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Abstract—Monitoring the Quality of Experience (QoE) of the
customer base is a key task for Mobile Network Operators
(MNOs), and it is generally performed by collecting users
feedbacks through directed surveys. When such feedbacks are
few in number, a MNO may predict the users QoE starting
from objective network measurements, gathered directly from
the users equipments through crowdsourcing. In this work, we
compare such a traditional approach with a different one,
where the data used for predicting the users QoE is gathered
directly at the network access, using Key Performance Indicators
(KPI) available on each base station. Although such KPIs are
aggregated by design (i.e., they refer to the distribution of a
population of users rather than to a single individual), we show
through experiments with a country-wide dataset that their
predictive power is comparable and in some cases superior
than the one of crowdsourcing. Such a result is particularly
attractive for MNOs, since network KPIs are generally much
easily obtainable than crowdsourcing data.

Index Terms—QoE prediction, Mobile Cellular Network, Net-
work Intelligence

I. INTRODUCTION

Mobile network operators (MNOs) constantly monitor the
level of satisfaction of their customers in order to minimize
the so called churn rate, i.e., the percentage of customers
that stop their subscriptions and move to a different operator
due to an unsatisfactory service. Indeed, knowing which users
are not satisfied with the network service helps the operator
in discovering potential issues in the Radio Access Network
(RAN), driving investments to boost up specific parts of
the network infrastructure or developing attractive marketing
strategies.

Operatively, MNOs rely on the administration of surveys
and questionnaires to monitor the level of satisfaction of their
customers. Standard tools such as the Net Promoter Score
(NPS) survey are generally used, asking users to indicate
the likelihood of recommending the network operator to a
friend or colleague on a scale from 0 to 10. In addition
to such a generic survey, operators often ask customers to
reply on very specific questions related to the Quality-of-
Experience (QoE) of certain mobile network services (network
coverage, voice and video quality, etc.), which can better
highlight possible problems in the network. Unfortunately,
performing such directed surveys is costly and cumbersome
for operators, mainly due to the generic poor cooperative
attitude of customers: most of the time, the surveys proposed
to customers are in fact simply ignored.

A possible way to cope with this issue is to rely on artificial
intelligence and predict the customers QoE rather than mea-
suring it directly, through crowdsourcing [1], [2], [3]. With
this approach, the operator gathers network measurements
taken directly at the users terminals, such as signal quality
and throughput, and correlates them with the QoE expressed
in the surveys. This allows to train Machine Learning (ML)
models which are then able to predict the QoE of a user given
her network measurement. However, crowdsourcing has its
own limitations. Indeed, to be able to gather measurements
from users terminals, specific applications running in back-
ground and installed under the user consent are generally
used. It follows that the fraction of users that participate
to crowdsourcing campaigns is generally small. Moreover,
several studies have confirmed that it is not a trivial task
to gather reliable responses from crowds, especially when no
reward systems are conceived [4], [5], [6].

At the same time operators have access to massive amount
of measurements collected at the RAN and available for each
eNodeB, such as KPIs and counters measuring cumulative
uplink/dowlink data volumes, distributions of transmission
parameters, available radio resources and accessibility or han-
dover requests/failures. Even though such measurements are
aggregate by design and therefore unable to represent each
user individually, it is of interest to study whether it is possible
to use them as an alternative data source for performing QoE
prediction: this is precisely the scope of this paper.

We leverage a country-wide dataset containing several thou-
sands users including their QoE answers, crowdsourcing data
and KPIs gathered from the visited eNodeBs to assess the
performance of the two approaches for QoE prediction, i.e.
crowdsourcing and network KPIs based. We use such data to
train ML models and then predict users QoE relative to two
specific network services, namely network coverage and video
streaming. We comment on each approach design choices and
we study the performance improvement obtained when fusing
together the two available data sources.

The rest of this paper is structured as it follows: Section
II summarises related works in the area of QoE prediction
in mobile cellular networks, while Section III describes the
datasets available for this work. Section IV comments the
results obtained from predicting users QoE about network
coverage and video streaming for both the crowdsourcing
and the network KPIs based approaches. Finally Section V
provides a discussion on the obtained results and on future



work directions.

II. RELATED WORK

Many authors during the last decade investigated and eval-
uated the feasibility of predicting both short-term [7], [3] and
long-term [8], [2], [9] customers QoE relative to different
network services. Short-term QoE concerns individual and
time-limited sessions in which users are instructed to use a
service (e.g., watching a video content on YouTube) under
controlled network environments and are later asked about the
quality of their experience. Instead, long-term QoE refers to
the experience of users in the network during periods of several
weeks or months. Regardless of the type of the prediction
problem, common approaches for assessing the impact of
network and services performance on customers experience
is conducting either controlled laboratory experiments (which
ensure full control of the evaluation process) or field trial
experiments through crowd-sourced data (which capture end
users experience in real network conditions). In [7] authors
combine subjective controlled lab tests and passive end-device
measurements collected through a field trial with QoE users
feedbacks on five different applications. They show that down-
link bandwidth fluctuations are crucial in determining the QoE
of a service, especially for high-interactive ones. Similarly,
Finley, et al. [8] combine network data, demographic data
and QoE satisfaction surveys collected through the Netradar
platform to study the significance of different predictors of
user satisfaction. Leveraging a custom pop-up surveys and a
five-point Likert scale for respectively users QoE data collec-
tion and quantification, the authors recognise the minimum
download throughput as a performing QoE predictor. Also,
in [3] authors use a rich QoE dataset taken from field trials
in operational cellular networks to develop a decision-tree
based model capable of predicting the quality of per-user
overall experience and service acceptability with a success
rate of 91% and 98% respectively. With similar aims, authors
in [2] leveraged crowdsourcing-based LTE and WiFi network
monitoring data to predict the quality of users’ experience
with respect to different applications, showing a 20% G-Mean
improvement over baseline classifiers.
Finally, it is worth mentioning that QoE prediction is an
efficient driver for optimising resources allocation and en-
forcing maintenance strategies to meet customer demands and
expectations [10], [11]. With this view, in [10] the authors
design the concept of a generic framework for ML-based
QoE/KPI monitoring of HTTP Adaptive Streaming (HAS)
services, showing its applicability in a concrete test case of
YouTube usage via customers smart-phones. Also, in [11] the
authors investigate the impact of QoE prediction errors in
a crowdosurcing-based network monitoring system, obtaining
insights which are generalizable and that provide interesting
guidelines for network operators.

III. DATASETS

The datasets used in this work have been collected by one
of the major European mobile operators over a period of five
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Fig. 1. Distribution of QoE feedbacks for the two scenarios.

Fig. 2. Average distribution of users visit time versus the site’s rank of
importance. The first bar refers to the average proportion of time spent by
users in the most visited site, i.e., in the home cell.

months between January and May 2020, and refer to the entire
territory of Italy. Three different datasets have been used,
which are detailed in the following sections. Note that, in order
to protect users privacy, all identifiers have been anonymized
through hashing.

A. QoE dataset

This dataset contains timestamped ground truth QoE feed-
backs from users, expressed as grades from 0 to 10, obtained
with directed surveys that the operator administers periodically
to its customers. In particular, we restrict our attention to two
scenarios, where QoE feedbacks are relative to the quality of
network coverage (Qc) or video streaming (Qv). Over the five
months period, Qc contains about 6.2k feedbacks while Qv
contains about 5.6k feedbacks. As one can observe in Figure
1, which shows the distribution of satisfaction grades for the
two considered services, both distributions are highly skewed,
with the majority of users reporting positive feedbacks. It is
possible to discretise the grades into two classes, with respect
to a predefined satisfaction threshold T : users whose vote is
less or equal than T are grouped together as Unsatisfied, while
the opposite happens for Satisfied users. In this work we set
T = 6, to which corresponds a percentage of users unsatisfied
with network coverage and video streaming of roughly 17%
and 15%, respectively.



TABLE I
SUMMARY OF THE FEATURES USED FOR CROWDSOURCING-BASED QOE PREDICTION ACCORDING TO THE WORK IN [9]

Measurement Description Scenario

3G and 4G Full Service Time Ratio Ratio between the time spent by a user under full network
service and the total 3G/4G user time in the last d days Coverage

3G and 4G Limited Service Time Ratio Ratio between the time spent by a user under limited network
service and the total 3G/4G user time in the last d days Coverage

Min, Max and Average SNR The minimum, maximum and average SNR observed by the user
terminal in the last d days Coverage

Min, Max and Average RSRQ The minimum, maximum and average RSRQ observed by the user
terminal in the last d days Coverage

3G and 4G Video Download Time and Volume
The cumulative time spent and traffic volume downloaded by the user
in the last d days under 3G or 4G connection, restricted
to video applications (YouTube, Netflix, etc.)

Video

3G and 4G Video Throughput The ratio between 3G/4G video download volume and time Video

Overall Average Throughput The ratio between the total video download volume and time,
regardless of the radio technology used Video

3G and 4G Throughput and Volume peaks The maximum observed video throughput and Downloaded Volume Video

4G video Download Time Ratio The ratio between the video download time in 4G and the
total video download time (3G and 4G) Video

01
/01

01
/08

01
/15

01
/22

01
/29

Date

0

2

4

6

8

10

12

D
L 

Vo
lu

m
e

106

Network KPI
User visits

(min, avg, max)

Fig. 3. Network KPIs features engineering process from a sample user’s
home cell in a period of d = 30 days before user’s survey response date
(here issued on 01/31). Blue line refers to the raw KPI data of the considered
period while red lines refer to values of the KPI in the user’s days of visit.

B. Crowdsourcing dataset

The second dataset contains network measurements gath-
ered directly from users terminals through an ad-hoc mobile
application, running in background under the users consent.
The application periodically logs several active and passive
network measurements relative to low-level network indica-
tors (e.g., average cell signal strength and channel quality
indicators, daily time spent by the user in full or limited
service conditions, etc.) as well as application level indica-
tors (e.g., session downlink/uplink data volume, duration and
throughput) of different applications run in foreground by
the user. Each measurement is timestamped and marked with
the user anonymized identifier. We pre-process the dataset
by considering only the users who replied to QoE feedbacks
(i.e., whose identifiers are present in the Qc or Qv datasets),
resulting in about 2k users for each scenario. According to
our previous study [9], we restrict our attention to a subset of
features (10 for network coverage and 14 for video streaming),
summarized in Table I. Regardless of the scenario, features are

computed independently for each user, considering different
periods of d days before the date of the survey. The variable
d relates to the so-called user memory, i.e., for how long a
disservice is able to impact the response to a survey. Similarly
to what done in [9], we do not use a single value of d, but we
set its value to 30, 60 and 90 days before the survey response,
each time computing the corresponding subset of features.1

Finally, we concatenate the three subsets, obtaining a total
of 30 and 42 features to be used for each user in network
coverage and video streaming scenarios, respectively.

C. Network KPIs dataset

The third dataset is composed of network KPIs gathered
directly from the eNodeBs visited by each user who replied to
a QoE survey (about 3.5k users for the coverage scenario and
3.2k for the video one). To populate this dataset we leverage
the knowledge of each user’s network visit times, i.e., a list
containing which eNodeBs were visited by each user in the
d days before the survey response and for how long. Figure
2 shows the distribution of such visit times, considering the
whole five months period: as one can see, users spend on
average almost 60% of their time in just one eNodeB, which
we refer to as home cell. We therefore restrict our analysis
to each user’s home cell, i.e., to roughly 3k different network
cells, extracting for each of them a subset of the available
KPIs (summarized in Table II). In particular, we considered
three specific KPIs categories, which are the ones more likely
impacting on users QoE [12], [13]:
• Accessibility KPIs: provide information about whether net-

work services can be successfully accessed by users or not.
These include success rates for both Radio Resource Con-
trol (RRC) connection request/re-establishment and Radio
Access Bearer (E-RAB) assignment;

• Mobility KPIs: describe the capability of the network to
guarantee continuous and ubiquitous service to users. This

1In [9], the maximum user memory was set to 30 days due to data limitation
reasons. Following experiments showed a small performance improvement
when considering even larger periods such as 60 and 90 days.



TABLE II
SUMMARY OF THE FEATURES USED FOR NETWORK KPI-BASED QOE PREDICTION

Measurement Description Type

E-RAB, Call and RRC Setup SR Success rate for Radio Access Bearer, Call and
RRC connection setup. Accessibility

RRC CR SR RRC Connection Re-establishment Success Rate Accessibility
RAN Unavailability Rate Radio Access Network unavailability rate (4G only) Accessibility
Intra/Inter-frequency HO-out SR Success Rate for both intra- and inter-frequency outgoing handover Mobility
Intra/Inter-frequency HO-in SR Success Rate for both intra- and inter-frequency ingoing handover Mobility
Inter-RAT handovers SR Success Rate for LTE to WCDMA and LTE to GSM handover Mobility
Downlink/Uplink Volume Cumulative traffic volume in downlink/uplink Usage
Downlink/Uplink Throughput Average throughput observed in downlink/uplink Usage
Avg/Max Connected Users Average and peak number of RRC-connected users Usage

category includes success rates of inter/intra frequency han-
dovers for both outgoing and ingoing users mobility;

• Usage KPIs: detail the activity of the users in the network
and the congestion level at the cell site. In this work, the
former aspect is included by considering cumulative traffic
volumes and average throughput observed in downlink and
uplink whereas the latter is represented by the average and
maximum number of RRC-connected users.

Each KPI is available in form of a hourly sampled time
series, which we pre-process in order to be fed as input for
prediction. To do so, we leverage the knowledge of users visit
times and retain from each time series only those samples
which correspond to each user’s visit. Since users generally
visit their home cell different times during a given d-day
period, we aggregate all the gathered samples by computing
the minimum, maximum and average value, for each KPI.
Figure 3 illustrates such a process, considering as example
the data volume downloaded by a user within a 30-days period
before her survey response date. At the end of this process, we
obtain 47 features to be used for both network coverage and
video streaming QoE prediction. Similarly to what done in [9],
we apply to the computed features a log-like transformation,
to make their statistical distributions more similar to Gaussian.
Finally, features are standardized to mean and variance, a pre-
process which benefits ML methods working with normally
distributed inputs.

IV. EXPERIMENTS

A. Training the classifiers

We aim to compare the performance of the two different
approaches, crowdsourcing or network KPIs, in predicting the
users QoE. The problem we consider has the form of a binary
classification problem, such that each user can be classified as
either satisfied (class 0, negative case) or unsatisfied (class
1, positive case or alarm). We take therefore a supervised
learning approach: among the several available ML classifiers
to be trained we select the Random Forest algorithm, which
is widely known to perform well in general and has been
successfully applied in the past for similar problems [3], [9].
To compare the two approaches to QoE prediction we proceed
as it follows:
1) First, we select the subset of users who appear in both

datasets, i.e. for whom both crowdsourcing and network

KPIs data are available. This results in about 1.5k users
for the coverage scenario and 1.3k users for the video one;

2) Then, for each scenario (coverage or video) and each
approach (crowdsourcing or network KPIs) independently,
we divide the set of common users in train, test and
validation sets according to a 80-10-10 splitting ratios and
10-fold cross validation. Similarly to what done in [9],
we first use the train and test set to select the best set
of hyper-parameters (number of decision trees, number of
features to be considered in each tree, etc.) of the random
forest. Secondly, we train the classifier with the best hyper-
parameters found and finally we test its performance on
the validation set. Note that for each observation of the
validation set, the classifiers output the probability that it
belongs to the class of unsatisfied users: by thresholding
such a probability, the classifier effectively takes a decision
and outputs the prediction outcome;

3) Since the two classes (satisfied and unsatisfied users) are
highly unbalanced (as shown in Figure 1, we show the
performance in terms of Receiver Operating Characteristic
(ROC) curves, obtained observing the True Positive Rate
(TPR) and False Positive Rate (FPR) of the classifier at
different prediction thresholds. We recall that the TPR, or
recall r, equals the percentage of unsatisfied users correctly
detected by the classifier in the validation set, while the
FPR is the rate of false alarms. Also, to summarize the
ROC curve in a single value, we compute the Area Under
the Curve (AUC) value. For each working point (FPR,TPR)
of the classifier, we also compute the precision p, i.e., the
ratio between the number of correctly predicted unsatisfied
users and the number of actually unsatisfied users. Finally,
we select on the ROC curve a specific working point, the
one maximizing the F1-score of the classifier, defined as:

F1-score = 2
p · r
p+ r

(1)

4) As a last step, we also compute the performance of a clas-
sifier working with both the sets of features (crowdsourcing
and network KPIs) for each user, and we refer to this last
approach as joint approach.

B. Crowdsourcing VS Network KPI

Figure 4 and 5 show the results obtained for coverage and
video scenarios, respectively. Also, we summarise in Table III



TABLE III
QOE PREDICTION PERFORMANCE OBTAINED WHEN USING CROWDSOURCING, NETPERFORM KPIS AND JOINT APPROACHES.

Scenario Video Coverage

Model
Metrics AUC FPRF1 TPRF1 F1-Score AUC FPRF1 TPRF1 F1-Score

Crowdsourcing 0.59 0.45 0.57 0.36 0.58 0.37 0.52 0.36
Net. KPIs 0.60 0.34 0.51 0.37 0.63 0.36 0.55 0.39

Joint 0.62 0.41 0.62 0.4 0.63 0.45 0.63 0.39

the working points (FPRF1,TPRF1) maximizing the classifier’s
F1-score and the corresponding F1-score value. Two main
observations can be made from the inspection of the results:

• For what concerns the coverage case, we observe that using
network KPIs as features for predicting users QoE works
better than using crowdsourcing data, with an AUC of 0.63
against 0.58 and a F1-score about 8% better. The same holds
also for the video case, where AUC values equal 0.60 and
0.59 when network KPIs and crowdsourcing data are used
respectively, although with a smaller F1-score gap (about
3%). This can be explained considering that users QoE on
network coverage is by nature more ”objective” than their
QoE on video streaming, where the impact of each user
experience is greater in determining the satisfaction level;

• The joint approach (which uses both sets of features)
outperforms the other methods in both scenarios. This is
somehow expected, as the classifiers can learn from the point
of views of both end users and network access. Considering
the F1-score, in video streaming scenario the joint model
outperforms the crowdsourcing approach by more than 11%
and the network KPIs approach by about 8%. Instead, for
the case of network coverage, the joint model improves the
F1-score by 8% compared to crowdsourcing-based model
while the improvement is negligible compared to using only
network KPIs.

We also train the classifiers considering all possible users
available for each of the two data sources, that is, regardless
of the scenario, about 2k users for crowdsourcing and 3.5k for
network KPIs one. Results are shown in Table IV: although the
comparison is not exactly fair in this case, as the classifiers
are trained with a different number of training samples, we
highlight the remarkable improvement in performance of the
network KPIs approach. Summarizing, our results show that
the predictive power of network KPIs data is comparable to
and in some cases even superior than using crowdsourcing
data. This could be of great interest for mobile network oper-
ators, which can generally obtain such KPIs much more easily
compared to crowdsourcing measurements. To conclude, we
recall that one of the primary use of QoE prediction is to
identify network sites with possible issues. Since each site
is visited by many users, it can be shown that individual
misclassification errors are somehow alleviated when grouped
on a single network element/area [11]. This means that, even
with modest prediction performance such as the one obtained
in this work, it is possible to exploit users QoE prediction as
a way to reinforce network monitoring systems.

Fig. 4. ROC curve for network coverage QoE prediction. Blue, red and green
circles refer to the working points (FPRF1,TPRF1) that maximize the F1-score
of the classifier when crowdsourcing, network KPIs and joint approach is used,
respectively.

Fig. 5. ROC curve for video streaming QoE prediction. Blue, red and green
circles refer to the working points (FPRF1,TPRF1) that maximize the F1-score
of the classifier when crowdsourcing, network KPIs and joint approach is used,
respectively.

C. Impact of user memory

As a last experiment, we evaluate what is the impact on
prediction performance of the paramater d, which controls
the time period over which features are computed and is
therefore related to the user memory. On the one hand,
crowdsourcing based input features are already computed for
different user memories d, such that the task of selecting the
most appropriate period is left to the classifier training step.
On the other hand, the same approach would not be applicable
with the network KPIs approach, due to the excessively high
number of features to be computed (47 features are computed



TABLE IV
QOE PREDICTION PERFORMANCE WHEN 2K (CROWDSOURCING) AND

3.5K (NETWORK KPIS) USERS ARE USED FOR TRAINING.

Metric AUC F1-Score
Scenario Crowdsourcing Net. KPIs Crowdsourcing Net. KPIs

Video 0.56 0.59 0.34 0.41
Coverage 0.58 0.6 0.38 0.39

Fig. 6. F1-score of the classifier versus user memory length for network
coverage QoE prediction.

Fig. 7. F1-score of the classifier versus user memory length for video
streaming QoE prediction.

for each value of d). Thus, we aggregate network KPIs for
d ∈ [7, 15, 30, 60, 90] days, training a different classifier each
time and evaluating the results. Figures 6 and 7 show the
best F1-score obtained for the coverage and video scenarios,
respectively. For what concerns coverage, the F1-score has
an increasing trend with shorter user memories (e.g., 7 days),
while for the video scenario the opposite happens, with longer
periods showing higher scores. The latter results is also indi-
rectly confirmed by experiments on the crowdsourcing dataset,
where enlarging the user memory d from 30 days (as in [9])
to 90 days produced a small performance improvement.

V. CONCLUDING REMARKS

QoE prediction is an important task for mobile network
operators, as it helps to reduce the churn rate by tracking
down possible issues in the network responsible of user dis-
satisfaction. In this paper, we have compared two approaches

to perform QoE prediction: a crowdsourcing based approach,
which leverages measurements coming directly from users
devices and a network KPIs based approach, which uses
features computed from the eNodeBs visited by each user.
Our experiments show that network KPIs, although aggregate
in nature and representing a population of customers rather
than an individual user, have a predictive power comparable
to or even superior than crowdsourcing data and constitute
therefore an interesting alternatives for MNOs. To conclude,
we observe that the data used in this study refers to the period
January-May 2020 in the country of Italy. Considering that
since March the 9th Italy was in lock-down due to Covid-
19 pandemic, part of the data used in this study refers to an
extraordinary behaviours of the mobile network. In particular,
the visit times distribution may be greatly affected due to
the reduced mobility of users in such period: we plan to
perform new experiments once the pandemic is over, including
Network KPIs from other eNodeBs visited by each user (e.g.,
up to a certain cumulative percentage of visit time).
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