
This is a postprint version of the following published document:

López-Lanuza, G., Chen-Hu, K., & Armada, A. G. (10-13 
April 2022). Deep Learning-Based Optimization for 
Reconfigurable Intelligent Surface-Assisted Communications 
[proceedings]. 2022 IEEE Wireless Communications and 
Networking Conference (WCNC), Austin, USA. 

DOI: 10.1109/wcnc51071.2022.9771876

 © 2022 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

https://doi.org/10.1109/wcnc51071.2022.9771876


Deep Learning-Based Optimization for Reconfigurable

Intelligent Surface-Assisted Communications
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Abstract—Reconfigurable Intelligent Surfaces (RISs) are an
emerging technology in the evolution towards the Sixth Genera-
tion (6G) of mobile communications. They are capable of enhanc-
ing the overall system performance and extending the coverage
of the existing cells. They are built by a large amount of low-cost
meta-elements that can be configured by tuning their phase shifts,
and hence, the channel response can be constructively combined
and forwarded to some specific direction. Many algorithms have
been proposed to obtain the optimum phase shifts, generally
assuming a single-carrier system and/or a medium-size RIS to
constrain the complexity of the optimization process. In this work,
we propose a flexible and scalable unsupervised learning model,
capable of obtaining the best phase shifts for any scenario. Our
proposal is able to handle multi-carrier waveforms and very
large-size RIS, considering both continuous and discrete phase
shifts. Besides, we also propose the use of clustering to reduce
further the complexity while maintaining the performance. A
comparison in terms of achievable rate and time execution is
provided in order to show the superiority of our proposal against
the existing solutions.

I. INTRODUCTION

The Fifth and Sixth Generation (5G and 6G) of mobile com-
munication systems will exploit the frequencies between 30−
300 GHz, typically known as millimetre waves (mm-Wave)
[1], to leverage the greater available bandwidth. Nonetheless,
one of the main drawbacks of these high frequencies is the
strong path-loss due to the atmospheric absorption. Several
techniques have been proposed to face it. Massive Multiple
Input Multiple Output (mMIMO) [2] is a well-known tech-
nique, where a large number of antenna elements deployed at
the base station (BS) are exploited to focus the energy towards
the user equipment (UE), and hence compensate the path-loss.
Commonly, this technique is known as active beamforming
[3], [4]. An alternative way to circumvent this issue consists
in deploying relays between the BS and UEs [5], based on
techniques such as Amplify-and-Forward [6] or Decode-and-
Forward [7]. All these schemes enhance the performance of the
communication link at the expense of significantly increasing
the cost and the energy consumption of the network.

Reconfigurable Intelligent Surfaces (RISs) [8], [9] have been
recently proposed to either improve the performance of the
cell or extend the coverage to those areas with a difficult
access. These surfaces are built by low-cost meta-materials
[10], which are able to modify and forward the received radio
waves to any direction [11], avoiding the use of expensive
radio-frequency chains. The reconfigurability can be enabled
by adjusting the phase shifts introduced by each passive

reflecting element of the RIS. Therefore, the signals after chan-
nel propagation can be constructively aligned, incrementing
the Signal-to-Interference and Noise Ratio (SINR), without
increasing the overall hardware and energy cost [12].

The key to obtain a good performance in RIS-assisted
communication systems is the joint design of the MIMO
pre/post-coding at the transmit and receive ends and the phase
shifts of the surface [13], [14], [15], [16]. However, the
optimization problem becomes non-convex, and typically, sub-
optimal solutions are provided at the expense of sacrificing the
performance, or constraining the dimension of the optimization
by circumscribing them to low-size surfaces and single-carrier
waveforms. On the other hand, several works focus on channel
estimation [17], [18], showing that RIS-assisted links require
a significant amount of reference signals in order to obtain the
cascaded channel estimates (product of the channel between
the BS-RIS and RIS-UE), whose accuracy has a significant
impact in the performance of the system. Moreover, the phase
configuration of the RIS is typically quantized by a finite
number of bits to avoid higher cost and complexity in the
manufacturing process [19].

Recently, Neural Networks (NNs) [20], [21] have been ex-
ploited to solve the complex optimization problems associated
to the RIS-empowered scenarios. Reference [22] proposed
a supervised learning approach to design the optimal RIS
configuration. However, the main downside of supervised
methods is the difficulty of collecting samples and building
a dataset to train the model, which is unfeasible in realistic
scenarios. Lately, [23] proposed an unsupervised learning
method to obtain the optimal phase shifts, achieving almost
the same performance as [13] with a significant reduction of
the complexity. Nevertheless, it is constrained to single-carrier
waveforms and low-size RIS.

In this paper, we propose a new technique to obtain the
phase shifts of the RIS by exploiting deep learning based
on an unsupervised model, similar to [23]. However, our
method is specially designed and accordingly scaled for large-
size RIS and broadband waveforms, also considering discrete
phase shifts. Additionally, in order to reduce the complexity
further, clustering is also proposed so as to classify the passive
reflecting elements in several groups according to their cas-
caded channel estimates at all subcarriers, and then, the NN is
executed to configure the same phase shift for all the elements
in the same group. In order to show the performance of our
proposal, we provide comparison in terms of achievable rates
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Figure 1: System model of the RIS-assisted communication link.

(bits per second) and complexity (required time execution) for
the different methods. The results will show that our proposal
is efficient in the design of the phase shifts of RIS elements.

The upcoming sections of this paper are organized as
follows: in Section II, the proposed system, channel model,
channel estimation and problem formulation are addressed.
Section III presents the proposed optimization using NNs. The
experiments carried out and the results obtained are shown in
Section IV, and conclusions are given in Section V.

II. SYSTEM MODEL

We consider a system consisting of a BS equipped with
a single transmit antenna, a RIS with M passive reflecting
elements and U UEs equipped with a single receiver antenna
each1. Despite the fact that the BS could be equipped with
more than one antenna, hence enhancing the performance,
a system similar to the one in [15], [17] is considered. A
controller is connected to the RIS to adjust the phase shifts (see
Fig. 1). Orthogonal Frequency Division Multiplexing (OFDM)
[24] is the chosen waveform, whose number of subcarriers
is K, and we assume that the length of the cyclic prefix is
long enough to absorb the multi-path effects of the channel.
Additionally, for simplicity we assume that Time Division
Multiple Access (TDMA) is deployed, where all UEs are
multiplexed in different OFDM symbols. This will allow us
to optimize the RIS for each user in different time slots2.

Therefore, from now on we center on the signal that is
transmitted from the BS to any given UE, made up of N
consecutive OFDM symbols. The baseband received signal at
the UE at k-th subcarrier and n-th OFDM symbol y

k,n
∈ C

is given by

y
k,n

= hθk,n
x

k,n
+ n

k,n
= (hdk,n

+ hrk,n
)x

k,n
+ n

k,n
, (1)

k = 0, . . . ,K − 1, n = 0, . . . , N − 1,

where hθk,n
∈ C is the equivalent channel between the BS and

the UE at the k-th subcarrier and n-th OFDM symbol, which is

1For ease of exposition we focus on the downlink, but the same approach
is completely applicable to the uplink.

2Allocating different subcarriers to different users would change the nota-
tion but not substantially the problem formulation and solution.

composed by the addition of the direct and reflected channels
(hdk,n

∈ C and hrk,n
∈ C, respectively), xk,n ∈ C denotes the

data symbol to be sent to the UE at the k-th subcarrier and
n-th OFDM symbol, and nk,n ∈ C is the complex additive
white Gaussian noise (AWGN) distributed as CN

(
0, σ2

n

)
.

According to Fig. 1, the RIS-aided channel hr in (1) can
be decomposed as

hrk,n
=

M−1∑
m=0

hck,n,m
ejθn,m =

M−1∑
m=0

hpk,n,m
hqk,n,m

ejθn,m ,

(2)
k = 0, . . . ,K − 1, n = 0, . . . , N − 1,

where hck,n,m
is the cascaded channel between the BS and the

UE for the m-th passive element of the RIS at k-th subcarrier
and n-th OFDM symbol, which is a product of the channel
between BS-RIS and RIS-UE (hpk,n,m

∈ C and hqk,n,m
∈ C,

respectively), and θn,m ∈ [−π, π) corresponds to the phase
shift of the m-th RIS element at n-th OFDM symbol.

A. Channel model

We assume that the channel remains quasi-static during the
transmission of N consecutive OFDM symbols to a given UE.
Hence, for simplicity we drop the subindex n for the channel
coefficients given in (1) and (2).

Regarding the channel model, the geometry-based clustered
delay line (CDL) is considered, which is proposed in the 5G
standard [25] for system level evaluation. For a particular path
indexed by l, the multi-path channel response in the time
domain between the RIS and the UE is given by

h̃ql,m =
√

βqlaqlfx,y(ϕql,m , ϑql,m)δ [τ − l] , (3)

l = 0, . . . , Lq − 1,

x = 0, . . . ,Mx − 1, y = 0, . . . ,My − 1, m = xMy + y,

where δ (•) is the Dirac delta function, τ is the time delay
measured in samples, Lq is the length of the channel in
samples, βql and aql correspond to the path-loss and small
scale fading coefficient, respectively, for l-th scatterer, ϕql,m

and ϑql,m are the azimuth and elevation angles, respectively,
of the l-th tap, and fx,y denotes the steering vector. Assuming
that the RIS is a rectangular array (M = MxMy), the steering
vector can be expressed [26] as

fx,y (ϕ, ϑ) = ejxkdxsinϑcosϕejykdysinϑsinϕ, (4)

x = 0, . . . ,Mx − 1, y = 0, . . . ,My − 1, k = 2π/λ,

being λ the wavelength, and dx and dy corresponding to the
distances between any two contiguous adjacent elements in
the x-axis and y-axis, respectively.

Analogously to the channel in the direction RIS-UE, the
multi-path channel response in the time domain for the l-th
path between the BS and the RIS is given by

h̃pl,m
=

√
βpl

apl
fx,y(ϕpl,m

, ϑpl,m
)δ [τ − l] , (5)

l = 0, . . . , Lp − 1,
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x = 0, . . . ,Mx − 1, y = 0, . . . ,My − 1, m = xMy + y,

where Lp is the length of the channel in samples.
The frequency-domain channel response given in (2) can be

obtained by applying the Discrete Fourier Transform (DFT)
[27] to (3) and (5) as

hqk,m
=

1√
K

Lq−1∑
l=0

h̃ql,me−j2π kl
K , k = 0, . . . ,K − 1, (6)

hpk,m
=

1√
K

Lp−1∑
l=0

h̃pl,m
e−j2π kl

K , k = 0, . . . ,K − 1, (7)

respectively.

B. Channel estimation

In order to obtain the channel estimates for the UE, Np

OFDM symbols out of N are exclusively adopted for the
transmission of the reference signals. Then, N − Np OFDM
symbols are used for data transmission [17], [18].

The channel estimates are obtained using the Least Squares
(LS) technique [28], which is given by

ĥθk =
y
k,n

ẋ
k,n

= ĥdk
+

M−1∑
m=0

ĥck,m
ejθ̇n,m + n′

k,n, (8)

where ẋ
k,n

denotes the pilot symbol at k-th subcarrier and
n-th OFDM symbol (0 ≤ n ≤ Np − 1), θ̇

n,m
accounts for the

phase shift configured in the m-th RIS element at n-th OFDM
symbol (which are known at this training stage), and ĥdk

,
ĥck,m

are the estimates of the direct and cascaded channels,
respectively, at k-th subcarrier for the m-th RIS element.

Inspecting (8) and according to [17], [18], these estimates
can be obtained by transmitting Np = M + 1 pilot symbols
from the BS to the UE, and hence, the channel estimation can
be obtained by solving a system of linear equations.

However, the estimation is polluted by noise, which can
be harmful in the computation of the phase shifts. In order
to reduce this error, the time responses of the estimated
cascaded channel for each passive element are computed, and
only the Lp + Lq − 1 strongest values are kept, similarly to
[29]. Furthermore, the highest energy taps above an energy
threshold can be chosen as proposed in [30]. Hence, for the
purpose of channel estimation, the reduced noise variance can
be upper-bounded as

σ2
ñ ≤ Lp + Lq − 1

K
σ2
n, (9)

where typically the number of subcarriers is always much
higher than the number of taps of the channel response.

C. Problem formulation

Assuming that the channel estimation error is negligible
thanks to the de-noising procedure previously explained, the
performance of the RIS-empowered link is characterized by
the achievable rate of the UE as

R [bps] = B
K−1∑
k=0

log2

(
1 +

P

σ2
n

|hθk |
2

)
, (10)

where B denotes the bandwidth and P is the transmit power
allocated per subcarrier. For simplicity, we consider constant
power allocation in all K subcarriers following [31] proposal,
and we also assume that the signals of all U UEs are being
transmitted with the same power per subcarrier P . Therefore,
due to the use of TDMA, the rate for each UE can be
independently maximized as

max
θm

K−1∑
k=0

log2

(
1 +

P

σ2
n

∣∣∣∣∣hdk
+

M−1∑
m=0

hck,m
ejθm

∣∣∣∣∣
2)

,

s.t. θ
m
∈ [−π, π), m = 0, . . . ,M − 1.

(11)

Besides, to provide a more realistic case, the values of the
phase shifts in (11) can be also restricted to a discrete set,

θm ∈ 2π

2b
{
0, 1, . . . , 2b − 1

}
, (12)

where b is the available number of bits for controlling the
phase shifts of RIS elements. Therefore, we name these scenar-
ios as continuous and discrete phase shifts cases, respectively.

III. NEURAL NETWORK OPTIMIZATION FOR RIS-AIDED
COMMUNICATION

The nature of the problem given in (11) is non-convex due
to the shape of the objective function to be maximized, as
pointed out in [13]. Moreover, when discrete phase shifts as
in (12) are considered, its complexity is even higher [14].

Therefore, a NN is exploited in order to circumvent this
complexity and maintain the performance, as explained further
in Section I and similarly to the works of [20], [21], [22],
[23], where the proposed optimization technique is based on
a deep learning model which is able to find the best set of θm

for each UE to maximize the achievable rate. Furthermore,
it is trained in an unsupervised way, making our approach
more suitable than supervised techniques due to the fact that
the data gathering, labelling and training procedures are not
required. Note that our proposal is feasible for multi-carrier
waveform as well as very large number of passive elements
of the RIS, unlike [23]. Furthermore, a clustering algorithm is
considered to be applied firstly in order to group RIS elements
and decrease even further the complexity of the problem.

A. Clustering

Due to the spatial correlation present in the RIS array, the
large number of passive elements and the high amount of
subcarriers in the OFDM, many of these reflecting elements
may face the same, or very similar, cascaded channel coef-
ficients. Consequently, the RIS elements can be grouped into
different clusters according to their estimated cascaded channel
coefficient ĥck,m

, producing Mg subpanels whose elements
are configured with the same phase shift value [11] in order
to reduce the hardware/software complexity and speed up the
processing. For this work at issue K-Means [32] is chosen,
where each RIS element gets represented by a vector of K
components in order to be clustered.
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Figure 2: Block diagram of the proposed technique based on channel estimation, preprocessing and unsupervised learning. The dashed line blocks mean that
they are optional, depending on the scenario. The gates represent OR logical gates.

B. Neural Network

The proposed network is shown in Fig. 2, where FC
denotes a fully-connected layer, tanh is the hyperbolic tangent
function, sigmoid is the sigmoid function, and the last block
is an optional customizable layer defined as ejx, being x
the input. The dimensions of the input and output vectors of
the NN (m1,m2 and m3) are determined by the size of the
cascaded channel estimates, and are given by

{m1,m2,m3} =

{
{Mg, 2K, 1}, K > 1
{1, 2Mg,Mg}, K = 1,

(13)

where the factor 2 is due to the concatenation of the real and
imaginary parts of the complex cascaded channel estimates.
Note that if clustering is not carried out, Mg = M .

Regarding hidden layers, their dimensions are proportional
to the input dimensions so as to obtain a higher flexibility
(wide range of values for m1 and m2) and guarantee the
network learning ability with system scaling, hence they are
set to

{d1, d2} =

m2 + {m1/2,m1}, K > 1,m1 < 2m2

{m1/2,m1}, K > 1,m1 ≥ 2m2

{2m2, 4m2}, K = 1
(14)

d3 = m2, d4 = m3.

In our proposal, the number of hidden layers and the scaling
factors in hidden dimensions with respect to m1,m2 have been
chosen to achieve a trade-off between performance and cost.

Hyperbolic tangent is chosen as the activation function to be
used between hidden layers, and a sigmoid layer multiplied by
a coefficient A with an offset −B is implemented as the final
activation layer, where A and B values depend on hardware
constraints regarding phase shifts in study cases as

{A,B} =

{
{2π, π}, θm ∈ [−π, π)
{2, 1}, θm ∈ {0, π}. (15)

Note that with continuous phase shifts, the output of the NN
is the phase configuration θ

m
, hence and additional layer

is required to obtain the reflection coefficient ejθm . On the
contrary, for the case of discrete phase shifts, the output of
the NN is already ejθm . Additionally, for the case of discrete
phase shifts, the results provided by the NN are required to

be rounded to the discrete set of values to fulfill hardware
requirements.

IV. EXPERIMENTS AND RESULTS

A. Experiments

In this section, numerical results in terms of achievable rates
and execution times are shown to compare our proposal to
existing solutions.

Data are obtained from IEEE Signal Processing Cup 2021:
Configuring an Intelligent Reflecting Surface for Wireless
Communications3. These data encompass the pilot transmit
signals ẋ for U = 50 users, their corresponding receive signals
y and the phase shifts θ̇ used in pilots transmission. Moreover,
the maximum number of taps is set to Lp +Lq − 1 = 20, the
number of subcarriers is K = 500, the bandwidth is B = 10
MHz and the RIS is composed of M = 4096 meta-elements.

As for spatial distribution, the links between the BS and RIS
have Line-Of-Sight (LOS) while some of the RIS-UE links are
LOS and some others are Non-LOS (NLOS). In particular, 36
UEs have LOS with the RIS and the rest 14 UEs do not. Direct
path between the BS and the UEs is NLOS for all UEs.

Regarding the channel estimation stage, similarly to [17],
the phase shifts of the RIS during the transmission of the pilot
symbols are set using a Hadamard matrix of order Np [33].

The experiments are performed using PyTorch framework
with Adam optimizer and a learning rate equal to 10−4. The
number of iterations are set to 100 and 50 for the continuous
and discrete cases, respectively. Furthermore, in order to avoid
potential local maximum points, each optimization has been
performed by exploiting 5 different initializations. All of them
were run in an Intel i7-8565U CPU @ 1.80 GHz (8 CPUs).

B. Performance comparison to the state-of-the-art

In this section, an achievable rate comparison is provided so
as to show the performance of our proposal. In order to be able
to compare our work to the one of [23], we must particularize
our proposal to the scenario imposed by [23]. Therefore, the
system is constrained to use a single-carrier waveform (K =
1), the phase shifts correspond to the continuous case and the
size of the RIS is reduced to M = 64.

3Available at https://kth.box.com/v/spcup2021-dataset2
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Figure 3: Average achievable rate for M = 64, K = 1 and θ ∈ [−π, π).
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Figure 4: Average achievable rate for M = 4096, K = 500 and θ ∈ {0, π}.

Fig. 3 shows the average achievable rate for all UEs for
different noise powers σ2

n assuming P = 1 W. Note that, as
defined in (3) and (5), the path-loss term is incorporated in
the channels, ranging from 6.55 · 10−12 to 7.65 · 10−13 for
hd and from 9.62 · 10−16 to 9.35 · 10−18 for hc within the U
users. It can be observed that our proposal without clustering
clearly outperforms the approach of [23], which is shown to
perform very close to the traditional semi-definite relaxation
(SDR) technique [13]. When clustering is applied (with 8, 12
and 16 clusters), the performance is slightly worse than for
the reference case since there is neither too much spatial nor
frequency correlation to be exploited in such a simple scenario.
However, as we show in Section IV-D, the execution time is
significantly reduced.

C. Performance comparison in realistic scenarios

In this section, we focus on a scenario with a multi-carrier
waveform (K = 500) and a large amount of RIS elements (M
= 4096) in which state-of-the-art literature is not able to work
because of its complexity. With the aim to provide a reference
case, we also evaluate the performance of a baseline random

Table 1: Execution time of different algorithms.

Algorithm Execution time
(iteration time)

M = 64
K = 1

θ ∈ [-π, π)

Ref. [23] 1130.96 s
(45.23 ms)

Proposed

8 clusters 157.52 s
(6.30 ms)

12 clusters 166.57 s
(6.66 ms)

16 clusters 169.78 s
(6.79 ms)

w/o K-Means 180.23 s
(7.21 ms)

M = 4096
K = 500

θ ∈ {0, π}

Random

1 cluster 0.01 s
4 clusters 43.48 s
8 clusters 68.91 s
64 clusters 220.81 s

256 clusters 820.35 s
w/o K-Means 2.75 s

Proposed
16 clusters 586.18 s

(39.19 ms)

256 clusters 1884.78 s
(85.31 ms)

w/o K-Means 6916.04 s
(553.28 ms)

phase configuration, which consists in sampling random values
from the set of possible phase shifts.

Fig. 4 provides an achievable rate comparison for this real-
istic scenario considering discrete phase shifts, more specifi-
cally a single bit. We can see that our proposal significantly
improves the performance as compared to the random case.
We can also see that clustering is helping to improve the per-
formance for both cases, showing that the spatial correlation
is relevant in the overall performance for large-size RIS and
broadband signals. Regarding our proposal, clustering reduces
the complexity of the optimization problem by decreasing the
dimensionality of it, and hence, the results easily converge.
Therefore, it is specially interesting and advantageous in com-
plex scenarios with a large number of both RIS elements and
subcarriers, where strong correlation is shown in both spatial
and frequency domains, in contrast to simpler scenarios like
the one in Section IV-B. In order to improve the performance
of the proposed technique without clustering, more iterations
are required at the expense of sacrificing hardware resources
and time execution, which is not recommendable, if at all
feasible, for realistic communication scenarios.

D. Execution time comparison

In real-time communications, specially for low-latency ones,
the execution time is as important as the performance due to
the fact that an increment of the delay may negatively affect
many services. Table 1 describes the overall required execution
time in seconds (s) and mili-seconds (ms) representing the
computational cost of each scenario and algorithm. Time on
the experiment of random phase shifts accounts for performing
K-Means, sampling Mg times from {0, π} and reassigning
sampled values to the M elements following clustering results.
As for the time of the work of [23], it only includes NN op-
timization, while the time of our proposal includes clustering,
NN optimization and reassignment of phase shifts according
to K-Means results. We can see that our proposal is not only
outperforming [23], but it is also more than six times faster.
Besides, [23] is proved to greatly reduce the time consumption
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of SDR algorithm [13]. On the other hand, we can see
that using random phases lead to the best execution time
since it does not require an additional optimization. However,
the achievable rate of our proposal is significantly higher.
Additionally, we can see that clustering meaningfully reduces
the execution time, facilitating the optimization process and
still achieving a substantial performance gain.

V. CONCLUSIONS

In this work we propose a realistic optimization technique
for RIS-aided communications, based on unsupervised deep
learning in order to deal with the great complexity associated
to RIS-assisted systems. The proposal can be easily exploited
for broadband waveforms, large-size RIS and discrete phase
shifts, not as other previous contributions, making it suitable
for low-cost passive reflecting elements. Our proposal outper-
forms the state-of-the-art techniques and avoids an increase
in the complexity. Additionally, clustering is also able to
reduce the execution time even further with a performance
loss that is in some cases negligible, where the optimum
number of clusters depends on the signal-to-noise ratio and
the scenario itself, and which is specially interesting in lifelike
environments with strong spatial and frequency correlation.
Consequently, our proposal enables the RIS to be exploited for
high performance links with feasible complexity and execution
times.

ACKNOWLEDGMENT

This work has been funded by the Spanish National
projects IRENE-EARTH (PID2020-115323RB-C33 / AEI
/ 10.13039/501100011033) and AMATISTA (CDTI IDI-
20200861).

REFERENCES

[1] “New frequency range for NR (24.25-29.5 GHz) (Release 15),” 3GPP,
France, Technical Report 38.815, Jun. 2018.

[2] F. W. Vook, T. A. Thomas, and E. Visotsky, “Massive mimo for mmwave
systems,” in 2014 48th Asilomar Conference on Signals, Systems and
Computers, Nov 2014, pp. 820–824.

[3] S. Kutty and D. Sen, “Beamforming for millimeter wave communica-
tions: An inclusive survey,” IEEE Communications Surveys Tutorials,
vol. 18, no. 2, pp. 949–973, 2016.

[4] T. Engda, Y. Wondie, and J. Steinbrunn, “Massive mimo, mmwave and
mmwave-massive mimo communications: Performance assessment with
beamforming techniques,” Sep. 2020.

[5] K. Ntontin, M. Renzo, J. Song, F. Lazarakis, J. Rosny, D.-T. Phan-Huy,
O. Simeone, R. Zhang, M. Debbah, G. Lerosey, M. Fink, S. Tretyakov,
and S. Shamai, “Reconfigurable intelligent surfaces vs. relaying: Differ-
ences, similarities, and performance comparison,” 08 2019.

[6] L. J. Rodriguez, N. Tran, and T. Le-Ngoc, Amplify-and-Forward Re-
laying in Wireless Communications. Springer International Publishing,
2015.

[7] E. M. a. Elsheikh, Wireless Decode-And-Forward Relay Channels. LAP
Lambert Academic Publishing, 2010.

[8] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,” IEEE Transactions
on Wireless Communications, vol. 18, no. 11, pp. 5394–5409, Nov 2019.

[9] M. Siddiqi, T. Mir, M. Hao, and R. MacKenzie, “Low-complexity
joint active and passive beamforming for ris-aided mimo systems,”
Electronics Letters, Mar. 2021.

[10] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Communi-
cations Magazine, vol. 58, no. 1, pp. 106–112, Jan. 2020.

[11] E. Björnson, H. Wymeersch, B. Matthiesen, P. Popovski, L. Sanguinetti,
and E. de Carvalho, “Reconfigurable intelligent surfaces: A signal
processing perspective with wireless applications,” Feb. 2021.

[12] Q. Wu and R. Zhang, “Beamforming optimization for intelligent reflect-
ing surface with discrete phase shifts,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2019, pp. 7830–7833.

[13] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless
network: Joint active and passive beamforming design,” 2018.

[14] H. Chongwen, A. Zappone, G. Alexandropoulos, m. Debbah, and
C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in
wireless communication,” IEEE Transactions on Wireless Communica-
tions, vol. PP, pp. 1–1, Jun. 2019.

[15] Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting
surface meets ofdm: Protocol design and rate maximization,” IEEE
Transactions on Communications, vol. PP, pp. 1–1, Mar. 2020.

[16] Y. Cao, T. Lv, and W. Ni, “Intelligent reflecting surface aided multi-
user millimeter-wave communications for coverage enhancement,” Oct.
2019.

[17] C. You, B. Zheng, and R. Zhang, “Channel estimation and passive
beamforming for intelligent reflecting surface: Discrete phase shift and
progressive refinement,” IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 11, pp. 2604–2620, Nov. 2020.

[18] Z.-Q. He and X. Yuan, “Cascaded channel estimation for large intelligent
metasurface assisted massive mimo,” IEEE Wireless Communications
Letters, vol. 9, no. 2, pp. 210–214, 2020.

[19] Y. Han, W. Tang, S. Jin, C. Wen, and X. Ma, “Large intelligent
surface-assisted wireless communication exploiting statistical csi,” IEEE
Transactions on Vehicular Technology, vol. PP, pp. 1–1, Jun. 2019.

[20] T. Lin and Y. Zhu, “Beamforming design for large-scale antenna arrays
using deep learning,” IEEE Wireless Communications Letters, vol. PP,
pp. 1–1, Sep. 2019.

[21] G. Aceto, A. Montieri, A. Pescapè, and D. Ciuonzo, “Mobile en-
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