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Abstract—Deep learning has been recently applied to physical
layer processing in digital communication systems in order
to improve end-to-end performance. In this work, we intro-
duce a novel deep learning solution for soft bit quantization
across wideband channels. Our method is trained end-to-end
with quantization- and entropy-aware augmentations to the
loss function and is used at inference in conjunction with
source coding to achieve near-optimal compression gains over
wideband channels. To efficiently train our method, we prove
and verify that a fixed feature space quantization scheme is
sufficient for efficient learning. When tested on channel dis-
tributions never seen during training, the proposed method
achieves a compression gain of up to 10% in the high SNR
regime versus previous state-of-the-art methods. To encourage
reproducible research, our implementation is publicly available at
https://github.com/utcsilab/wideband-1llr-deep.

Index Terms—Deep Learning, Soft Bits, Quantization

I. INTRODUCTION

Soft bit quantization [1], [2] is an important task in in-
tegrated, low-power digital communication platforms where
memory is an expensive asset [3]. A critical application area
for quantizing estimated soft bits is given by hybrid automatic
repeat request (HARQ) schemes in, e.g., 5G networks [4],
where information from a failed transmission is stored in
order to boost the performance via soft combining methods
[5]. Given that a cellular base station may communicate
with hundreds of users simultaneously, storing soft bits from
failed packets requires efficient and low-distortion quantization
methods to avoid memory bottlenecks on the platform. An-
other application area where a flexible trade-off between com-
pression rate and reconstruction distortion is desirable is given
by compress-and-forward relaying schemes [6], [7], where
estimated soft bits are forwarded to a receiver and compressed
in order to lower relay channel resource utilization.

The recent success of deep learning applied to compression
problems [8]] motivates us to develop deep soft bit quantization
methods. A major challenge here is given by the fact that
any hard quantization operator has zero gradient almost every-
where, and thus cannot be used in conjunction with modern
optimization algorithms. To this end, various types of practical
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approximations and solutions have been developed [8]-[10]
to make deep neural networks quantization-aware, and in this
work, we use the pass-through gradient estimation approach
[9] due to its simplicity and ease of implementation.

In this paper, we introduce a data-driven approach for
soft bit quantization over wideband channels. Our scheme
consists of a lightweight, properly initialized deep autoencoder
network, and is trained for soft bit reconstruction in random
channels using a differentiable approximation to quantization,
as well as a continuous approximation to the entropy of a
discrete source. During inference, lossless source coding is
performed over the latent representations of soft bits from
a wideband channel transmission to maximize compression
gains. Experimental results over simulated EPA [11]] channel
realizations demonstrate state-of-the-art performance of the
proposed approach, as well as a controllable trade-off between
compression rate and distortion.

A. Related Work

Prior work on soft bit quantization generally belongs in
one of two categories: classical methods [1]], [2]], [12] develop
near-optimal scalar quantization methods directly in the log or
hyperbolic tangent domain. In particular, the method in [|12]]
introduces an optimal scalar quantization method for soft bits
that supports a data-driven formulation and learns a codebook
that maximizes the mutual information between the original
and reconstructed soft bits. While this is optimal for scalar
(per soft bit position) quantization, it does not take advantage
of redundancy in soft bits derived from the same or correlated
channels.

Recently, the work in [13]] introduces an architecture for
deep soft bit quantization, building on the observation that the
soft bits corresponding to a high-order modulation scheme
transmitted over a single channel are correlated, and can
always be represented exactly with three values, regardless of
the modulation order. This motivates a deep learning approach
in which an autoencoder is trained to compress the soft bits,
which are further numerically quantized at inference time. Our
work builds directly upon [[13]], with the following important
distinctions: (i) our approach is entropy- and quantization-
aware during training, (ii) during inference, we apply source


https://github.com/utcsilab/wideband-llr-deep

coding to compress soft bits, and (iii) provide a tunable,
continuous trade-off between compression rate and distortion.

B. Contributions

Summarized, our contributions are the following:

1) We introduce a deep soft bit quantization architecture
that is quantization-aware through a differentiable ap-
proximation used in the backwards pass and entropy-
aware through a soft entropy that is annealed over the
course of training.

2) We derive the exact variance for the latent representation
of the soft bits in the asymptotically large signal-to-noise
ratio (SNR) regime, at initialization, in a deep neural net-
work with one hidden layer and ReLU activation. This
is used for the one-time design of a fixed quantization
codebook and helps stabilize learning.

3) We experimentally demonstrate state-of-the-art quanti-
zation performance and rate-distortion trade-off in real-
istic wideband channel models, when compared against
classical and deep learning baselines, on a channel
distribution that is completely unseen during training.

II. SYSTEM MODEL

We consider a communications model that transmits a
number of N parallel data channels to a single user, such as
sub-carriers in an orthogonal frequency division multiplexing
(OFDM) scenario. Assuming no cross-channel interference,
the signal received on the ¢-th channel is given by the linear
model [[14} Eq. 3.1]:

Yi = hiTi + Ny, (D

where h; is the channel gain, x; is the transmitted symbol
and n; is the noise corresponding to the i-th subcarrier, with
all variables being complex-valued. We assume that the noise
is drawn from a complex, circular Gaussian distribution with
zero mean and standard deviation of o,,. We assume that
the symbols z; are obtained by mapping a set of K bits
{bx}X | to a complex-valued constellation symbol, which
is the common practice of digital modulation. Given ideal
channel knowledge h; and known noise statistics o,, and
assuming that transmitted bits are sampled i.i.d. with equal
probabilities, the maximum likelihood (ML) estimate of the
log-likelihood ratio for the k-th bit transmitted on the i-th
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The soft bits are defined as A; ;, = tanh LQk and grouped

in the wideband soft bit matrix A. The goal of wideband
quantization is to design the triplet of functions (f,g, Q),
where the encoder f maps the floating point input A to a
latent representation, Q maps this representation to a finite bit
string, and the decoder g recovers A with minimal distortions.

Note that this scheme maps the entire soft bit matrix to a single
binary codeword, and is thus a form of vector quantization.
The compression rate and the distortion of the reconstruction
are denoted by the functions:
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respectively, where H represents the entropy of a discrete
source expressed in bits, and A = g(f(A)) is the recovered
soft bit matrix and € is a small numerical constant used to
prevent overflow. We use a sample-weighted version of the
mean squared error, which is a pseudo-metric since it is not
symmetric and does not satisfy the triangle inequality property.
This choice is taken from [[13]], since minimizing this metric
places more importance on uncertain soft bits and benefits the
decoding of error-correcting codes [15].

III. PROPOSED METHOD

Fig. [1| shows an overview of the proposed approach for
wideband, entropy-aware soft bit quantization. During train-
ing, the model uses the wideband soft bit matrix A and
a soft entropy estimate of the quantized representation to
optimize the weights of f and g, which are deep neural
networks. During inference, lossless source coding is applied
to the quantized representation z¢ to reduce storage costs to
near-entropy levels. The resulting binary string is stored until
decoding is required, e.g., in hybrid ARQ or relay scenarios.
In the following, we give a description of each of the involved
components.

A. Encoder

The encoder f is a function that maps an input matrix A
to a latent matrix z by applying the same functional backbone
in a row-wise manner and stacking the representations in a
matrix:

7z = stackl(f(Az)) (4)

We design the backbone of f as a fully-connected, feed-
forward network with ReLU activation in the hidden layers
and tanh x as the output activation. The input size is a vector
of size K, the hidden layers are all of size 4K, while the
output is of fixed size equal to three. This corresponds to the
universal latent dimension of a soft bit vector with arbitrary
K, as introduced in [[13]]. That is, without quantization, such
a compressive representation (from K soft bits to three latent
variables) is guaranteed to exist and can be represented and
learned by a deep neural network with a sufficient modeling
capacity.

B. Latent Quantization

This block applies a discrete quantization operator Q to
each component of the latent representation z in the forward
pass of the network. During training, since the quantization
operator has zero gradient almost everywhere, we use a pass-
through approximation [[9] to obtain a differentiable function
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Fig. 1. Diagram of the proposed wideband quantization approach. Blocks in yellow are active during both training and inference (real-world deployment).

The pass-through approximation and entropy estimation are only performed for training purposes. During inference, source coding is applied to the entire
wideband quantized latent matrix zg, and the binary codeword is stored for future use at a potentially different location that has access to the decoder g.

for the backward pass. That is, the forward and backward pass
signals are, respectively:

Q(Zi)7
sg[Q(z:) —

where z( v and zg pw are the forward and backward pass la-
tent signals, respectively, and sg is the stop-gradient operator,
which prevents gradient from flowing in the backward pass.
This leads to the gradient of the quantized representation with
respect to its input being azgiz’i"““' = 1 and allows gradients to
propagate to earlier layers.

Importantly, the function Q is a pre-determined scalar
quantization function that is held fixed throughout learning
and inference. This differentiates us from [[13] and [8] and
enables efficient learning, given a careful choice of Q. In the
following, we present a theoretical and empirical analysis of
deep neural networks that are used for soft bit quantization in
the high SNR regime and show that a choice for Q that avoids
the issue of codebook collapse [16], [[17] — where a portion
of the codebook may never be used during training — can be
found at initialization. We use the two following lemmas in
our proof:

Lemma 1: Let X € R™*™ be a matrix with i.i.d. Gaussian
elements and let Y € R" be an i.i.d. Rademacher random
variable, independent of X. Then, the elements of XY are
distributed as i.i.d. Gaussian random variables.

Proof: Immediate by the independence of X and Y. W

Lemma 2: Let X be a scalar random variable distributed
as N(0,0). Then, relu(X) = max{X,0} has the following
properties:

2Q,i,fw =
9 ©)

2Q,ibw = 2| + i,

o Elrelu(X)] = \/%0,
o Var(relu(X)) = (3 — 5)o>.
Proof: Follows immediately from [18, Page 3] and re-
writing relu(X) as a mixture of two random variables. ]

We now state and prove the following the following theorem.

Theorem 1: Let f be a one hidden-layer, fully-connected
neural network with no biases, hidden relu activation, and
linear output activation. Let the length of the input vector A be

K, the hidden size be 4K, and the output size be 1. The weight
matrices are W € R* <K and V € RI¥4K  respectively. We
make the following assumptions:
e The entries of A are drawn ii.d. from a Rademacher
distribution such that p(A; = 1) = p(A; = —1) = 0.5.
o The entries of the hidden layer weight matrix W are
drawn i.i.d. from a Gaussian distribution with p,, = 0
\/% , respectively.
o The entries of the output layer weight vector V are drawn
ii.d. from a Gaussian distribution with u,, = 0 and o, =

and o, =

2 .
TR 1> respectively.

Let z =), v;relu(WA); be the output of the network. Then,
it satisfies the following properties:

. E[Z} = 07

o Var(z) = § 5.

Proof: Using Lemma [I] and the first two assumptions,
it follows that the pre-activation values after the first layer
are Gaussian distributed. Using Lemma [2| on these activations
allows us to characterize the mean and standard deviation of
relu(WA);. Since the entries WA are i.i.d., it follows that
the entries of relu(WA) are also i.i.d., and also independent
from the weights V, as well as using the second and third
assumptions. Since V is zero-mean, we obtain that:

Var(z) = Var <Z Uirelu(WA)i>

= Z Var (v;relu(WA);)

= Var(v;) Var (rels(WA);) +
i (6)
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Fig. 2. Empirical verification of Theorem 1 across a varying number of
K values, corresponding to different modulation orders. The variables 6
represent empirical estimates of the latent standard deviation at initialization,
while the stars mark the theoretical values (only available for one hidden
layer). The variables Pyg.9 . represent the 99.9 percentile values of the
absolute latent variables at initialization.

The first assumption corresponds to operating in the asymp-
totically large SNR regime, where soft bits tend toward
polarized values in the hyperbolic tangent domain. We study
this regime since it allows exact analysis of the variance and
serves as an upper bound for lower SNR regimes in terms of
the latent space variance, since the distribution of the soft bits
there is more biased toward zero and has a reduced variance.

The last two assumptions concern the deep neural network
at initialization and match the Glorot weight initialization
scheme [19]]. As motivated in [19], this initialization is care-
fully chosen such that the variance of the signal is reduced
as the network gets deeper. To verify Theorem [l| and the
empirical reduction of variance, we plot the estimated standard
deviation of z and the estimated range of z in Fig. [2] for a
varying depth of the network and different values of K. The
architecture follows the exact assumptions of Theorem [T} and
is the basis for the model we use in practice.

The exact match between the empirical &, and the starred
points verifies Theorem [1|for a network with one hidden layer,
and these values are almost invariant to K due to the ratio
in (6). Fig. ] also plots the 99.9 percentile values for an
increasing number of hidden layers. While an exact analysis is
out of scope here, we find that using the Glorot initialization
leads to a decreasing latent variance as the network gets
deeper, as originally pointed out in [19]. Since the encoder
f uses a tanh function as activation, this is extremely useful
in preventing latent collapse — the presence of strong modes
at +1 — and allows the use of a fixed quantizer Q throughout
the entire training process.

C. Entropy Estimation

Given z, zg and a quantization codebook () with M entries,
we estimate the 7-soft entropy [8] as:

1 M N
Hizr)=—5 3N iz 7) logps, (7

i=1 j=1

where ¢; j = ¢;(z;;T) represents the soft allocation of z; to
the i-th entry in the quantization codebook. That is, ¢; ; =
softmaxi( — M), where the softmax is taken across all
codebook entries and 7 represents the inverse temperature
of this approximation. The terms p; represent the empirical
probability estimates of zp obtained by counting over N
samples. Hence, no gradient flows through the logp; term
during training. An important aspect here is that as 7 — oo
and the sample size N is sufficiently large, we have that
H(z;7) — H(zg) = —)_,pilogp;, the entropy of the
discrete random variable zg.

D. Source Coding

Given a quantized representation zq, the discrete probabil-
ities p; for all codebook symbols are estimated from feature
representations of a fixed, finite set of training channels,
and lossless source coding is applied during inference for
storage or relaying purposes. Our method is compatible with
any source coding scheme. In practice, we use arithmetic
coding [20] due to its near-optimal performance and extremely
efficient publicly available implementation [21]. Since the
coding is lossless, there is no incurred performance loss.

E. Decoder

The decoder g is a deep neural network with an architecture
that mirrors f, including the number of layers and the hidden
dimension. That is, it maps an input latent matrix z to the
reconstructed soft bit matrix A by applying the shared layers
in a row-wise manner:

A = stack;(g(z1)). ®)
Given all components, the model is trained with the end-to-
end supervised loss:

L(A,A;7) = D(A,A) + aH(z; 7). 9)

The first term corresponds to the quantization-aware recon-
struction loss that ensures soft bits are recovered properly
after numerical quantization of the latent representation z.
The second term serves as a approximation for minimizing
the entropy of the quantized latent representation zg and to
enable further gains with source coding, where « is a hyper-
parameter that directly controls the rate-distortion trade-off.

IV. EXPERIMENTAL RESULTS

A. Architecture and Training

We use deep neural networks for f and g, each with four
hidden layers, relu hidden activations, tanh activation at the
output (for both f and g), and a hidden size of 4K, where
K is the modulation order for which we train the method —



as well as the input size to the network. The latent dimension
is always three and we initialize all layers with the Glorot
scheme [[19]] to match the conditions of Theorem [I| Complete
details about the architecture are found in our code repository
linked in the abstract.

The latent quantizer Q uniformly covers the interval
[—0.8,0.8] using a number of 64 codebook entries (6 bits),
and remains fixed throughout the entire training and inference
procedures. The same Q is used for all the latent dimensions
and the choice of the interval is a direct consequence of the
range of the latent representation under the tanh operator,
as shown in Fig. 2] It can be seen that the latent code is
bound to this interval, hence no codebook collapse occurs at
initialization.

The data used to train all models comes from transmissions
across i.i.d. Rayleigh fading channels, where h; ~ N¢(0,1)
and the noise n; ~ N¢(0,0,,). Payloads are generated by ran-
domly sampling bits with equal probabilities and codewords
are obtained by using a low-density parity check (LDPC) code
of size (324, 648), for a total of 100000 training codewords at
uniformly spaced SNR values. Importantly, our method is only
trained on soft bits from i.i.d. channels, and is not trained on
a specific wideband channel distribution. We find that a range
of a between 0.001 and 0.03 generally covers the entire rate-
distortion curve, and we anneal 7 at epoch ¢ by the schedule
7 = 40 x 1.001%.

A single network is trained across the entire SNR range, and
takes about three hours for 2000 epochs (invariant to K) on
an NVIDIA RTX 2080Ti GPU. Inference takes less than 1 ms
for an OFDM wideband channel with 108 subcarriers. Storing
the network for K = 6 takes a total of 82.8 kB in floating
point precision. During inference, soft bits are quantized and
reconstructed, and belief propagation decoding is performed
to obtain a complete communication chain. We measure end-
to-end performance through the block (codeword) error rate
figure.

We train the baseline in [13] by using exactly the same
data and backbone architecture for a fair comparison. We also
compare with the optimal scalar method in [12]] by learning
a separate quantization codebook for each soft bit position,
at each SNR value. This partially compensates for the extra
learnable parameters that deep learning methods have.

B. End-to-End Quantization Performance

Fig. |3| shows the performance of all methods in a K =
6 (64-QAM) modulation scheme and EPA wideband channel
model with 108 subcarriers allocated per codeword, at a carrier
frequency of 2 GHz and channel bandwidth of 10 MHz. The
number in the parentheses indicates the average cost required
to store a single soft bit, where we average this cost over the
range of SNR values that lead to block error rates between
1 and 0.001, since this range is of practical interest. A key
takeaway here is that all methods are calibrated to produce the
same end-to-end performance, with minimal deviations from
un-quantized performance. The proposed approach suffers a
performance loss of 0.18 dB compared to floating point at a
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Fig. 3. Block error rate as a function of SNR for the proposed method,
baselines and floating point (no quantization), for K = 6 (64-QAM)
modulation in EPA channels with a bandwidth of 10 MHz. The values in
parentheses indicate the average storage cost per soft bit.

target error rate of 0.01, and has the same performance as
[13], while achieving an average compression gain of 7%.
Both deep learning-based methods greatly surpass the scalar
quantizer, with ours having an average compression gain of
31%.

Fig. @ reveals how quantization cost scales with SNR for the
different methods, as well as the near-optimality of arithmetic
coding in a wideband scenario. For scalar quantization meth-
ods such as maximum MI [12]], the cost per soft bit decreases
with increasing SNR. Asymptotically, this behaviour is optimal
since as SNR — oo, then the soft bits become discrete binary
random variables as in Theorem [I| and one bit per soft bit
is the optimal quantization scheme. This trend is opposite for
deep learning methods, since the same model accommodates
the entire SNR regime: there, the average cost per bit increases
as the SNR increases, and this phenomenon is much more
pronounced for the baseline in [[13]]. We find that the proposed
approach helps counteract this sub-optimality, again due to its
entropy objective in the loss function.

Fig. [ also plots the performance of the two baselines with
and without (horizontal lines) source coding. We note that,
while source coding benefits both baselines, the proposed
approach still improves compression rates in a broad SNR
range due to the entropy-aware nature of (9). In the high SNR
regime, the proposed method achieves compression gains of
up to 10% compared to [13]], and the source coding is near-
optimal, since it achieves the entropy marked with circles.

C. Rate-Distortion Trade-Off

Fig. [ investigates the impact of « during training our
method, for K = 8 on EPA channels with 81 subcarriers (since
the bit mapping is denser than K = 6, fewer channel uses are
required to send a packet). The operating characteristics of the
model are close to the ones in Fig. 3| and extended results can
be found in our code repository.
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theoretical results proved that a fixed quantizer is sufficient for
efficient training, and the experiments have shown state-of-the-
art quantization performance in a wide SNR range, as well as
flexibility in controlling the rate-distortion trade-off.

The model is compact and inference is efficient, achieving
sub-ms latency for an entire wideband channel. Our model
is also not trained on a specific channel distribution, but
instead can operate on arbitrary wideband channels. While this
provides a degree of flexibility, a promising future research
direction is to investigate whether further compression gains
can be obtained by specializing a model for a specific channel
distribution and develop adaptive quantization schemes.
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