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Abstract—In this paper, we propose a communication-efficient
alternating direction method of multipliers (ADMM)-based algo-
rithm for solving a distributed learning problem in the stochastic
non-convex setting. Our approach runs a few stochastic gradient
descent (SGD) steps to solve the local problem at each worker
instead of finding the exact/approximate solution as proposed
by existing ADMM-based works. By doing so, the proposed
framework strikes a good balance between the computation and
communication costs. Extensive simulation results show that our
algorithm significantly outperforms existing stochastic ADMM in
terms of communication-efficiency, notably in the presence of non-
independent and identically distributed (non-IID) data.

Index Terms—Communication-efficiency, alternating direction
method of multipliers (ADMM), stochastic non-convex distributed
optimization.

I. INTRODUCTION

Recently, more attention has been paid to designing dis-
tributed learning algorithms in the non-convex setting inspired
by the vast success of deep neural networks and the important
role non-convex optimization plays in their training. In fact,
non-convex loss functions, such as the composition of multiple
nonlinear activation functions in deep learning, are often needed
by the workers to represent the local data accurately.

Primal methods, including stochastic gradient descent (SGD)-
based methods [[1]], and primal-dual methods, such as the al-
ternating direction method of multipliers (ADMM) [2], [3] are
the two most used approaches to solve distributed learning
problems. To achieve better generalization performance and
avoid the overfitting problem, regularization has been considered
in the literature. However, for regularized problems, SGD-bases
methods are shown to suffer from the lack of capability in
exploiting the problem structure, especially in settings with
explicit regularization [4].

In contrast to that, ADMM has been commonly used to solve
regularized statistical learning problems, such as the generalized
LASSO [5]. Originally, ADMM was introduced to solve the
deterministic distributed learning problem in the convex case
[2], [3, [6], as well as the non-convex [7]-[9]. Recently,
several stochastic and online variants of ADMM have been
proposed in [10]—[14]. These variants propose to use a second-
order approximation technique to simplify the local problem
at each worker. While this procedure significantly reduces the
computational cost, it has a major drawback since it requires

frequent communication with the parameter server (PS) at every
iteration. To alleviate this issue, we propose local-SADMM,
a communication-efficient ADMM framework for solving the
distributed learning problem under the non-convex setting. In
fact, local-SADMM reduces the communication frequency by
allowing the workers to perform more local work before sharing
their models with the PS.

The main contributions of this work are summarized as
follows

o We propose a communication efficient algorithm that re-
duces the number of communication rounds between the PS
and the workers compared to existing variants of ADMM
for the stochastic non-convex regularized learning problem
(2], [13], [15].

e Our proposed algorithm offers computational savings in
solving the minimization problem of the primal models at
the workers’ side since the cost of updating the primal
variables reduces to the cost of running a few local SGD
steps. This reduces the computational time compared to
solving the exact problem using the standard ADMM.

« Extensive simulations are conducted to investigate the
performance of our proposed algorithm in the identically
and independent distributed (IID) and non-IID case as well
its sensitivity with respect to the hyperparameters. Simula-
tions results demonstrate that our proposed approach out-
performs significantly the mini-batch stochastic ADMM,
STOC-ADMM, introduced in [[12] under different settings.

The remainder of this paper is organized as follows. In Section
II, we formulate the distributed learning problem. Then, we
present our proposed framework, local-SADMM, in Section
II. Finally, Section IV validates our proposed algorithm’s
performance by simulations compared to STOC-ADMM for
different datasets while studying the impact of the various
hyperparameters on the test accuracy.

Notations: Throughout this paper, || - ||; and || - ||2 denote the
¢-norm and the Euclidean norm of a vector, respectively, and
(-,-) the inner product of two vectors. The notation V f stands
for the gradient of the function f, E[-] denotes the expected
value, and ]l(,) is the indicator function.




II. PROBLEM FORMULATION

In this paper, we consider a set of /N workers communicating
with a PS with the aim to learn a global model using only local
data. The learning problem can be formulated as the following
optimization problem

N
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where ® € R?*! is the global model, the functions f, : RY —
R are local differentiable and possibly nonconvex functions, the
function g is a nonsmooth and convex function that regularizes
the learning model and helps to generalize better, and 5 > 0 is
the regularization parameter. Problem (P1) can be reformulated

as follows
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where 6, is the local model at worker n and 8 = {0,,}_, is
the set of local models.

In this case, the augmented Lagrangian of the optimization
problem (P2) can be written as
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where A = {\,}V_, is the collection of dual variables, X, is
the dual variable between the worker n and the PS, and the
parameter p > 0 is a constant penalty parameter.
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III. LOCAL STOCHASTIC ADMM

For illustration purpose, we start by reviewing the standard
ADMM for solving the problem (P2). At iteration k + 1, the
standard ADMM algorithm runs as follow

(1)

Every worker n updates its primal variable by solving

—argmin {f,(6,)+(\%, 6, —0%) +2||6, -0 |3},
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and sends its updated model to the PS.
The primal variable of the PS is updated as
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and sends it to the workers.

Algorithm 1 Local Stochatic ADMM (Local-SADMM)
1: Input: N, p, T, f(0), A) =0, Vn, 6) ; = 0° =0

2: for k=0,1,2,--- K do
3:  Each worker n in parallel:
4: fort=0,1,2,--- , 7 —1do
5: samples uniformly and independently a mini-batch
{¢k JE of size B.
6: evaluates stochastic gradient using the sampled
mini-batch using (12).
7: updates local model as in (TT).
: end for
: sets its primal variable 6! = 0% ;.
10: sends (051 + X% /p) to the parameter server.
11:  The parameter server:
12: computes its primal variable @**! via (6).
13: sends ©**! to all workers.
14:  Each worker n in parallel:
15: updates its dual variables A¥*! locally via (7).
16: sets 011! = @FFL,
17: end for

18: Output: Global model ®%.

(3) The dual variables are updated locally for every worker
= A+ (6,7 — O, ™)

When the loss function of the n'* worker is of the form
fn(0r) = E[fn(0,,8)], as is typical in classification tasks
using deep neural networks, the standard ADMM scheme is no
longer applicable [11]]. Note that the random vector ¢ follows
a fixed but unknown distribution, from which we are able to
get a set of I[ID samples. Most stochastic versions of ADMM
[10], [11] attempt to approximate the local loss function by its
second-order Taylor expansion and to use an unbiased estimate
of the gradient, such as the mini-batch stochastic gradient as
in STOC-ADMM [12]]. We briefly review STOC-ADMM in the
next section and highlight its major weakness and how local-
SADMM can solve this issue.

k+1
An

A. STOC-ADMM
For a given iteration k, let B be the size of a mini-batch

= {&F Y2, where {¢) ;}2.| are iid variables. The mini-
batch stochastlc gradient estlmator of worker n is
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We clearly see that g¥ satisfies E [gF| = V f,,(6%). With the
above definition at hand, the update of the primal variable of
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every worker n in the STOC-ADMM algorithm is given by

k+1 _ pgk 1 k k k k
The update of the global model at the PS side as well as the
update of the dual variable of each worker is the same as in ()
and (7)), respectively. Note that in the update (9), the function
fn(6y) is replaced by its quadratic approximation so that the
primal models of each worker solves the following problem

€))
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0

n

+ (AL, 6, - 0% + 56, - ©¥[3), (10)

where 1 > 0. Note that while using the Taylor expansion and
mini-batch stochastic gradient in the update of the primal models
of the workers reduces the computational time significantly, it
does not solve the communication bottleneck issue caused by
the frequent communication with the PS.

B. Local-SADMM

To solve the communication bottleneck issue that the current
proposed stochastic ADMM variants (e.g. STOC-ADMM) suffer
from, we introduce our proposed stochastic version of ADMM
coined local-SADMM, a communication-efficient algorithm for
solving (P2). In our algorithm, we propose to run a few number
of local SGD steps in order to have a solution to the local
problem described in ().

In the remainder, we denote by K the number of communica-
tion rounds between the PS and the workers and 7' the number
of local SGD steps. Given a learning rate o > 0, the update of
the primal model, at iteration k + 1, is given by

6, =6, —algh,+Xi+p6,—0%), D

where Bfm is the primal model of the n'" worker after running
global iterations and ¢ local iterations. Moreover, the mini-batch
stochastic gradient gfl'ﬁt is defined as

1B
gﬁ,t =5 ; an(gfb,ty fs,z) (12)
Under local-SADMM, the computation cost per local iteration
reduces to computing the mini-batch stochastic gradient gfm,
which is light-weight. Note that STOC-ADMM can be seen a
special case if we set a =1/(p+n) and T = 1.

After running 7' local iterations, the new model that each
worker uploads to the PS is 5! = 0% /. Instead of starting
the local iterations from the previous model, i.e. 05,0 = 6k,
we rather start from the previous global model, i.e. 6% ; = ©".
By doing so, not only local-SADMM reduces the number of
communication rounds but also has a lower computational cost
compared to standard ADMM. Furthermore, it is worth men-
tioning that local-SADMM contributes to reducing the variance
compared to the STOC-ADMM. The detailed steps of local-
SADMM are summarized in Algorithm

IV. NUMERICAL RESULTS

In this section, we validate the performance of our proposed
algorithm, local-SADMM, compared to STOC-ADMM while
studying the impact of certain hyperparameters (the number of
local iterations 7', the penalty parameter p, and the mini-batch
size B) on the performance of these algorithms when g(-) =
|| |l1- In this case, the update of the PS can be explicitly derived
as in (3), where ®F is the i*" component of the PS model
at iteration k£ 4+ 1 and sgn(-) is the sign function.

A. Experimental Setup

We consider two experiments

o Digits classification using MNIST dataset. The MNIST
dataset consists of hand-written 0 —9 digit images. The
aim is to predict to which class each image belongs,

« Regression on sinusoid data [[16]. Points from a sinusoidal
wave with amplitude A and phase ¢ are generated ran-
domly and distributed across the workers. The objective
of the collaborative training is to train each worker to
accurately produce sinusoidal output y when the input
x € [—m, 7.

In all of our experiments, we plot the average test accuracy
and one standard error shaded area based on five runs. For
each task, we use the same hyperparameters, detailed in Table
unless otherwise stated in the text. We have used a multi-
layer perceptron neural network with two hidden layers having
128 and 64 neurons, respectively, for the MNIST experiment
and having 64 and 32 neurons, respectively, for the sinusoid
experiment. The activation function used in the hidden layers is
the rectified linear unit. The loss function used in the sinusoid
experiment is the mean squared error, while we use the cross-
entropy loss in the MNIST experiment.

TABLE I: Parameters used in the numerical experiments.

PARAMETER SINUSOID MNIST
LEARNING RATE () 0.01 0.01
BATCH SIZE (B) 100 10
NUMBER OF WORKERS (V) 10 50
NUMBER OF LOCAL ITERATIONS (7") 10 10
PENALTY PARAMETER (p) 0.1 1
REGULARIZATION PARAMETER () 0.1 0.01

B. Experimental Results

1) IID Case: In this case, the number of samples are uni-
formly distributed across /N workers for both datasets.

In Fig. [1} we start by plotting the test accuracy as a function
of the number of communication rounds for different number
of workers NV € {25,50, 100} and for different number of local
iterations 7' € {1, 5, 10}. Irrespective of the number of workers
considered, we can see that local-SADMM significantly outper-
forms STOC-ADMM. Note that the parameter 1 used in STOC-
ADMM is chosen so that the term 1/(n+p) matches the learning
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Fig. 1: Test accuracy in the MNIST experiment for different number of workers.
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Fig. 2: Test loss in the sinusoid regression experiment for different number of workers.

rate o used in local S-ADMM for fair comparison. We can
clearly see that local-SADMM strikes a good balance between
communication-efficiency and achieving high test accuracy. In
fact, for N = 25, the local-SADMM test accuracy increases
achieving around 90%, 95.5% and 96.5%, for T' € {1,5,10}
respectively, while STOC-ADMM achieves 88% test accuracy.
In terms of communication-efficiency, the gap in performance
is even clearer. Note that with 100 communications rounds,
local-SADMM can still achieve around 85%, 92% and 93% for
T € {1,5,10} respectively, compared to only 60% for STOC-
ADMM. A similar gap in performance is observed for other
choices of the number of workers N € {50, 100}.

In Fig. [2] we plot the test loss as a function of the number
of communication rounds for different number of workers N €
{10,15,20} and for different number of local iterations 7' €
{1,5,10}. Similar to the results obtained in the classification
problem, we observe that, irrespective of the number of workers
and local iterations, local-SADMM significantly outperforms
STOC-ADMM. From Fig. [T]and Fig. 2} we conclude that local-
SADMM achieves better communication-efficiency and better
performance compared to STOC-ADMM.

In Fig.[3] we study the impact of p and B on the performance
of both algorithms for the MNIST experiment. We plot the
test accuracy in terms of the number of communication rounds
for different values of p € {0.1,1,10} in Fig. and of
B € {10, 30,50} in Fig. We can see from Fig. at local-
SADMM offers a significant communication efficiency gain
compared to STOC-ADMM for the different values of p. In fact,
for p = 1, STOC-ADMM requires 200 communication rounds to
reach 80% test accuracy while local-SADMM achieves the same
test accuracy using only 10 communication rounds. Further-
more, local-SADMM seems to have a more stable performance
while varying p compared to STOC-ADMM. Similarly, from
Fig. @ we observe that, as the batch size increases, the
performance of both algorithms improves. However, as noted
earlier, our proposed algorithm achieves significant communica-
tion efficiency gains compared to STOC-ADMM and it is less
sensitive to the batch size B. In fact, increasing B from 30 to
50 barely changes the performance of local-SADMM. Finally,
from Fig. 3] we notice that running a few local SGD steps to
solve the local minimization problem reduces the variance of
local-SADMM estimate compared to STOC-ADMM.
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Fig. 3: Impact of hyperparameters on the test accuracy in the MNIST experiment.

10!

10°

A
M Ak b
T WA

AR A ikl
g

Test Loss
=
5
L

1072

107 T T T T T
0 200 400 600 800 1000
Number of Communication Rounds

local-SADMM (p=0.01) —— STOC-SADMM (p=0.01)
local-SADMM (p=0.1) —— STOC-SADMM (p=0.1)
local-SADMM (p=1) —— STOC-SADMM (p=1)

(a) Impact of the penalty parameter p.

10!

100

107!

Test Loss

1072

T T T T T
0 200 400 600 800 1000
Number of Communication Rounds

local-SADMM (B=100) —— STOC-SADMM (B=100)
local-SADMM (B=150) —— STOC-SADMM (B=150)
local-SADMM (B=200) —— STOC-SADMM (B=200)

(b) Impact of the mini-batch size B.

Fig. 4: Impact of hyperparameters on the test loss in the sinusoid experiment.

Similarly for the sinusoid regression experiment, we plot the
loss in terms of the number of communication rounds for both
algorithms for different values of p € {0.1,1, 10} in Fig. @ and
of B € {10, 30,50} in Fig.[4b] The observed results confirm our
findings regarding the classification experiment and show the
advantage of local-SADMM over STOC-ADMM for all choices
of p and B.

2) Non-IID Case: In practice, the local data distribution can
usually vary greatly between across the different workers, hence,
the importance of investigating the performance in the non-
IID setting. In this case, we follow the same procedure of

artificially distributing the MNIST data over workers as in
to get a pathological non-IID partition of the data. By doing
so, we make sure that the local dataset of the majority of the
workers will only contain examples of two digits. We plot the
test accuracy achieved by both algorithms in terms of number
of communication rounds, for N = 100 in Fig. 5] The gap in
the performance between the two algorithms is more evident in
the non-IID case. In fact, while STOC-ADMM barely achieves
a 50% test accuracy, local-SADMM test accuracy reaches 90%
with around 50 communication rounds when 7' = 10.
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V. CONCLUSIONS

In this work, we proposed local-SADMM, a communication-
efficient ADMM-based framework that solves the distributed
learning problem when the local functions are non-convex
such as the case when training DNNs. By running a few
local SGD steps locally, our approach significantly reduces the
number of communication rounds between the devices and the
PS. Extensive numerical simulations show that local-SADMM
outperforms STOC-ADMM for solving the learning problem in
terms of the number of communication rounds. The performance
gap is more evident in the practical case when the data is non-
1ID.
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