.

3. Computation of the sum-rates per node as per (10) and
(12);

4. Letting the label of each example be the index of the
clustering solution yielding the highest sum-rate per
node, i.e., cp ∈ {1, . . . , NCS}.

To avoid significant bias in the training, features are nor-
malized prior to their use by the learning scheme, namely,
tij ← (tij − Ei[tij ]) / (maxi [tij ]−mini [tij ]). In addi-
tion, random under-sampling [18] is applied in order to pre-
vent the formation of imbalanced training datasets (i.e., with
over/under-represented classes). For cross-validation, 20% of
the examples in the training dataset were set aside to generate
the corresponding dataset.

5.2. Deep learning scheme
Feed-Forward deep Neural Networks (FFNN) can be re-
garded as universal function approximators. Our FFNN
comprises L layers: (i) one input layer with Ns elements
(see Section 4); (ii) one output layer with NCS neurons (the
total number of possible clustering solutions); and (iii) L− 2
hidden layers with Nl neurons each. This FFNN defines a
mapping f(t,ΨΨΨ) : RNs 7→ RNCS of an input vector t onto an
output vector rL through L iterative processing steps:

rl = fl(rl−1,ψψψl), l ∈ {1, 2, 3, ..., L} (15)

where fl(rl−1,ψψψl) : RNl−1 7→ RNl is the mapping associated
to the lth layer. This mapping depends on the output from the
previous layer and on the parameter set of that layer, ψψψl, with
ΨΨΨ = [ψψψ1,ψψψ2, ...,ψψψL] denoting the set of all parameters in the
model. The l-th layer is said to be dense if fl(rl−1,ψψψl) is of
the form

fl(rl−1,ψψψl) = σ(Glrl−1 + bl) (16)

where Gl ∈ RNl×Nl−1 and bl ∈ RNl respectively denote a
matrix of weights and a bias vector. In (16), σ(.) is a non lin-
ear activation function. In this work, the activation function
used for the hidden layers is the Rectified Linear Unit (ReLU)
function. The activation function for the output layer is a soft-
max function so that each output computes the probability of
such CS of yielding the highest sum-rate (an arg max oper-
ator is applied to the set of outputs is order to make a final
decision on the CS). Dropout is implemented after each hid-
den layer to prevent overfitting. During the training phase of
the FFNN, the Adam optimizer is used to update the param-
eter set in each layer (i.e. ψψψl = [Gl,bl]). The goal is to
minimize the categorical cross-entropy (i.e. maximize classi-
fication accuracy).

6. POWER-BASED HEURISTIC CLUSTERING

As an alternative to the learning-based approach of Sec-
tion 5.2, here we propose a heuristic clustering scheme. It
borrows inspiration from traditional clustering methods for
power-domain NOMA (e.g., [17]) where, prior to clustering,
nodes are sorted in a decreasing order of their channel gains.
The method is low-complexity because it partitions the pre-
sorted nodes into two clusters following a fixed pattern1 for
all system scenarios (unlike learning-based method which
generate different CSs for different system scenarios). For
example, the two strongest nodes are always mapped onto
N1 (namely, φi = 0 for i = 1, 2); whereas weakest ones are
mapped onto N2 (i.e., φi = 1 for i > 2). In the sequel, this
clustering method will be referred to as PBHC (Power-Based
Heuristic Clustering).

Similarly to [17], PBHC sorts nodes according to the trace
of their channel covariance matrix {Cn} for each system sce-
nario. To determine such fixed pattern, we must generate a
large number of system scenarios (node locations, path-loss,
slow-fading). After sorting nodes, we compute the sum-rate
for each scenario and pattern. Finally, we find (via exhaustive
search) the pattern that, on average, yields the highest sum-
rate per node for the entire set of system scenarios. From now
on, the same pattern will be used for every system scenario.
The validity of this approach will be discussed next.

7. SIMULATION RESULTS
In this section, we consider a scenario with one BS equipped
with M = 4 receive antennas, and N = 6 active nodes with

1For clarity, we use the term pattern when nodes are pre-sorted, and clus-
tering solution otherwise.



identical transmit power (pt = 0.1 W). The total number of
clustering solutions is, thus, NCS = 2N = 64. As for chan-
nels, the path-loss exponent is η = 2 and for shadow fading
we have that σβ = 7 dB. The nodes are uniformly distributed
in a rectangular area of 5× 10 km, and for multi-path compo-
nents (Lp = 10), the angular spread of their AoAs is σθ = 5◦.
The carrier frequency is set to fc = 868 MHz. The training
dataset was generated by applying random undersampling on
an imbalanced dataset of 90.000 examples. The size of the
balanced dataset turned out to be different for each SNR (e.g.,
P = 55.000 examples at SNR=5 dB). On the contrary, we let
Ptest = 10.000 examples for the test dataset in all cases. Note
also that the FFNN only needs to be re-trained when the sys-
tem scenario changes (e.g., when the number of user varies).
Otherwise, the spatial information embedded in the covari-
ance matrix (e.g., node locations, path-loss, slow fading) suf-
fices to perform user clustering with the previously-trained
FFNN. As for FFNNs, the number of layers and neurons in
the hidden layers is L = 5 and Nl = 2(N+1), respectively;
with a dropout rate of 20% which sufficed to prevent over-
fitting. The initial learning rate is set to 10−3, and the batch
size is 32. In addition to PBHC, we also include two bench-
marks (i) random clustering, with uniform distribution; and
(ii) optimal clustering via exhaustive search.

The solid lines of Figure 2 (top) depict the total sum-rate
of each CS for three specific realizations of the system sce-
nario (each denoted by a different color) sorted in a decreas-
ing order of sum-rates. Interestingly, the sum-rate span (dif-
ference between the best and worst CSs) is on the order of
15 b/s/Hz. This substantiates the need for efficient cluster-
ing algorithms. Dashed lines indicate the achievable sum-rate
via FFNN. In one scenario (green curves), FFNN fails to se-
lect the optimal CS2. Nevertheless, the penalty in terms of
sum-rate is rather limited (1 b/s/Hz, approximately). Com-
plementarily, Fig. 2 (bottom) illustrates the Cumulative Den-
sity Function (CDF) of the sorted CSs. Despite that FFNN
only succeeds in selecting the optimal CS in 35% of the sys-
tem scenarios, it still manages to find one out of the 8 best
CSs for 80% of the cases (marginal sum-rate loss). This is
in stark contrast with PBHC where, for a cumulative proba-
bility of 80%, this requirement should be relaxed to one out
of the 32 best CSs (which entails a larger sum-rate penalty).
Note, however, that the computational complexity of PBHC
is substantially lower, since the optimal clustering pattern is
hold fixed (i.e., no need to re-compute covariance matrices,
solve a system of equations or perform inference whenever
e.g., users move).

Next, we investigate sum-rate performance. In Fig. 3, we
depict the Cumulative density function (CDF) of the sum-rate
achievable with the various clustering methods. It is impor-
tant to note that the CDF associated to FFNN-based cluster-
ing is very close to that of the optimal clustering. On the

2This is due to the high number of classes and to the fact that decisions re-
gions for this problem are rather complex (e.g., not connected, overlapping).

Fig. 2: Sum-rate of CSs for three realizations of the system
scenario, top; and CDF of sorted CSs, bottom; SNR = 15 dB.

contrary, the gap for PBHC and random clustering is much
wider. Finally, in Fig. 4 we show the sum-rate performance

5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sum-rate [b/s/Hz]

Optimal
FFNN
PBHC

Random

Fig. 3: CDF of the sum-rate (SNR = 15 dB).

of the learning-based clustering method along with that of the
various benchmarks. Interestingly, the sum-rate of the FFNN
approach is very close to that of optimal clustering via ex-
haustive search (loss below 1 b/s/Hz). This is due to the fact
that, with high probability, FFNN is able to identify one of the
(very few) CSs with the highest sum-rate. For large SNR, it
provides a sum-rate gain of 30% with respect to random clus-
tering, and 19% with respect to the heuristic PBHC approach.

8. CONCLUSIONS

In this work we have investigated the applicability of deep-
learning to node clustering in MIMO-NOMA systems. Specif-
ically, we have resorted to a feed-forward neural network to
partition nodes into two disjoint clusters and, by doing so,
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Fig. 4: Sum-rate vs SNR for each clustering method.

maximize the resulting ergodic sum-rate. In order to build
the training datasets and efficiently train the learning system,
we have derived analytical expressions for the asymptotic
SINRs and ergodic sum-rates based on random matrix theory
tools. Computer simulation results revealed that the sum-rate
performance of the proposed FFNN scheme is very close to
optimal, and that FFNN clearly outperforms PBHC which
exhibits a lower computational complexity.
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