
Deep Reinforcement Learning based Joint Active
and Passive Beamforming Design for RIS-Assisted

MISO Systems
Yuqian Zhu†, Zhu Bo†, Ming Li†‡, Yang Liu†, Qian Liu†, Zheng Chang∗, and Yulin Hu]

† Dalian University of Technology, Dalian, Liaoning 116024, China
E-mail: {yqzhu,zhubo}@mail.dlut.edu.cn, {mli,yangliu_613,qianliu}@dlut.edu.cn
‡ National Mobile Communications Research Laboratory Southeast University, Nanjing, Jiangsu 210096, China

∗ University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
E-mail: zheng.chang@jyu.fi

] Wuhan University, Wuhan, Hubei 430072, China
E-mail: yulin.hu@whu.edu.cn

Abstract—Owing to the unique advantages of low cost and con-
trollability, reconfigurable intelligent surface (RIS) is a promising
candidate to address the blockage issue in millimeter wave
(mmWave) communication systems, consequently has captured
widespread attention in recent years. However, the joint active
beamforming and passive beamforming design is an arduous
task due to the high computational complexity and the dynamic
changes of wireless environment. In this paper, we consider a
RIS-assisted multi-user multiple-input single-output (MU-MISO)
mmWave system and aim to develop a deep reinforcement
learning (DRL) based algorithm to jointly design active hy-
brid beamformer at the base station (BS) side and passive
beamformer at the RIS side. By employing an advanced soft
actor-critic (SAC) algorithm, we propose a maximum entropy
based DRL algorithm, which can explore more stochastic policies
than deterministic policy, to design active analog precoder and
passive beamformer simultaneously. Then, the digital precoder
is determined by minimum mean square error (MMSE) method.
The experimental results demonstrate that our proposed SAC
algorithm can achieve better performance compared with con-
ventional optimization algorithm and DRL algorithm.

Index Terms—Reconfigurable intelligent surface (RIS), deep
reinforcement learning, soft actor-critic, hybrid beamforming,
millimeter wave communications.

I. INTRODUCTION

Recently, wireless communication networks need to expand
the capacity to meet the exponentially increasing high-data-
rate requirements [1]. Many newly emerged technologies are
employed to increase the capacity of the wireless chan-
nels. One of the key enabling techniques is millimeter wave
(mmWave) communications associated with massive multiple-
input multiple-output (MIMO) and hybrid beamforming tech-
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niques. However, the blockage issue makes the mmWave
MIMO communications extremely challenging for the real-
world deployment.

The reconfigurable intelligent surface (RIS), as an environ-
mentally friendly, low-cost, and controllable planar array, has
been considered as one of the vital technologies to tackle
the challenge [2], [3]. The emergence of RIS has benefited
from advancement in the electromagnetic (EM) meta-material,
which can control the propagation environment of EM waves
in the wireless communication systems. In addition, RIS can
establish virtual links to cover signal blind areas and enhance
communication quality of cell-edge users.

Many researches have investigated the effective algorithms
of active beamforming and passive beamforming design in
RIS assisted wireless communication system [4]-[7]. In [4],
a point-to-point RIS-assisted MISO communication system
is investigated. The authors proposed fixed point iteration
and manifold optimization methods to maximize the spectral
efficiency. The authors in [5] proposed alternating optimiza-
tion (AO) and semi-definite relaxation (SDR) algorithms to
optimize the beamforming vector at the base station (BS)
and the phase-shifts at the RIS with imperfect channel state
information (CSI). In [6], the weighted sum-rate problem was
decoupled via Lagrangian dual transform. Then, the transmit
beamforming was optimized by the fractional programming
method, and the passive beamforming at RIS was optimized
by three efficient algorithms with closed-form expressions. In
[7], the authors employed AO, successive convex optimization
(SCA), and SDR algorithms to obtain the optimize solution of
active beamforming and discrete phase-shift matrix. However,
it is difficult for these aforementioned approaches to accurately
estimate the channel in real-world deployment. Also, the itera-
tive algorithms have inevitably huge computational complexity
which introduce unnegligible processing delays.

The artificial intelligence (AI) techniques can efficiently
solve massive data, mathematically difficult non-linear and
non-convex problems. Deep reinforcement learning (DRL)
as one of the powerful AI techniques has been considered
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as a promising candidate to handle the dynamic adaption
problem in complicated environment. Compared to the deep
learning (DL) approaches, the DRL technique does not re-
quire a large amount of training data, which might be very
difficult to obtain in wireless communication systems. The
DRL based approaches can continuously seek for the optimal
combination policy of beamforming design by observing the
reward value in time-varying environment without the priori
knowledge, e.g., the channel model and the user movement
pattern. Thus, the DRL based approach is more capable
of handling beamforming design problem in time-varying
wireless communication systems [8]-[12]. In [8], the authors
proposed deep Q-learning (DQN) algorithm with its greedy
nature to joint design beamforming, power control, and inter-
ference coordination. The authors designed the binary coding
to execute the action of agent, control the BS power and the
beamforming codebook. In [9], the active beamforming and
passive beamforming are jointly designed to maximize the sum
rate utilizing deep deterministic policy gradient (DDPG), in
contrast to solving the discrete action space. The action space
is simply designed by the beamforming matrix and the phase-
shift matrix. In [10], the authors proposed a distributional
RL to learn the optimal passive beamforming of RIS in the
imperfect CSI scenario. In [11], the authors introduce DDPG
to optimize the passive phase shift at RIS. Furthermore, the
authors in [12] formulate a robust power minimization problem
considering the RIS’s power budget constraint and receiver’s
signal-to-noise ratio (SNR) requirement. When part of actions
are generated by the DDPG algorithm, the rest of actions are
obtained by the model-based convex approximation. However,
the above algorithms are not effective in optimizing large-scale
continuous variables.

Motivated by the above analysis, in this paper, we utilize an
off-policy, soft actor-critic (SAC) algorithm to solve the joint
beamformer design problem. Particularly, we consider a RIS-
assisted multi-user multiple-input single-output (MU-MISO)
mmWave system and aim to design a SAC algorithm based on
the maximum entropy DRL framework to jointly design active
hybrid beamformer at the BS and passive beamformer at the
RIS. The proposed SAC algorithm, which can maximize the
reward and the entropy by exploring more stochastic policies,
jointly designs active analog precoder and passive beam-
former. Then, the digital precoder is designed by minimum
mean square error (MMSE) method. The experimental results
demonstrate that our proposed SAC algorithm can achieve
better performance compared with conventional optimization
algorithm and DRL algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a RIS-assisted mmWave
multi-user MISO system, where a BS equips with Nt antennas
and NRF RF chains to simultaneously transmit Ns data
streams to serve K single antenna users with the assistance
of a RIS of M reflecting elements. To achieve the maxi-
mum spectrum efficiency, we assume K = NRF = Ns.
The transmitted symbols are first processed by a baseband
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Fig. 1. A RIS-assisted MU-MISO system.
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Fig. 2. The specific architecture of hybrid precoder.

digital precoder FBB , [fBB,1, . . . , fBB,K ] ∈ CNRF×K , and
then up-converted to the RF domain via NRF RF chains
before being precoded with an analog precoder FRF(i, j) =

1√
Nt
ejθi,j , θi,j ∈ [0, 2π) of dimension Nt ×NRF. The specific

details of the hybrid beamforming architecture are shown in
Fig. 2.

In addition, we assume that the direct links are blocked by
obstacles. Denote the phase-shift matrix introduced by the RIS
as Φ , diag {φ1, φ2, . . . , φM} ∈ CM×M , where Φ(m,m) =
φm = χme

jϕm , m = 1, 2, . . . ,M , χm ∈ [0, 1] and ϕm ∈
[0, 2π) are the amplitude and phase-shift of each RIS element,
respectively. Considering that the RIS is a passive device, we
assume that χm = 1. Then, the received signal at the k-th user
can be written as:

yk =
√
PhHk ΦHFRFfBB,ksk +

√
P

K∑
i 6=k

hHk ΦHFRFfBB,isi + nk,

(1)
where sk is the transmitted symbol for the k-th user, P
represents transmit power and the power constrains are limited
by normalizing FBB such that ‖FRFFBB‖2F = Ns, nk is
the additive white Gaussian noise (AWGN) at the k-th user
with zero mean and noise variance σ2, i.e. nk ∼ CN

(
0, σ2

)
.

In addition, the channels from the BS to the reflecting RIS
and from the reflecting RIS to the k-th user are denoted by
H ∈ CM×Nt and hk ∈ CM×1, respectively. We adopt the
classic geometric channel model, the channels H from the BS
to the RIS and hk from the RIS to the k-th user can be simply
expressed as [13]

H =

√
NtM

L

L∑
l=1

αlaA (Nt, φl) aTR (M, θal, ϕal) , (2)



hk =

√
Nt

L

L∑
l=1

αk,laR (M, θdl, ϕdl) , ∀k, (3)

where L denotes the number of multipaths, α ∼
CN (0, 1) is the complex gain, aA (Nt, φl) ∈ CNt×1 and
aR (M, θal, ϕal) ∈ CN×1 represent array steering vectors at
BS and RIS, respectively. φl is the angle of departure (AoD) of
the l-th path at the BS, θal, ϕal, θdl and ϕdl denote the angles
of arrival (AoAs) in horizon and vertical, and the AoDs in
horizon and vertical of the l-th path at the RIS, respectively.
For the Nt-elements array antenna at the BS, the array steering
vector can be written as

a (Nt, φl) =
1√
Nt

[
1, e−j

2π
λ
d0 cosφl , . . . , e−j

2π
λ

(Nt−1)d0 cosφl
]T
,

(4)
where d0 is the antenna spacing and λ is the mmWave wave-
length. The array steering vector of the RIS is aR(M, θ, ϕ) =
a (Maz, θ)⊗ a (Mel, ϕ).

B. Problem Formulation

The sum-rate of the RIS assisted MU-MISO system is given
by

R =

K∑
k=1

log2 (1 + Υk) , (5)

where Υk is the signal-to-interference-plus-noise ratio (SINR)
of the k-th user, which can be expressed as

Υk =
P
∣∣hHk ΦHFRFfBB,k

∣∣2
P
∣∣∣∑K

i6=k hHk ΦHFRFfBB,i

∣∣∣2 + σk2

, ∀k. (6)

We aim to jointly design the optimal digital beamformer
FBB, analog beamformer FRF and phase-shift matrix Φ of
RIS that maximize sum-rate of the RIS assisted MU-MISO
system. The optimization problem can be formulated as

max
{FRF,FBB,Φ}

R =

K∑
k=1

log2 (1 + Υk)

s.t. FRF(i, j) =
1√
Nt

ejθi,j , θi,j ∈ [0, 2π),

‖FRFFBB‖2F = Ns,

|φm| = 1,∀m = 1, 2, . . . ,M.

(7)

Obviously, the above optimization problem is an NP-hard
problem and is difficult to solve by the conventional optimiza-
tion methods due to the non-convex constraint. Since our goal
is to design the high-dimensional continuous variables of the
analog precoder and phase-shift of RIS, some classic DRL
algorithms, such as DQN, DDPG, cannot handle the variables
efficiently and often provide a poor local-optimum. Therefore,
we employ a SAC-based DRL algorithm for the joint active
and passive beamforming design.

III. SAC-BASED JOINT HYBRID AND PASSIVE
BEAMFORMING DESIGN

In this section, we formulate the joint active and passive
beamforming design as a markov decision process (MDP)
problem and propose a SAC algorithm in the DRL framework

to seek the solution of this problem. Firstly, we introduce the
MDP problem formulation, the mechanism and update strategy
of SAC. After designing active analog beamformer FRF and
passive beamformer Φ in each learning step, FBB is obtained
by MMSE method. The details are described as follows.

A. MDP Problem Formulation

We aim to find update policies, which allow the baseband
digital beamformer at the BS and the RIS to reasonably update
content items under different states by maximizing the long-
term average reward. We model the BS and the RIS as an
agent. The action of the agent is the variable to be optimized,
and the sum-rate is maximized by finding the largest reward.
Then, we define the basic elements of the agent MDP as
follows.

• Action at: The action in the RIS-assisted MU-MISO
communication system consists of the phase-shifts at
the analog beamformer and the RIS. Thus, the action is
expressed as

at =
[
θ

(t)
1,1, . . . , θ

(t)
K,NRF

, φ
(t)
1 , . . . , φ

(t)
M

]
. (8)

• State st: The state of the system mainly consists of three
parts, i.e., the action at time t−1, the channel H between
the BS and the RIS and the channel hk between the RIS,
and the k-th user at time t− 1. Then, we define the state
of the t-th step as

st =
[
a(t−1),H(t−1),h

(t−1)
1 , . . . ,h

(t−1)
K

]
. (9)

• Reward rt: The objective is to maximize the achievable
rate. Thus, the achievable rate defined in (5) is used as
the reward function:

rt = R. (10)

B. Mechanism of Soft Actor-Critic Learning

We utilize SAC to update policies that maximize the reward
in the dynamic environment. SAC is an advanced off-policy,
actor-critic, and entropy-based DRL algorithm [14]. Unlike
the traditional DRL strategy that only seeks the maximum of
the expected sum of rewards, i.e.,

∑
t E(st,at)∼ρπ [r (st,at)],

SAC scheme also takes the expected entropy objective to adopt
stochastic policies over ρπ (st) into consideration. Particularly,
the maximum entropy objective function is defined as:

J(π) =

T∑
t=0

E(st,at)∼ρπ [r (st,at) + αH (π (· | st))] , (11)

where α is a factor to determine the importance of entropy
relative to the reward; (π (· | st)) represents the probability
distribution of any action taken after the state st, and the Gaus-
sian probability distribution is generally used; H (π (· | st))
is the entropy term which is defined as H (π (· | st)) ,
Ea [− log (π (a | st))]. It is worth noting that in the specific
states, the agent will explore as many different actions as
possible to maximize the target entropy. This strategy increases
the exploratory nature of SAC.



Accordingly, the state value function Q (st,at) and the
action-state value function V (st) of the SAC can be defined
as follows:

Q (st,at) = r (st,at) + γEst+1∼p(st+1,τ |st,at) [V (st+1)] ,
(12)

V (st) = Eat∼π [Q (st, at)− α log π (at | st)] . (13)

In the step of the policy improvement, the new policy is
updated in the exponential direction of the new Q-function.
The option of update can lead to policy improvements in
term of the soft value. In the actual situations, we prefer
tractable policies. Thus, we additionally limit the policy to
a set of policies Π. Considering the constraint that π ∈ Π,
the improved policy is projected into the desired policies
set. For simplicity, we use the information projection defined
by Kullback-Leibler divergence. Thus, we update the policy
according to

πnew = arg min
π′∈Π

DKL

(
π′ (· | st)

∥∥∥∥exp (Qπold (st, ·))
Zπold (st)

)
,

(14)
where Zπold (st) is adopted to normalize the distribution.

In order to solve the problem of the variables in continuous
domain, we use a function approximator to represent the Q-
values. Then, the SAC algorithm generates a target network
of the policy π and action-state value function Q (st,at) for
soft update, which can significantly improve the stability of
learning. In the SAC framework, the agent can learn stochastic
policies by maximizing the entropy objective functions which
are expressed as value and policy functions. Therefore, in
the value function, it encourages exploration by increasing
the value of high-entropy actions. In the policy function, it
can prevent the policy from converging early. Detailed update
process of these functions will be introduced in the next sub-
section.

C. The Architecture and Update Process of SAC

As discussed above, we utilize function approximators for
the policy function, V-function and Q-function, and adopt
stochastic gradient descent to alternately optimize the net-
works. We consider a tractable policy πφ (at | st), a pa-
rameterized state value function Vψ (st), and soft Q-function
Qθ (st,at). φ, ψ, and θ are the parameters of these networks.
For example, the policy can be modeled as a Gaussian dis-
tribution. The complete architecture of the SAC framework
is shown in Fig. 3. There are three types of DNN in our
algorithm, namely V-network, policy network and Q-network.
We also use two Q-networks to alleviate positive bias in
the step of policy improvement. In particular, we use the
parameters θi to parameterize two Q-functions, and train them
separately to optimize JQ (θi). Next, we will derive the update
of these parameter vectors.

Firstly, the update of the soft value comes from the approx-
imation of the state value function. The soft value function is
trained by minimizing the squared residual error
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Fig. 3. The network structure of the Soft Actor-Critic.

JV (ψ) = Est∼D

[
1

2

(
(Vψ (st)

− Eat∼πφ [Qθ (st,at)− log πφ (at | st)]
)2]

,

(15)

where D is a replay buffer. Then, the gradient of the equation
(15) is estimated using an unbiased estimator

∇̂ψJV (ψ) = ∇ψVψ (st) (Vψ (st)

−Qθ (st,at) + log πφ (at | st) ) ,
(16)

where the action is selected from the current set of policies,
instead of the replay buffer.

Secondly, the soft Q-function parameter is trained by min-
imizing the soft Bellman residual, which is defined as:

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (st,at)− Q̂ (st,at)

)2
]
, (17)

with Q̂ (st,at) = r (st,at) + γEst+1∼p
[
Vψ̄ (st+1)

]
. The

gradient of the equation (17) is optimized with stochastic
gradients

∇̂θJQ(θ) = ∇θQθ (at, st) ( Qθ (st,at)

− r (st,at)− γVψ̄ (st+1) ) ,
(18)

where a target value network Vψ̄ is used for update. The
parameter ψ̄ is an exponentially moving average of the target
value network weight, which is given by

ψ̄ ← τψ + (1− τ)ψ̄, (19)

where τ is a target smoothing coefficient to improve stability.
Finally, the policy parameter is learned by minimizing the

expected KL-divergence:

Jπ(φ) = Est∼D

[
DKL

(
πφ (· | st)

∥∥∥∥exp (Qθ (st, ·))
Zθ (st)

)]
. (20)

For simplicity, we adopt neural network transformation to



reparameterize the policy

at = fφ (εt; st) , (21)

where εt is a noise vector. The objective can be rewritten as

Jπ(φ) = Est∼D,εt∼N
[

log πφ (fφ (εt; st) | st)
−Qθ (st, fφ (εt; st))

]
.

(22)

Next, the gradient of the above equation (22) can be approx-
imated as

∇̂φJπ(φ) = ∇φ log πφ (at | st)
+ (∇at log πφ (at | st)−∇atQ (st,at))∇φfφ (εt; st) .

(23)
The unbiased gradient estimator extends the deterministic
policy gradients to stochastic policies.

D. Digital Beamformer Design

In each episode, we can find the optimal at, and calculate
the optimal F∗RF and Φ∗. Then, the effective channel is
assumed as

Heff =
(
HHΦHr

)
FRF, (24)

where Hr = [h1, . . . ,hK ]. Thus, we design the digital
beamformer via MMSE method as:

F∗BB =

(
(Heff)HH

eff +

(
σ2

P

)
(FRF) FHRF

)−1

Heff . (25)

Finally, to guarantee the power constraint, the final digital
beamformer is normalized

F∗BB =

√
NsF

∗
BB

‖F∗RFF∗BB‖F
. (26)

Thus, the above SAC based jointly design of hybrid beam-
forming and passive beamforming framework is summarized
as Algorithm I.

IV. SIMULATION RESULTS

In this section, we present numerical results of our proposed
SAC based joint hybrid beamforming and passive beamform-
ing design for the RIS assisted MU-MISO system. We assume
the BS has Nt = 32 antennas and NRF = 3 RF chains to serve
K = 3 users. In the mmWave channel model, the number of
propagation paths L is set as 4. We define the signal-to-noise-
ratio as SNR = P

σ2 , where σ2 = 1. In addition, the hyperpa-
rameters of the proposed SAC scheme is summarized in Table
I. For comparison purposes, we also evaluate the deterministic
policy based SAC (DP based SAC), in which the entropy target
α = 0. It means that the influence of the stochastic policy
brought to the policy update is not considered. Besides, we
adopt the state-of-the-art DDPG algorithm for comparison.

In order to demonstrate the learning process, we present the
average reward versus learning episodes in Fig. 4, where M
= 64 and SNR is set as 10dB. We can see that the proposed
stochastic policy based SAC approach requires more episodes
to convergence compared to other deterministic policy based
approaches. This is because the stochastic policy based scheme
enables the agent to explore more stochastic actions in a
certain state. When all the approaches converge, the proposed

Algorithm 1 SAC-based Active Hybrid Beamforming and
Passive Beamforming Design
Input: θ1, θ2, ψ, φ

Analog precoder and RIS PSs design
1: Initialize parameter vectors θ1, θ2, ψ, φ
2: Initialize experience memory D
3: for each episode do
4: Initialize state s0 ∈ S, s← s0

5: for each step do
6: at ∼ πφ (at | st)
7: st+1 ∼ p (st+1 | st,at)
8: D ← D ∪ {(st,at, rt, st+1)}
9: Sample from D and compute ∇JQ(θi), i ∈ {1, 2} by using

(18)
10: Update Q-networks parameters, θi ← θi − λQ∇̂θiJQ (θi)

for i ∈ {1, 2}
11: Sample from the fixed distribution and compute ∇Jπ(φ)

by using (23)
12: Update policy network parameter, φ← φ− λπ∇̂φJπ(φ)
13: Sample from current policy and compute ∇̂ψJV (ψ) by

using (16)
14: Update V network parameter, ψ ← ψ − λV ∇̂ψJV (ψ)
15: ψ̄ ← τψ + (1− τ)ψ̄
16: Update the next state st ← st+1

Digital precoder design
17: Select the optimal action to get FRF and Φ
18: Obtain the effective channel Heff by using (24)
19: Compute and normalize the optimal digital precoder F∗BB

by using (25) and (26)
20: end for
21: end for
Output: F∗RF, Φ∗, F∗BB

TABLE I: SAC hyperparameters

Hyperparameter Value
Layers 2 fully connected layers
Layer hidden units 256
Activation function ReLU
Batch size 64
Replay buffer size 1000000
Target smoothing coefficient 0.005
Target update interval 1
Discount rate 0.95
Learning iterations per round 1
Learning rate 0.0001
Optimizer Adam
Loss Mean squared error
Entropy target factor α 0.2

stochastic policy based SAC has the better performance.
Besides, DP based SAC has a similar trend as DDPG. Since
the agent can choose the deterministic strategy in the early
learning stage, they converge quickly to a poor local optimum.

In order to better evaluate the performance of our proposed
algorithm, we consider three additional benchmark schemes:
1) FP: an iterative algorithm based on fractional programming
[6] to design fully digital beamformer and phase-shift of RIS;
2) Random RIS: Φ is designed randomly; 3) Without RIS:
RIS is not deployed in the system. Fig. 5 shows the sum-
rate versus SNR over the different schemes, where the RIS
has M = 64 elements. Our proposed SAC algorithm based
stochastic strategy outperforms the other two deterministic
strategy based algorithms. It can be seen that our proposed
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SAC-based algorithm obtains the comparable sum-rate perfor-
mance with fractional programming algorithm. Besides, we
can see that the system with the RIS achieves significantly
a higher sum-rate than the system with randomly RIS and
without RIS, which demonstrates the advantage of RIS in
mmWave communication systems.

Finally, Fig. 6 shows the sum-rate versus the number of
RIS elements, where SNR = 10dB. We see that the sum-rate
increases with the growing of the number of RIS elements.
In addition, our proposed SAC-based algorithm obtains the
sum-rate performance close to the full-digital FP algorithm
with the growing of the number of RIS elements. On the other
hand, our proposed SAC scheme outperforms DDPG and other
benchmarks. As the number of RIS elements increases, the
interval between the two algorithms becomes larger. This is
because that as the dimension of the variable increases, the
randomly selected strategy can explore more actions and find
better policies compared to the deterministic policy.

V. CONCLUSIONS

In this paper, we considered a RIS-assisted multi-user
multiple-input single-output (MU-MISO) mmWave system
and attempted to utilize a deep reinforcement learning (DRL)
framework to jointly design active hybrid beamformer and
passive beamformer. We employed a soft actor-critic (SAC)
algorithm in the DRL framework to jointly design active
analog precoder and passive beamformer. Different from the
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Fig. 6. Sum-rate versus the number of RIS elements (Nt = 32,
SNR = 10dB).

traditional DRL algorithms, the SAC algorithm can explore
more effective and better combination strategies through con-
tinuous random selection of strategies. After obtaining the
active analog precoder and passive beamformer, the digi-
tal precoder is designed by minimum mean square error
(MMSE) method. The experimental results demonstrated that
our proposed SAC-based DRL algorithm can achieve better
performance compared with conventional DDPG algorithm.
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