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Abstract—In recent years, autonomous networks have been
designed with Predictive Quality of Service (PQoS) in mind,
as a means for applications operating in the industrial and/or
automotive sectors to predict unanticipated Quality of Service
(QoS) changes and react accordingly. In this context, Reinforce-
ment Learning (RL) has come out as a promising approach to
perform accurate predictions, and optimize the efficiency and
adaptability of wireless networks. Along these lines, in this paper
we propose the design of a new entity, integrated at the RAN
level that implements PQoS functionalities with the support of
an RL framework. Specifically, we focus on the design of the
reward function of the learning agent, able to convert QoS
estimates into appropriate countermeasures if QoS requirements
are not satisfied. We demonstrate via ns-3 simulations that our
approach achieves better results in terms of QoS and Quality
of Experience (QoE) performance of end users in a teleoperated
driving scenario.

Index Terms—Predictive Quality of Service (PQoS), teleoper-
ated driving, reinforcement learning (RL), RAN, ns-3.

I. INTRODUCTION

We are witnessing a rapid evolution towards autonomous
systems, able to safely operate without human intervention [L1]].
In this scenario, the dynamic nature of the environment in
which autonomous machines are deployed may result in the
Quality of Service (QoS) to change and degrade unexpectedly,
with potentially catastrophic consequences if communication
failures are not promptly notified. To solve this issue, the
research community has been investigating Predictive Quality
of Service (PQoS) [2] as a means to provide autonomous
systems with advance notifications about QoS changes. Unlike
reactive mechanisms, which respond to QoS deterioration
only after it occurs, a predictive approach gives time to the
applications to foresee unanticipated events, and adapt their
operations accordingly. In the automotive sector, Vehicle-To-
Everything (V2X) is associated to strict QoS requirements in
terms of ultralow latency, as well as ultrahigh throughput,
reliability, and security [3]. Hence, PQoS may assist V2X
networks to preemptively evaluate the potential risks of QoS
degradation, and guarantee reliable driving.

At first, network prediction was developed based on linear
regression and/or filter-based models (e.g., Kalman filters) [4],
[S]. However, linear regression came out as a good estimator
when the underlying relationship between the system’s vari-
ables and the response was known to be linear, even though
most real systems are non-linear. At the same time, filter-based
prediction mechanisms have been shown to be very sensitive to

imperfections of the environment, as well as random dynamics,
and mainly focus on real-time or short-time estimation of the
target state. In turn, autonomous applications may also require
predictions of the system’s future behavior [6]], which may
span several minutes or even hours [7]. Moreover, despite
their quick convergence in dynamic processes, these methods
tend to require a priori knowledge of the process to learn,
which is not always available in autonomous systems [8]. More
recently, machine learning (ML) technologies have emerged
as a powerful approach to predict and optimize wireless
networks [9], without requiring explicitly pre-programmed a
priori rules, which makes these techniques particularly inter-
esting for enabling PQoS.

Based on the above introduction, this paper addresses the
problem of developing and testing PQoS mechanisms for V2X
networks. To this aim, we propose the design of a new entity
called “RAN-AI" (Sec. @), connected to the different compo-
nents of the Radio Access Network (RAN) that: (i) collects
data from different sources; (ii) makes QoS predictions based
on the acquired data, recognizes and notifies upcoming QoS
variations; and (iii) defines and applies network countermea-
sures in case QoS requirements are not satisfied. The RAN-AI
entity integrates a Reinforcement Learning (RL) framework,
able to identify the optimal (set of) countermeasures for PQoS
(Sec. [I). In particular, we focus on the design of the learning
algorithm and the reward function of the learning agent. The
performance of the RL model for PQoS is validated via ns-
3 simulations in a teleoperated driving scenario, considering
realistic setup and input parameters (Sec. [[V). We demonstrate
that our RL framework guarantees the optimal trade-off be-
tween QoS and Quality of Experience (QoE) for end users (and
satisfies QoS requirements of V2X applications) compared to
other baseline solutions. Finally, we formalize our conclusions
and next research steps (Sec. [V).

II. OUR PQOS FRAMEWORK

We consider a teleoperated driving scenario, in which con-
nected vehicles are controlled by a remote driver (either human
or software). In view of the highly dynamic nature of the V2X
environment, PQoS shall be able to predict QoS degradation
and gracefully change the operational mode of the system
to ensure that end users satisfy their strict latency/reliability
constraints. For example, PQoS may assist the control center
in adapting the vehicles’ speed and trajectory based on the
condition of the radio environment [2]. PQoS procedures



can be implemented at both the Core Network (CN) and
the RAN. In this work we focus on the latter, and describe
the functionalities of a new entity called “RAN-AI" that we
designed to facilitate PQoS in V2X systems.

A. RAN-AI Entity for PQoS

RAN operations in V2X, from modulation and coding to re-
source allocation and scheduling, can affect QoS performance,
if not properly configured. Along these lines, we propose
the design of a RAN-AI entity, installed in a remote/edge
server, or at the gNB, that executes methods to improve the
network performance if the agreed QoS is not satisfied. In
our implementation, the RAN-AI entity is connected to the
different components of the RAN (Centralized Unit (CU),
Distributed Units (DUs) and Remote Radio Units (RRUs)), as
well as to the core network by means of dedicated interfaces,
and hosts an RL agent for PQoS. Notably, the RAN-AI entity
is in charge of the following tasks:

(1) Get application statistics, and collect full-stack RAN
measurements from the gNB and the end users, that may
be used as input parameters of the RL agent (Sec. [[I-B].

(i) Share such measurements with the RL agent, which de-
termines the optimal set of countermeasures to maximize
the overall performance (Sec. [[I-C).

(iii) Inform the end users about QoS changes, and suggest
the countermeasure(s) to adopt, based on the agent’s deci-
sion(s), so that they can adjust their behavior accordingly.

B. PQoS Inputs

For the RAN-AI entity to operate properly, the availability
of measurements (or “inputs”) from diverse sources is the key.
The RAN-AI may have access to the following data from both
the environment and the RAN itself.

o Context information. This incorporates information about
(i) the operational scenario, (ii) road elements, (iii) the
network deployment, and (iv) the time of the day.

o Trajectory of the users. Driving applications may provide
to the network the planned trajectory of end users,
Moreover, the RAN-AI entity shall acquire data (based
on trajectory statistics) about the gNB at which end users
are/will be attached in future locations, as an indication
of the cell load.

o Traffic information. The RAN-AI entity may gather traffic
conditions from external control centers, which may also
provide traffic predictions based on historical data.

o Network metrics. The RAN-AI entity can get access
to measurements gathered at the Physical (PHY) and
Medium Access Control (MAC) layers (e.g., L1 measure-
ments such as Reference Signal Received Power (RSRP),
Reference Signal Received Quality (RSRQ), Signal to
Interference plus Noise Ratio (SINR), Physical Resource
Blocks (PRBs) utilization, and Modulation and Coding
Scheme (MCS) index), Radio Link Control (RLC) and
Packet Data Convergence Protocol (PDCP) layers (e.g.,
statistics of the data traffic exchanged across the users).

o Higher layers metrics. The RAN-AI may be informed by
the end users’ applications about the experienced end-to-
end (E2E) performance (e.g., mean, standard deviation,
minimum and maximum value of delay and throughput).

C. PQoS Countermeasures

If QoS requirements are not satisfied, the role of the
RAN-AI is to convert PQoS inputs into appropriate network
countermeasures (or “actions”). Besides operating directly on
the driving patterns, the RAN-AI may undertake lower-layer
actions (e.g., changing scheduling decisions, adapting the radio
resource allocation as a function of the propagation conditions,
modulating traffic requests based on the available network
capacity, or modifying the system numerology to provide more
resilient communication channels).

Another action that can alleviate the burden on the channel
is to reduce the size of the data generated at the application
layer before transmission. In our scenario, end users transmit
Light Detection and Ranging (LiDAR) data in the form of
point clouds, whose size depends on the application mode,
i.e., the level of compression of the observations [10]. In
the context of this work, the RAN-AI entity implements an
RL agent whose goal is to identify the optimal application
mode (i.e., the action) for the end users when generating
the data (and thus the corresponding size of the packets to
send). Finally, the RAN-AI communicates to each end user
the corresponding best action that the agent has identified.
This involves the transmission of a notification packet, which
may be exposed to both transmission delays and errors.

III. REINFORCEMENT LEARNING MODEL

Reinforcement Learning (RL) is a powerful paradigm that
models the target scenario as a Markov Decision Process
(MDP), where time is discretized into slots and, in each slot ¢,
an agent observes the system state, takes a new action, and
receives a reward or a penalty accordingly. The goal of the
agent is then to determine the optimal policy 7™, i.e., the map
between states and actions 7 : S — A leading to maximizing
the cumulative reward G, = 2, A" *R(7), where R is the
reward and A € [0, 1) is the future reward discount factor.

In this work, the RAN-AI is installed at the gNB and
implements an RL agent which controls all the vehicles
connected to that cell. Hence, the agent’s actions correspond
to the application modes described in Sec. and the
reward is obtained by evaluating the vehicles’ performance.
This approach ensures that the size of the state/action spaces
is invariant with respect to the number of users, and improves
the learning efficiency since, during the training phase, the
system can exploit the data gathered by all the vehicles.

A. A Learning Framework for PQoS

In our system, at each step ¢, the agent observes the state
s¢ € S of each vehicle, where s; is a vector containing the
RAN-AI entity’s inputs. Given the state s;, the agent computes
the g-value Q)(s¢, a) associated with each action a € A, where
Q(st,a) is the estimate of the cumulative reward G that can
be obtained playing action a in state s;, and then following the



optimal policy. During the training, the agent will eventually
converge towards the action with the highest g-value, which
ensures the best cumulative reward.

We adopt a Deep Reinforcement Learning (DRL) approach,
and approximate the agent’s policy by means of a Neural
Network (NN), which makes it possible to handle continuous
state spaces and overcome the ‘“curse of dimensionality”
phenomenon [11]. In particular, we consider a Feed-Forward
NN, with S inputs and A output neurons, and implement the
Rectified Linear Unit (ReLU) activation function across the
different layers [12]. The input size (S) of the NN coincides
with the number of input parameters of the RAN-AI entity,
while the output size (A) corresponds to the number of
possible agent’s actions, i.e., the different application modes.
Hence, our architecture is trained to approximate the function
Q) : S x A — R, that establishes the quality of each
state-action pair. In particular, the training of the agent is per-
formed according to the Double Q-learning (DQL) algorithm
described in [[13]], which is an extended version of the classical
Q-learning algorithm introduced in [14]. The main details of
our NN architecture are given in Table [T

B. Reward Function

The design of the reward function is a particularly critical
task in RL. If the reward does not fully represent the system’s
requirements, the agent may learn an undesirable behavior, and
lean towards suboptimal actions. In our scenario, analyzing the
performance of the system is not straightforward, as it depends
on two different factors:

o The Quality of Service (QoS): The agent’s decision
should ensure that the vehicle satisfies the agreed QoS
in terms of different Key Performance Indicators (KPIs),
in particular in terms of maximum end-to-end delay &,
and Packet Reception Ratio (PRR) (among the most rep-
resentative KPIs for teleoperated driving scenarios [15]).

o The Quality of Experience (QoE): The agent’s decision
should ensure that the quality of the transmitted data is
good enough to perform teleoperated driving operations
(e.g., object detection [16]). This is measured based on
the symmetric point-to-point Chamfer Distance CDgyr,
between the transmitted data D and original data D
acquired by the LiDAR, expressed as [17]]

CDsym= >, min [d—d[3+ > min [d=d|3.
vdeD vdeD

To make the agent capture both the above aspects, we design
the reward as a piece-wise function, which returns 0 whenever
the QoS requirements are not met; otherwise, a positive value
that depends on both the QoS and the QoE of the end users.
Let PRR,, &;, and §,,, be the PRR and average delay of the
vehicle at time ¢, and the maximum delay tolerated by the
system (based on the use case of interest), resppctively. At
time slot ¢, if the QoS requirements are met, i.e., d; < ,, and

PRR, = 1, the agent reward R(t) is given by

— 0t + &CDsym,m - CADsym,t’
5m CDsym,m

R(t) = (1-«a) 2)

TABLE I: Simulation parameters.

Parameter Description Value
fe Carrier frequency 3.5 GHz
B Total bandwidth 50 MHz
Prx Transmission power 23 dBm
T RAN-AI update periodicity 100 ms
Ts Simulation time 80 s
N, Number of vehicles {1, 5}
A Discount factor 0.95
¢ Learning rate 10~
€ Weight decay 1073
«a QoS/QoE weight {0.5, 1}
Om, Max. tolerated delay 50 ms
CDgym,m Max. tolerated Chamfer Distance 45
Layer size (inputs X outputs) 8X12—=12Xx6 —+6X3

and is equal to 0 otherwise. Specifically, in (), « is a positive
value in [0, 1], while CADsynm and CDgyp,,, are the Chamfer
Distance measured at time ¢ and the maximum Chamfer
Distance that can be tolerated, respectively. The balancing
between QoS and QoE is determined by «, which is a tuning
parameter to be set according to the target scenario.

IV. PERFORMANCE EVALUATION

In Sec. we describe our simulation setup, while in
Sec. we validate through numerical simulations the per-
formance of our RAN-AI implementation for PQoS, compared
to other baseline methods.

A. Simulation Setup and Parameters

Our results are based on ns-3 simulations, thereby enabling
full-stack end-to-end analyses. To do so, we extended the
ns—-3-mmwave module [18] to incorporate a new RAN-
Al class and its functionalities. Simulation parameters are
reported below and summarized in Table [I]

a) Scenario: Our PQoS framework was validated in a
test scenario with one gNB covering a portion of the city of
Bologna, Italy, and N, = {1, 5} vehicles moving according to
realistic mobility traces generated using Simulation of Urban
MObility (SUMO) [19]]. The system is operating at 3.5 GHz
(corresponding to NR band n78) with a bandwidth of 50 MHz.

b) V2X application: Each vehicle runs an uplink ap-
plication streaming LiDAR data, modeled according to the
Kitti multi-modal dataset [20]. Moreover, it receives in the
downlink commands from the remote driver for teleoperated
driving operations. Each raw LiDAR perception generates a
point cloud of around 120000 points at 10 Hz, with an
average file size of 3200 KB. Based on [17], compression
is accomplished using Draco [21]] (a software designed by
Google to compress 3D-like data) combined with the semantic
segmentation functionalities of RangeNet++ [22] (a NN able
to assign class labels to data points). Our compression pipeline
consists of the following steps:

o We first infer semantic segmentation of LiDAR data with

RangeNet++, so as to identify the most valuable objects

in the scene. Three semantic levels are defined:



TABLE II: Application modes and RL reward parameters.

Application Mode | RangeNet++ - Draco — Avg. file size [KB] | Chamfer Distance CDsym
Compression ‘ Quantization
0 (baseline) NO NO 3200 0
1450 NO 5 14 200 0.000044
1451 LEVEL 1 5 14 104 5.476881
1452 LEVEL 2 5 14 17 35.634660

— LEVEL 0: The raw LiDAR acquisition is considered.

— LEVEL 1: The points associated to the road elements
are removed from the cloud, thus reducing the file size.

— LEVEL 2: The points associated to buildings, vegeta-
tion, and traffic signs are also removed; the resulting
data consists only of dynamic elements like pedestri-
ans and vehicles, i.e., the most critical elements in
autonomous and remote driving scenarios.

o The resulting point cloud is then compressed with Draco,
which defines 15 quantization levels and 11 compression
levels that trade off efficiency against speed.

We consider four application modes, as reported in Table
¢) RL agent architecture: The state of our RL agent
includes only a subset of the RAN-AI input parameters
(Sec. [lI-B), to reduce the state space dimension, and ensure
a faster learning convergence. Specifically, we focused on
RAN-level metrics usually available at the gNB, averaged over
a reporting period of 100 ms, i.e., the value of the MCS,
the number of Orthogonal Frequency Division Multiplexing
(OFDM) symbols used to transmit, the value of the SINR,
the mean/max/min/std of the packets’ delay, and the PRR
at the PDCP layer. We also limited the agent’s action space
to three actions, corresponding to application modes {1450,
1451, 1452}[] so that S = 8 and A = 3.
With respect to DQL, we set the discount factor of the
RL algorithm to A = 0.95 and we adopt a batch-learning
approach, where the learning transitions are grouped in batches

of size Bgj,e = 10. We implement the Adaptive moment
estimator (Adam) algorithm to update the weights of the NN,
considering ¢ = 107 as the maximum learning rate, and

e = 1072 as the weight decay [23]. The agent’s training
follows two subsequent phases, organized into episodes of 800
steps each, where the step duration is set to 100 ms so that each
episode lasts 80 seconds. First, we perform an offline training
phase, where the agent’s actions are kept fixed for the whole
duration of the episode. Then, we perform an online training
phase, where the agent’s actions change in time according to
an e-greedy exploration policy. The duration of each training
phase depends on the number of vehicles in the scenario, and
is set to 2500 when N, = 1 and 500 when N, = 5.

In terms of the reward function in Eq. , we set d,, = 50
ms, as specified by the SGAA for teleoperated driving appli-
cations [24], and CDgym »,, = 45, while the Chamfer Distance

'From preliminary experiments, we obtained that application mode 0
(where data are not compress nor segmented) was never selected by the agent
during training, so it was not included in the action space to promote faster
convergence; this strategy will represent the benchmark solution in our tests.

CDgym associated to each application mode is reported in
Table [l Finally, we set o € {0.5,1} to consider different
QoS/QoE weights.

d) Performance evaluation: To validate our framework,
we compared the following action policies:

e DQL (proposed), where at each step the agent implements
our proposed RL framework described in Sec. [III}

o Constant (benchmark), where at the beginning of the
simulation the end user mantains one application mode
among {0, 1450, 1451, 1452} for the whole simulation.

The two strategies have been tested separately, and will be
compared in terms of (i) the reward gained by the agent, (ii)
the probability to satisfy the QoS requirements, (iii) the user’s
QoS, expressed in terms of delay at the application layer, and
(iv) the user’s QoE, expressed in terms of CDgypy,.

B. Numerical Results

First, in Fig. [I] we evaluate the DQL statistics of the training
phase vs. N,, and oe. We observe that, during the first phase of
the training period, the agent mostly makes random decisions
because of the e-greedy policy, which ensures that the action
and state spaces are fully explored. As the training progresses,
the agent starts acting greedily and prioritizes the actions
that maximize the long-term reward. In this case, the agent’s
decisions depend on the observed state and, consequently, the
action probability distribution may change completely from
an episode to another, which justifies the variability in Fig. [I]
We can see that, when N,, = 1, the agent prefers application
mode 1450, since it offers the best trade-off between QoS and
QoE compared to other actions. Instead, when N, = 5, the
system is more congested, and the agent tends to penalize more
the actions leading to a violation of the QoS requirements; as
such, action 1451 (where the original LiDAR data is subject
to both compression and segmentation before transmission) is
preferred most of the time.

Second, we analyze the QoE and QoS performance of
the DQL agent against other benchmarks in different system
configurations, during a test phase of 100 episodes. In Fig.
we illustrate the distribution of the Chamfer Distance (an
indication of the QoE of the system), considering /V,, = 1 and
for a € {0.5,1.0}. We observe that, when the RAN-AI entity
implements strategies {0, 1450, 1451, 1452}, the Chamfer
Distance remains constant throughout all the episodes. Instead,
with DQL, the RAN-ALI entity tries to adapt to the conditions
of the environment. In particular, when o = 1, the agent has
an incentive to improve the QoE’s reward component, and
prioritizes action 1450, so that CDyyy, is O for more than 45%
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Fig. 2: Chamfer Distance (CDsym) distribution, for N, = 1.

of the time. On the other hand, for &« = 0.5, the reward
function discourages an overly aggressive behavior, which
may lead to a violation of the QoS requirements, and prefers
action 1452, which however leads to some QoE degradation.
Similarly, Fig. 3] plots the distribution of the QoS for the dif-
ferent strategies, where a QoS of 0 implies that the delay/PRR
requirements of the teleoprated driving application are not
satisfied. We observe that DQL improves as « decreases,
since the agent receives a higher reward when the delay
is minimized. In particular, when « = 1 (o = 0.5), the
QoS requirements are satisfied around 50% (75%) of the
time. Notably, while the Constant 1452 action ensures better
QoS (since the data are compressed and segmented before
transmission, which can reduce the size of the packets to
send), it is characterized by a very high CDyyy (Fig. E[) and,
consequently, a bad reward distribution. Similarly, while the
Constant 1450 action promotes better QoE, it results in a QoS
degradation of up to 40% compared to DQL when o = 0.5.
The above considerations are validated in Fig. ff] which
reports the distribution of the mean packet delay at the
application layer, i.e., the distribution of the average delay
of all the packets delivered at the application layer during the
same time slot. Specifically, we use the box plot representation,
where the black line in the middle of each box is the median,
the edges represent the 25th and 75th percentiles, while the
whiskers identify the outliers of the distribution. We observe
that all the policies can maintain the median delay below
the required threshold (4, = 50 ms) for both N,, = 1 and
N, = 5. However, while for Constant 1450 and 1451 the
top whiskers of the distribution approach a value of 100 ms,
which indicates that such strategies may be unable to meet the
QoS requirements when the working conditions are critical,
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Fig. 3: QoS distribution, when for N,, = 1.
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Fig. 4: Mean delay (application layer), for o = 1.

for DQL the whiskers are equal to 70 and 95 ms for NV, = 1
and N,, = 5, respectively. Notice that the only strategy with a
better QoS is Constant 1452, resulting in a delay distribution
squeezed towards zero, thus ensuring that QoS requirements
are rarely violated, at the expense of a poor QoE.

To evaluate the trade-off between QoE and QoS of the
different PQoS policies, in Fig. 5] we plot the agent’s reward
(normalized in [—1,+1]) for different values of o and N,,.
Specifically (i) the white dot represents the median, (ii) the
thick black bar in the center represents the interquartile range,
(iii) the thin black line represents the rest of the distribution,
except for “outliers.” Wider sections of the violin plot indicate
values that occur more frequently. From Fig. [5a] we can see
that the DQL solution achieves the best trade-off between
QoS and QoE, meaning that the adaptive behavior of DQL
is desirable for PQoS. We notice that the Constant 0 and 1452
policies display the lowest reward due to their poor QoS and
QoE performance, respectively. For N, = 1, DQL and the
Constant 1450 and 1451 policies achieve similar rewards. On
the other hand, when N,, = 5, i.e., considering more congested
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networks, the advantages of DQL are more evident. Notably,
DQL is the only strategy that can provide a reward higher
than 0.5, while for Constant 1450 and 1451 the reward peaks
at about —1 and 0.4, respectively. By tuning parameter c, it is
possible to further adjust the policy learned by the DQL agent,
promoting more or less conservative communication settings.
From Fig. [5bl we observe that with o = 0.5 the DQL agent is
able to reduce the probability of negative rewards, compared
to o = 1. In this case, however, the maximum reward is 0.3
(vs. 1 when « = 1), through still higher than any competitor.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we analyzed the potential of PQoS to predict
and optimize autonomous networks. Specifically, we proposed
the design of a new “RAN-AI" entity, installed in the gNB
and interacting with a custom RL agent, to identify the
optimal set of PQoS actions/countermeasures to satisfy QoS
requirements of end users. We performed simulations in ns-3
in a teleoperated driving scenario, and demonstrated that the
adaptive behavior of our RL model can achieve the best trade-
off between QoS and QoE performance, compared to other
baseline solutions that do no support machine learning. Also,
we make the case that, by properly tuning the parameters of
the reward function, it is possible to adjust the policy learned
by the learning agent, promoting more or less conservative
communication settings.

Among our future research activities, we will extend our
current PQoS framework to incorporate advanced functionali-
ties, including the support for multi-cell scenarios, as well as
the definition of new ML technologies and countermeasures
for PQoS (e.g., based on federated learning). In particular,
we will investigate whether a fully distributed architecture, in
which end machines make autonomous decisions, can promote
more efficient PQoS.
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