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Abstract—Channel knowledge map (CKM) is an emerging
technique to enable environment-aware wireless communications,
in which databases with location-specific channel knowledge
are used to facilitate or even obviate real-time channel state
information acquisition. One fundamental problem for CKM-
enabled communication is how to efficiently construct the CKM
based on finite measurement data points at limited user locations.
Towards this end, this paper proposes a novel map construction
method based on the expectation maximization (EM) algorithm,
by utilizing the available measurement data, jointly with the
expert knowledge of well-established statistic channel models.
The key idea is to partition the available data points into different
groups, where each group shares the same modelling parameter
values to be determined. We show that determining the modelling
parameter values can be formulated as a maximum likelihood
estimation problem with latent variables, which is then efficiently
solved by the classic EM algorithm. Compared to the pure data-
driven methods such as the nearest neighbor based interpolation,
the proposed method is more efficient since only a small number
of modelling parameters need to be determined and stored.
Furthermore, the proposed method is extended for constructing
a specific type of CKM, namely, the channel gain map (CGM),
where closed-form expressions are derived for the E-step and
M-step of the EM algorithm. Numerical results are provided to
show the effectiveness of the proposed map construction method
as compared to the benchmark curve fitting method with one
single model.

I. INTRODUCTION

Channel knowledge map (CKM) is an emerging tech-

nique towards environment-aware wireless communications

[1], which provides location-specific (rather than the coarse

site-specific) channel knowledge associated with potential

transmitter-receiver pairs by, e.g., storing them in databases.

Compared to conventional environment-ignorant communi-

cation, CKM-enabled environment-aware communication is

expected to facilitate or even obviate real-time channel state

information (CSI) acquisition, which makes it especially ap-

pealing for future communication systems with large spatial

dimensions [2] and prohibitive channel training overhead.

In fact, the attempts to use site-specific databases in wireless

communications have been pursued in prior works based on,

e.g., 3D city or terrain map [3], radio environment map [4],

[5], and TV white space map [6]. However, these designs

require storing accurate physical environment maps and im-

plementing computation-expensive algorithms, such as ray

tracing algorithms, which are costly in terms of both storage

and computation. Furthermore, the TV white space map and

radio environment map were mainly used for cognitive radio

systems [7], for which the obtained maps critically depend on

the status/activities of the primary transmitters, such as the

spectrum, power, and antenna pattern being used. By contrast,

CKM aims to provide location-specific knowledge that directly

reflects the intrinsic channel characteristics, regardless of the

transmitter or receiver activities [1]. This makes it possible to

design communication systems with light or even without real-

time channel training [8]. Some specific instances of CKM in-

clude channel gain map (CGM) [9], channel path map (CPM)

[8], and beam index map (BIM) [8], [10]. CKM-enabled com-

munications have been recently studied in various applications,

such as training-free subband selection for device-to-device

(D2D) communications [1], beam alignment for millimeter

wave (mmWave) massive MIMO [8], and trajectory design

for cellular-connected UAV [11].

One fundamental problem for CKM-enabled environment-

aware communication is how to efficiently construct the CKM

based on finite measurement data points at limited user loca-

tions. The most straightforward approach for map construction

is interpolation-based methods, such as the inverse distance

weighted (IDW) [12], nearest neighbours (NN), splines [13],

and Kriging [14], [15]. The interpolation-based methods, how-

ever, generally require large measurement data for accurate

map construction. In addition, such pure data-driven methods

ignored the well-established stochastic or geometric based

channel models developed over the past few decades [16], thus

usually requiring huge storage capacity for map maintenance.

To utilize both measurement data and expert knowledge, one

straightforward method is parametric curve fitting, where the

best modelling parameters of the selected channel models are

determined based on the measurement data. However, such a

naive curve fitting method would lead to poor map quality,

since the number of tunable modelling parameters is typically
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Fig. 1. CKM-enabled environment-aware wireless communications.

very small, while the environment is usually too complex to

be accurately characterized by one single model.

To overcome the above drawbacks, in this paper, we pro-

pose a novel CKM construction method based on the well-

established expectation maximization (EM) algorithm [17].

Notice that the naive curve fitting method is not able to ac-

curately predict the complex channel environment knowledge,

as only one common channel model is used. By contrast, it

is observed that different sub-areas of the site may experience

different radio propagation environment, which may be mod-

elled with different sets of modelling parameters. Based on this

observation, we propose to partition the available measurement

data into different modelling groups, where each group shares

the same modelling parameter values that are to be determined.

We show that the determination of modelling parameter values

corresponds to a maximum likelihood estimation problem with

latent variables. Although this is a challenging non-convex

optimization problem, various existing algorithms, such as the

classic EM algorithm [17], have been proposed to find its effi-

cient solutions. In particular, we propose a generic EM-based

algorithm to solve the considered CKM construction problem,

which consists of two steps, namely the Expectation step (E-

step) and the Maximization step (M-step). Furthermore, we

also consider the special case for constructing a CGM, for

which we extend the EM-based algorithm to find the optimized

solution, by deriving the closed-form expressions for the E-

step and M-step, respectively. Finally, extensive numerical

results are provided to verify the effectiveness of the proposed

EM-based algorithm for CKM construction.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a wireless communication

system in a specific site, with a stationary base station (BS)

and mobile users, whose potential locations q are denoted by

the set Q. For any given q ∈ Q, our objective is to predict

the interested location-specific channel knowledge, which is

denoted as r, as accurate as possible before real-time channel

training is applied. Note that the channel knowledge r can

be any useful information related to the wireless channel,

such as the channel gain, shadowing, angle of arrival/departure

(AoA/AoD), or even the channel impulse response. To this

end, a BS-to-any (B2X) CKM W is constructed, which pro-

vides mapping from location q to the corresponding channel

knowledge r, i.e., W : q ∈ Q → r.

One immediate method for channel knowledge prediction

based on user locations is to utilize the well-established

channel models, which are usually given stochastically with

certain modelling parameter vector θ, denoted as p(r|q, θ).
Specifically, p(r|q, θ) gives the probability density function

(PDF) of the channel knowledge r for users located at q,

parameterized by θ. As a concrete example, for the specific

B2X CGM, r corresponds to the channel gain in dB, which is

denoted by the real number r. Without loss of generality, we

may assume that the BS is located at the origin. Therefore,

according to the classic path loss model, we have

r = β + 10α log10 ‖q‖+ S, (1)

where α denotes the path loss exponent, β denotes the

path loss intercept, S ∼ N (0, σ2) captures the log-normal

shadowing with variance σ2, and ‖ · ‖ denotes the Euclidean

norm. As such, the modelling parameter vector for channel

gains is θ = [α, β, σ2], and the conditional PDF of the channel

knowledge r given user location q is

p(r|q, θ) = N(r|β + 10α log10 ‖q‖, σ2)

=
1√
2πσ2

exp
(

−(r − β − 10α log10 ‖q‖)2/2σ2
)

, (2)

where N(r|µ, σ2) denotes the PDF of a Gaussian random

variable r with mean µ and variance σ2. A direct channel

knowledge prediction based on stochastic channel models

would lead to poor accuracy, since such models characterize

channels only on the average sense, by ignoring the site-

specific or even location-specific propagation environment. For

instance, with the channel model in (1), no matter how good

the modelling parameter θ is chosen, the predicted channel

gain is symmetric around the BS, which is far from reality

when the actual environment is taken into account.

On the other hand, site-specific or location-specific radio

propagation environment information can be learned if on-

site measurement data are available. Let X ∈ R
D×N denote

the set of measurement data points. Each column of X ,

denoted as xn ∈ R
D×1, n ∈ N , {1, ..., N}, corresponds

to one data point, which includes the measured channel

knowledge rn at the corresponding location qn. Therefore,

we have xn = [qT
n , r

T
n ]

T , with the superscript T denoting

the transpose. Note that the number of available measurement

data points N is usually limited. As a result, to construct a

complete CKM for all potential user locations, one needs to

infer the channel knowledge of those unmeasured locations

based on X . However, the pure data-driven methods, such

as the interpolation-based methods, usually require large data

and high storage capacity. On the other hand, the simple

parameteric curve fitting based method, which uses one single

model to fit all data points, would lead to poor accuracy due

to the limited degrees of freedom associated with the few

modelling parameters.

To overcome the above issues, we propose a map con-

struction method based on multi-component or mixed channel

models. Specifically, with the basic PDF p(r|q, θ), we con-

sider a mixed channel model with a total of K components,

corresponding to K sets of modelling parameters, denoted as



θk, k ∈ K , {1, ...,K}. With a slight abuse of notation,

let θ = {θ1, ...., θK}. Then for the given measurement data

X , our objective is to find the set of modelling parameters θ

based on certain criterion. A commonly used criterion is the

maximum likelihood estimation, which corresponds to finding

parameters θ for maximizing the likelihood as follows.

(P1):max
θ

p(X|θ),
where p(X|θ) denotes the likelihood function with respect to

the modelling parameters θ.

III. EM ALGORITHM FOR CKM CONSTRUCTION

The key challenge of solving (P1) lies in finding the explicit

expression for the likelihood function p(X|θ). This is difficult

since for each data point xn ∈ X , it is unknown which of

the K modelling components it should be associated with. As

a consequence, (P1) corresponds to the maximum likelihood

estimation problem with latent variables, which, fortunately,

has been extensively studied and can be efficiently solved by

various algorithms, such as the classic EM algorithm [17].

To this end, for each data point xn, n ∈ N , we introduce a

vector of latent variables zn ∈ R
K×1 to indicate the associ-

ation of data point xn with the K modelling components,

whose k-th element znk is a binary random variable with

znk ∈ {0, 1}, ∀k ∈ K. Here, znk = 1 means that xn is best

explained by the k-th modelling component with parameter

θk. It follows that
∑

k∈K znk = 1, as each data point

xn is only associated with the best modelling component.

Furthermore, the distribution of zn is specified by the mixing

coefficients πk, i.e.,

p(znk = 1) = πk, k ∈ K, (3)

where 0 ≤ πk ≤ 1 and
∑

k∈K πk = 1. As such, for any given

modelling parameters θ, the conditional PDF of xn given its

associated latent variable zn is [17]

p(xn|zn, θ) = p(xn|θk∗) =
∏

k∈K
[p(xn|θk)]

znk , (4)

where k∗ defined such that znk∗ = 1. Note that the last

equality in (4) holds since znk ∈ {0, 1}, ∀k ∈ K. Similarly,

p(zn|θ) can be expressed as

p(zn|θ) =
∏

k∈K
πznk

k .

As a result, the joint PDF of xn and zn can be expressed as

p(xn, zn|θ) = p(xn|zn, θ)p(zn|θ) =
∏

k∈K

[πkp(xn|θk)]
znk .

(5)

Let Z ∈ R
K×N include all the N vectors zn of latent

variables, n ∈ N . Since different data points are indepen-

dent, we have p(X,Z|θ) =
∏

n∈N p(xn, zn|θ). Therefore,

the likelihood function p(X|θ) is obtained by marginalizing

p(X,Z|θ) over Z, and (P1) can be equivalently written as

(P2):max
θ

∑

Z
p(X ,Z|θ).

Note that p(X|θ) and p(X,Z|θ) are referred to as the

likelihood functions of the incomplete-data and complete-data

[17], respectively. (P2) is the maximum likelihood estimation

problem with the latent variable Z, which can be efficiently

solved by the classic EM algorithm [17]. The EM algorithm is

an iterative algorithm with two basic steps, i.e., the E-step and

the M-step, which are summarized in Algorithm 1 [17, Section

9.3]. It is shown in [17, Section 9.4] that in the EM algorithm,

each step will lead to an increased (or at least non-deceased)

complete-data log likelihood. Therefore, the convergence of

the EM algorithm is guaranteed [17].

Algorithm 1 General EM Algorithm [17, Section 9.3].

Input: Given the joint distribution p(X,Z|θ) governed by the set
of parameters θ;

1: Initialization: Choose initial parameters θold and mixing coeffi-
cients πold

k , ∀k ∈ K;
2: Repeat:

1) E-step: Evaluate the posterior distribution of the latent
variables p(Z|X,θold) and the responsibilities {γnk =
E[znk]};

2) M-step: Update θnew = argmax
θ

Q(θ,θold) ,
∑

Z
p(Z|X ,θold) ln p(X,Z|θ), and πnew

k = Nk/N ,
with Nk =

∑
n∈N

γnk;

3) θold ← θnew, πold
k ← πnew

k , ∀k ∈ K;

3: Until convergence or a maximum number of iterations is reached;
Output: Set of modelling parameters θnew, and responsibilities
{γnk}.

A. General Algorithm for EM-based CKM Construction

In the following, the E-step and the M-step are developed

for our considered CKM construction problem (P2).

1) E-step: As given in Algorithm 1, the E-step of the EM

algorithm is to evaluate the posterior distribution of the latent

variable p(Z|X, θold), with given modelling parameter θold.

According to equation (9.75) of [17], p(Z|X , θold) can be

factorized as

p(Z|X, θold) =
∏

n∈N
p(zn|xn, θ

old). (6)

Furthermore, with the Bayesian theorem, we have

p(zn|xn, θ
old) =

p(zn|θold)p(xn|zn, θ
old)

∑

z′

n

p(z′
n|θold)p(xn|z′

n, θ
old)

. (7)

Let γnk denote the responsibility corresponding to compo-

nent k ∈ K to explain the measurement data xn, which can

be obtained as the expected value of the indicator variable znk
with the posterior distribution in (7), i.e.,

γnk , E[znk] = p(znk = 1|xn, θ
old)

= πold
k p(xn|θold

k )/
∑

j∈K
πold
j p(xn|θold

j )

= πold
k p(rn|qn, θ

old
k )/

∑

j∈K
πold
j p(rn|qn, θ

old
j ), (8)

where the second equality holds since znk is binary. Fur-

thermore, the last equality of (8) follows by noting that

xn = [qT
n , r

T
n ]

T , so that

p(xn|θk) = p(qn, rn|θk) = p(rn|qn, θk), (9)

where p(rn|qn, θk) corresponds to the selected stochastic

channel model, such as (2) for CGM. As a result, with the E-

step, the posterior probabilities p(Z|X, θold) is obtained based

on (6) and (7), and the responsibilities {γnk} is obtained based

on (8).



2) M-step: Based on the posterior probabilities in (6) and

the responsibilities in (8) obtained in the E-step, the modelling

parameter θ and mixing coefficients πk are updated in the M-

step, by maximizing the expectation of the log-likelihood of

the complete-data, with the expectation taken with respect to

p(Z|X, θold), which is given by [17]

Q(θ, θold) =
∑

Z
p(Z|X, θold) ln p(X,Z|θ).

Furthermore, we have

ln p(X,Z|θ)=
∑

n∈N
ln p(xn, zn|θ)

=
∑

n∈N
ln
∏

k∈K
[πkp(xn|θk)]

znk

=
∑

n∈N

∑

k∈K
znk[lnπk+ln p(xn|θk)]

=
∑

n∈N

∑

k∈K
znk[lnπk+ln p(rn|qn, θk)],

where the second equality follows from (5), and the last

equality follows from (9). As a result, the expectation

of ln p(X,Z|θ) with respect to the posterior probabilities

p(Z|X, θold) can be rewritten as

Q(θ, θold) = Ep(Z|X,θold)[ln p(X,Z|θ)]
=

∑

n∈N

∑

k∈K
γnk[lnπk + ln p(rn|qn, θk)],

where the identity γnk = E[znk] is used. Therefore, the

optimization problem for the M-step can be formulated as

(P3): max
{πk,θk}

∑

n∈N

∑

k∈K

γnk[lnπk + ln p(rn|qn, θk)]

s.t.
∑

k∈K
πk = 1

0 ≤ πk ≤ 1, ∀k ∈ K.

It is not difficult to see that problem (P3) can be decoupled

into two independent sub-problems:

(P3.1):max
{πk}

∑

n∈N

∑

k∈K
γnk lnπk

s.t.
∑

k∈K
πk = 1

0 ≤ πk ≤ 1, ∀k ∈ K.

(P3.2):max
{θk}

∑

n∈N

∑

k∈K
γnk ln p(rn|qn, θk).

(P3.1) is a convex optimization problem. With the standard

Lagrangian method, its optimal solution can be obtained in

closed form as π∗
k = Nk/N , where Nk =

∑

n∈N γnk, ∀k ∈
K. On the other hand, the solution to (P3.2) depends on the

actual conditional distribution p(rn|qn, θk), i.e., the selected

stochastic channel model. Based on the above results in the

E-step and M-step, the general algorithm for EM-based CKM

construction is summarized in Algorithm 2.

B. Special Case with CGM Construction

In this subsection, we consider the the construction of a

particular type of CKM, namely the CGM, for which the

PDF of the channel gain given the user location is expressed

as (2). Eventually, the CGM can be directly constructed by

using Algorithm 2. Here, by exploiting the specific structure

of CGM, we obtain the closed-form expressions in (8), and

obtain the optimal solution to (P3.2) in closed form, to reduce

the construction complexity, as explained in detail as follows.

Algorithm 2 General Algorithm for EM-based CKM Con-

struction.
Input: Given the stochastical channel model p(r|q,θ);

1: Initialization: Choose initial parameters θold and mixing coeffi-
cients πold

k , ∀k ∈ K;
2: Repeat:

1) E-step: Evaluate the responsibilities {γnk} using (8);
2) M-step: Update θnew by solving the optimization problem

(P3.2), and πnew
k = Nk/N , with Nk =

∑
n∈N

γnk;

3) θold ← θnew, πold
k ← πnew

k , ∀k ∈ K;

3: Until convergence or a maximum number of iterations is reached;
Output: Set of modelling parameters θnew, and responsibilities
{γnk}.

First, γnk in (8) for the E-step is given by the following closed-

form expression:

γnk =
πold
k N(rn|βold

k +10αold
k log10 ‖qn‖, (σold

k )2))
∑

j∈K
πold
j N(rn|βold

j +10αold
j log10 ‖qn‖, (σold

j )2)
. (10)

Next, consider problem (P3.2), for which the log-likelihood

function of the M-step can be written as

ln p(rn|qn, θk)=−1

2
ln(2π)− 1

2
lnσ2

k − (rn−βk−αkdn)
2

2σ2
k

,

where dn , 10 log10 ‖qn‖ is defined for convenience. By

discarding constant terms, (P3.2) is equivalent to

min
{αk,βk,σ

2

k
}

∑

n∈N

∑

k∈K

γnk
[

lnσ2
k+(rn−βk−αkdn)

2/σ2
k

]

,

which can be decoupled into K independent sub-problems:

min
αk,βk,σ

2

k

∑

n∈N
γnk

[

lnσ2
k + (rn−βk−αkdn)

2/σ2
k

]

. (11)

Theorem 3.1: The optimal solution to problem (11) is:

αk =
(dkrk)− dkrk

d2k − dk
2 , βk =

d2krk − dk(dkrk)

d2k − dk
2 , (12)

σ2
k =

∑

n∈N
γnk(rn − βk − αkdn)

2/Nk, (13)

where dk = (
∑

n∈N γnkdn)/Nk, rk = (
∑

n∈N γnkrn)/Nk,

(dkrk) = (
∑

n∈N γnkdnrn)/Nk, and d2k =
(
∑

n∈N γnkd
2
n)/Nk, with Nk =

∑

n∈N γnk ∀k ∈ K.

Proof: Please refer to Appendix A.

Based on the above derivations, the EM-based algorithm for

the specific CGM construction is summarized in Algorithm 3.

Algorithm 3 EM-Based Algorithm for CGM Construction.

1: Initialization: Choose initial parameters θold and mixing coeffi-
cients πold

k , ∀k ∈ K;
2: Repeat:

1) E-step: Evaluate the responsibilities {γnk} using (10);
2) M-step: Update θnew using (12) and (13), and update πnew

k =
Nk/N , with Nk =

∑
n∈N

γnk;

3) θold ← θnew, πold
k ← πnew

k , ∀k ∈ K;

3: Until convergence or a maximum number of iterations is reached.



C. Utilizing CKM for Channel Prediction

Based on Algorithms 2 and 3, we obtain the modelling

parameters θ = {θ1, ..., θK}, as well as the responsibilities

{γnk} for the measurement data X . We are now ready to

utilize such information to predict the channel knowledge

r for any new location q. To this end, we need to first

determine which set of modelling parameters θ1, ..., θK is

most suitable for the new location q. This can be achieved

by determining the responsibilities {γk(q)} using the IDW

method. Specifically, let M denote the subset of M user

locations with training data that are nearest to q. Then,

γk(q) is obtained as γk(q) =
∑

m∈M ωmγmk, where ωm =
d−1
m (q)/

∑

j∈M d−1
j (q) is the weighting coefficient based on

the IDW criterion, with dj(q) = ‖qj − q‖, j ∈ M. Then,

the modelling parameter for location q is obtained as the

one that maximizes γk(q), i.e., θ(q) = θk⋆ , where k⋆ =
argmaxk∈K γk(q). As a result, the channel knowledge for

location q can be predicted based on the PDF p(r|q, θ(q)).

IV. NUMERICAL RESULTS

In this section, we present numerical results to validate the

performance of our proposed algorithm. As shown in Fig. 2,

we consider a geographic area of size 2 × 2 km2, and focus

on the channel gains with a BS located at the center. We

assume that there are two building clusters shown in Fig. 2.

Therefore, depending on the user locations, the direct line-

of-sight (LoS) link may be blocked by one of the building

cluster. Furthermore, for those indoor users located in the

building cluster area, additional penetration loss is incurred.

As a result, depending on the user locations, the groundtruth

channel gains are generated based on 5 user groups: LoS users

that have direct LoS link with the BS; NLoS1 and NLoS2

users whose LoS links are blocked by building clusters 1 and

2, respectively; and Indoor1 and Indoor2 users that are located

in building clusters 1 and 2, respectively. The corresponding

modelling parameters of each user group are given in Table

I. Furthermore, the initial parameters of Algorithm 3 are set

as πold
k = 1/K, ∀k ∈ K, and θold are randomly generated as

αk ∈ [2, 5], βk ∈ [30, 140], and σ2
k ∈ [6, 15], ∀k ∈ K. Unless

otherwise stated, the number of data points used for training

is N = 2000.

TABLE I
GROUNDTRUTH MODELLING PARAMETERS.

User group α β σ2

LoS 2.2 30 6.25
NLoS1 2.6 55 10.24
NLoS2 3.1 80 10.24
Indoor1 3.6 105 7.84
Indoor2 4.1 130 7.84

First, to show the convergence of Algorithm 3, Fig. 3

plots the expectation of the complete-data log likelihood

Q(θnew, θold) versus the iteration number of each EM cycle

for different number of assumed modelling components K . It

is observed that for all the K values considered, Algorithm 3

results in monotonically non-decreasing log likelihood values,

Fig. 2. The layout for the considered wireless communication site.

Fig. 3. Convergence of Algorithm 3 for CGM construction.

which guarantees the convergence. Furthermore, when the

assumed number of components matches with the groundtruth

value, i.e., K = 5, a fastest convergence is observed. On the

other hand, with K ≥ 5, Algorithm 3 is still able to converge

to roughly the same components number matches as K = 5,

though at slightly slower rate, while that for K = 3 leads

to poor performance since the number of assumed mixing

components is smaller than the groundtruth.

Next, we evaluate the quality of the constructed CGM

based on Algorithm 3. For comparison, we also consider a

benchmark scheme based on the single-model curve fitting

method, i.e., with K = 1. In this case, no latent variable

is involved since all available data points will be fitted to

one single set of parameters. Fig. 4(a) shows the groundtruth

data points, and Fig. 4(b) and Fig. 4(c) plot the constructed

CGMs with K = 5 and K = 1, respectively, by using the

IDW method with M = 3. It is observed that compared

to the single-model curve fitting method, the proposed EM-

based algorithm results in more accurate CGM. In fact, it is

observed from Fig. 4(c) that the single-model curve fitting

method leads to concentric contours of channel gain, which is

far from the reality as shown in Fig. 4(a). This is due to the

fact that the conventional single-model curve fitting method

cannot distinguish the characteristics of different data points

at different sub-areas. This issue can be addressed by our

proposed EM-based algorithm with mixed channel models, as

shown in Fig. 4(b).

To evaluate the impact of the number of training data

points N , Fig. 5 plots the normalized root mean square error



(a) Groundtruth data points. (b) EM algorithm, K = 5. (c) Single model curve fitting.

Fig. 4. Comparison of the constructed CGM based on the proposed EM algorithm and single model curve fitting method.

(NRMSE) of the predicted channel gains versus N . The testing

set consists of 1000 data points. It is observed from Fig. 5 that

as N increases, the constructed CGM by the proposed EM

algorithm with K > 1 has better fitting quality. By contrast,

regardless of N , the single model curve fitting method with

K = 1 has poor performance, which is due to the fact that

the number of tunable modelling parameters is too small to

accurately fit the complex environment. This demonstrates the

effectiveness of our proposed EM algorithm for accurate CKM

construction in complex environments.

Fig. 5. NRMSE of the predicted channel gain versus the number of training
data points N .

V. CONCLUSION

In this paper, we proposed a novel EM-based CKM con-

struction method towards environment-aware communications,

by utilizing both the available measurement data points and

the expert knowledge with well-established statistic channel

models. The key idea is to partition the available data points

into different groups, where each group shares the same

modelling parameter values that are to be determined. We

propose to use the classic EM algorithm to determine the

modelling parameters by solving an equivalent maximum

likelihood estimation problem with latent variables, and then

extend the algorithm for constructing the specific CGM. Nu-

merical results demonstrated the effectiveness of the proposed

algorithm as compared to the benchmark curve-fitting scheme

with one single model. How to extend the results to other

types of channel knowledge and the efficient utilizations of the

constructed CKM are interesting directions worth pursuing in

future research.

APPENDIX A

PROOF OF THEOREM 1

Problem (11) can be solved by setting the partial derivatives

with respect to the optimization variables to be zero. For

convenience, let f denote the cost function of problem (11).

Therefore, we have
∂f

∂αk

= − 2

σ2
k

∑

n∈N
γnk(rn − βk − αkdn)dn = 0, (14)

∂f

∂βk

= − 2

σ2
k

∑

n∈N
γnk(rn − βk − αkdn) = 0. (15)

Then, (14) and (15) can be arranged as

βk

∑

n∈N

γnkdn + αk

∑

n∈N

γnkd
2
n =

∑

n∈N

γnkrndn,

βk

∑

n∈N
γnk + αk

∑

n∈N
γnkdn =

∑

n∈N
γnkrn.

By solving the linear system equations with two unknowns

and two equations, we get (12). Similarly, by setting the partial

derivative of f with respect to σ2
k to zero, we get (13). This

thus completes the proof.
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