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Abstract—In this study, we propose an over-the-air compu-
tation (AirComp) scheme for federated edge learning (FEEL)
without channel state information (CSI) at the edge devices
(EDs) or the edge server (ES). The proposed scheme relies on
non-coherent communication techniques for achieving distributed
training by majority vote (MV). In this work, the votes, i.e., the
signs of the local gradients, from the EDs are represented with
the pulse-position modulation (PPM) symbols constructed with
discrete Fourier transform (DFT)-spread orthogonal frequency
division multiplexing (OFDM) (DFT-s-OFDM). By taking the
delay spread and time-synchronization errors into account, the
MV at the ES is obtained with an energy detector. Hence, the
proposed scheme does not require CSI at the EDs and ES. We
also prove the convergence of the distributed training when the
MV is obtained with the proposed scheme under fading channel.
Through simulations, we show that the proposed scheme provides
a high test accuracy in fading channels while resulting in lower
peak-to-mean envelope power ratio (PMEPR) symbols.

I. INTRODUCTION

Federated edge learning (FEEL) is an implementation of
federated learning (FL) over a wireless network to train a
model by using the local data at the edge devices (EDs)
without uploading them to an edge server (ES) [1], [2]. Within
each iteration of FEEL, a substantial number of parameters
(e.g., model parameters or model updates) from each ED
needs to be transmitted to the ES for aggregation. Thus,
the communication aspect of FEEL is one of the major
bottlenecks. One of the promising solutions to this issue is to
perform the aggregation by utilizing the signal-superposition
property of a wireless multiple access channel [3]–[5], i.e.,
over-the-air computation (AirComp). However, an AirComp
scheme often requires channel state information (CSI) at either
the EDs or ES to maintain coherent superposition of the signals
from EDs, which can cause a non-negligible overhead and
unreliable aggregation in a mobile wireless network. In this
study, we address this issue with a new AirComp method.

In the literature, FEEL is investigated with several notable
AirComp schemes. In [6], the transmission of the local model
parameters at the EDs over orthogonal frequency division mul-
tiplexing (OFDM) subcarriers are proposed to achieve model
parameter aggregation. To reverse the effect of the multipath
channel on the transmitted signals, truncated-channel inversion
(TCI) is applied, where the symbols on the OFDM subcarriers
are multiplied with the inverse of the channel coefficients and

the subcarriers that fade are excluded from the transmissions.
In [7], one-bit broadband digital aggregation (OBDA), inspired
by distributed training by majority vote (MV) [8], is proposed.
In this method, the EDs transmit quadrature phase-shift keying
(QPSK) symbols over OFDM subcarriers with TCI, where
the signs of the elements, i.e., votes, of the local stochastic
gradient vectors to form the real and imaginary parts of the
QPSK symbols. At the ES, the signs of the real and imaginary
components of the superposed symbols on each subcarrier, i.e.,
the MV, are used to estimate the global gradients. Despite the
fact that OBDA is compatible with digital modulations, for
AirComp, each ED still requires CSI for TCI. In [9] and [10],
the CSI is not available at the EDs, i.e., blind EDs. However,
it is assumed that CSI between each ED and ES is available
at the ES. To the best of our knowledge, there is no AirComp
scheme where CSI is unavailable to both the EDs and the ES
for FEEL in the documented literature.

In this study, we propose an AirComp scheme for FEEL
without CSI at the EDs and ES. By considering dis-
tributed training by MV, we use pulse-position modulation
(PPM) to encode the votes, where the pulses are synthe-
sized with discrete Fourier transform (DFT)-spread OFDM
(DFT-s-OFDM) [11]. Since the proposed scheme determines
the MV with an energy detector applied to the superposed
PPM symbols, the CSI is not needed at the EDs and the ES.
We also discuss the design with the consideration of the delay
spread and the synchronization errors in the time domain.
Finally, we prove the convergence of distributed training when
the MV is obtained with the proposed scheme under fading
channel.

Notation: The complex and real numbers are denoted by C
and R, respectively. E [·] is the expectation. The sign function
is denoted by sign(·) and results in 1, −1, or ±1 at random for
a positive, a negative, or a zero-valued argument, respectively.
We use the notation (a) 𝑗

𝑖
as shorthand for denoting a vector

[𝑎𝑖 , 𝑎𝑖+1, . . ., 𝑎 𝑗 ]T. The 𝑁-dimensional all zero vector and 𝑁 ×
𝑁 identity matrix are 0𝑁 and I𝑁 , respectively. I [·] is the
indicator function and P [·] is the probability of its argument.
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II. SYSTEM MODEL

A. Distributed Training by Majority Vote

Consider a network that consist of 𝐾 EDs communicat-
ing with an ES. Let D𝑘 denote the local data containing
labeled data samples at the 𝑘th ED as {(xℓ , 𝑦ℓ)} ∈ D𝑘 for
𝑘 = 1, . . ., 𝐾 , where xℓ and 𝑦ℓ are ℓth data sample and its
associated label, respectively. In the case of availability of the
local data at the ES (e.g., each ED uploads its data to the ES),
the centralized learning problem can be defined as

w∗ = arg min
w
𝐹 (w) = arg min

w

1
|D|

∑︁
∀(x ,𝑦) ∈D

𝑓 (w, x, 𝑦) , (1)

where D = D1 ∪D2 ∪ · · · ∪ D𝐾 and 𝑓 (w, x, 𝑦) is the sample
loss function that measures the labeling error for (x, 𝑦) for the
parameters w = [𝑤1, . . ., 𝑤𝑞]T ∈ R𝑞 , and 𝑞 is the number of
parameters. In the case of distributed training (e.g., the data
is not available at the ES as in FL), one way of solving (1)
relies on communicating the gradients between the ES and
EDs. To reduce the cost of communicating gradients between
the ES and EDs, sign stochastic gradient descend (signSGD)
with MV is proposed in [8]. With this method, the updates at
the 𝑛th communication round can be expressed as

w(𝑛+1) = w(𝑛) − 𝜂v(𝑛) , (2)

where 𝜂 is the learning rate and v(𝑛) = [𝑣 (𝑛)1 , . . ., 𝑣 (𝑛)𝑞 ]T is the
vector that contains the MVs. Assuming that |D𝑘 | = 𝐷 for
𝑘 = 1, . . ., 𝐾 , the 𝑖th coordinate of v(𝑛) is calculated as

𝑣
(𝑛)
𝑖
, sign

(
𝐾∑︁
𝑘=1

sign
(
𝑔̃
(𝑛)
𝑘,𝑖

))
= sign

(
𝐾∑︁
𝑘=1

𝑔̄
(𝑛)
𝑘,𝑖

)
, (3)

where 𝑔̃ (𝑛)
𝑘,𝑖

is the 𝑖th element of the local stochastic gradient
vector given by

g̃(𝑛)
𝑘

= ∇𝐹𝑘 (w(𝑛) ) = 1
𝑛b

∑︁
∀(xℓ ,𝑦ℓ ) ∈D̃𝑘

∇ 𝑓 (w(𝑛) , xℓ , 𝑦ℓ) , (4)

where D̃𝑘 ⊂ D𝑘 is the selected data batch from the local data
samples and 𝑛b = |D̃𝑘 | is the batch size. The corresponding
MV-based training procedure can be outlined as follows: The
ES first pulls ḡ(𝑛)

𝑘
= [𝑔̄ (𝑛)

𝑘,1 , . . ., 𝑔̄ (𝑛)
𝑘,𝑞

]T from all EDs. After
calculating (3), ∀𝑖, it pushes the MV vector v(𝑛) to the
EDs. The EDs then update their parameters as in (2) for the
next communication round. Since this method communicates
only the signs between EDs and ES, it reduces the cost of
communicating the gradients. In this study, we consider the
same training procedure for FEEL. However, we use it over a
wireless network and develop an AirComp scheme to obtain
the MV, inspired by (3), under fading channels.

B. Signal Model

Consider a wireless network where each ED and the ES
are equipped with single antennas. We assume that the EDs’
average signal powers are identical at the ES’s location (i.e.,
large-scale impacts of the channel are compensated) and man-
aged with an uplink power control mechanism, e.g., through

physical random access channel (PRACH) and/or physical
uplink control channel (PUCCH) in 3GPP Fifth Generation
(5G) New Radio (NR) [12]. We consider the fact the time-
synchronization between the EDs may not be perfect and the
maximum difference between time of arriving EDs signals at
the ES’s location is 𝑇sync seconds.

We assume that the EDs access the wireless channel on the
same time-frequency resources with 𝑆 DFT-s-OFDM symbols
at the 𝑛th round. The 𝑚th transmitted baseband DFT-s-OFDM
symbol in discrete time for the 𝑘th ED can be expressed as

t(𝑛)
𝑘,𝑚

= FH
𝑁IDFT

MfD𝑀d(𝑛)
𝑘,𝑚

, (5)

where FH
𝑁IDFT

∈ C𝑁IDFT×𝑁IDFT is the 𝑁IDFT-point inverse DFT
(IDFT) matrix, D𝑀 ∈ C𝑀×𝑀 is the 𝑀-point DFT matrix,
Mf ∈ R𝑁IDFT×𝑀 is the mapping matrix that maps the output
of the DFT precoder to a set of contiguous subcarriers, and
d(𝑛)
𝑘,𝑚

∈ C𝑀 contains the symbols on 𝑀 bins. Note that
DFT-s-OFDM is a special single-carrier (SC) waveform using
circular convolution [11], where the symbol spacing in time is
𝑇spacing = 𝑁IDFT𝑇sample/𝑀 seconds, the pulse shape is Dirichlet
sinc [13], and 𝑇sample is the sample period.

In this study, we assume the cyclic prefix (CP) duration is
larger than the maximum-excess delay denoted by 𝑇chn sec-
onds. Hence, assuming the transmissions from the EDs arrive
at the ES within the CP duration, the 𝑚th received baseband
signal in discrete-time can be written as

r(𝑛)𝑚 =

𝐾∑︁
𝑘=1

H(𝑛)
𝑘

t(𝑛)
𝑘,𝑚

+ n(𝑛)
𝑚 , (6)

where H(𝑛)
𝑘

∈ C𝑁IDFT×𝑁IDFT is a circular-convolution matrix
based on the channel impulse response (CIR) between the 𝑘th
ED and the ES and n(𝑛)

𝑚 ∼ CN(0𝑁IDFT , 𝜎
2
n I𝑁IDFT ) is the additive

white Gaussian noise (AWGN). At the ES, we calculate the
aggregated symbols on the bins as d̃(𝑛)

𝑚 = DH
𝑀MH

f F𝑁IDFTr(𝑛)𝑚 .
Note that we do not use frequency-domain equalization (FDE)
since we use DFT-s-OFDM for calculating the MV with a non-
coherent detector.

C. Performance Metrics

1) PMEPR: We define the peak-to-mean envelope power
ratio (PMEPR) as max𝑡 ∈[0,𝑇s) |𝑥(𝑡) |2/𝑃tx, where 𝑥(𝑡) ∈ C is the
baseband OFDM/DFT-s-OFDM symbol in continuous time, 𝑇s
is the symbol duration, and 𝑃tx = E𝑡

[
|𝑥(𝑡) |2

]
= 𝑀/𝑁IDFT is

the mean-envelope power as ‖d(𝑛)
𝑘,𝑚

‖2
2 is equal to 𝑀 since all

bins are actively utilized.
2) Convergence rate: In this study, we define the conver-

gence rate [7], [8] as the rate at which the expected value
of average norm of the gradient of 𝐹 (w) diminishes as the
number of total communication rounds 𝑁 and 𝐾 when the
training is done in the presence of the proposed scheme.

III. MAJORITY VOTE WITH PPM IN FADING CHANNEL

A. Edge Devices - Transmitter

At the 𝑘th ED’s transmitter, we encode the signs of the
local gradients, i.e., {𝑔̄ (𝑛)

𝑘,𝑖
}, ∀𝑖, 𝑘 , with PPM. We synthesize
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Fig. 1. Transmitter and receiver diagrams for PPM-MV with DFT-s-OFDM for FEEL.

the pulse in a PPM symbol by activating consecutive 𝑀pulse
bins of DFT-s-OFDM, which effectively corresponds to a
pulse with the duration of 𝑇pulse ≈ 𝑀pulse𝑇spacing seconds
by combining 𝑀pulse shifted versions of the Dirichlet sinc
functions in time. To accommodate the time-synchronization
errors and the delay spread, we consider a guard period
between the adjacent pulses. Thus, we deactivate the following
𝑀gap bins after 𝑀pulse active bins, which results in a guard
period with the duration of 𝑇gap ≈ 𝑀gap𝑇spacing seconds, where
𝑇gap ≥ 𝑇chn + 𝑇sync must hold true. As a result, the maximum
number of votes that can be carried for each DFT-s-OFDM
symbol can be calculated as 𝑀vote =

⌊
𝑀

2(𝑀pulse+𝑀gap)

⌋
, where

𝑀gap ≥ d(𝑇chn + 𝑇sync)/𝑇spacinge.
In this study, we consider a generalized mapping rule that

maps the signs of the local gradients to the positions of the
pulses within a DFT-s-OFDM symbol and 𝑆 DFT-s-OFDM
symbols. To this end, let 𝑓 be a function that maps 𝑖 ∈
{1, 2, . . ., 𝑞} to the distinct pairs (𝑚+, 𝑙+) and (𝑚−, 𝑙−) that
indicate the pulse positions for 𝑚+, 𝑚− ∈ {0, 1, . . ., 𝑆 − 1} and
𝑙+, 𝑙− ∈ {0, 1, . . ., 2𝑀vote − 1}. For all 𝑖, we then determine the
following bins of DFT-s-OFDM symbols as

(d(𝑛)
𝑘,𝑚+ )

𝑙+ (𝑀pulse+𝑀gap)+𝑀pulse−1
𝑙+ (𝑀pulse+𝑀gap) = p𝑠 (𝑛)

𝑘,𝑖
I
[
𝑔̄
(𝑛)
𝑘,𝑖

= 1
]
,

and

(d(𝑛)
𝑘,𝑚− )

𝑙− (𝑀pulse+𝑀gap)+𝑀pulse−1
𝑙− (𝑀pulse+𝑀gap) = p𝑠 (𝑛)

𝑘,𝑖
I
[
𝑔̄
(𝑛)
𝑘,𝑖

= −1
]
,

where p ∈ C𝑀pulse contains the weights of the Dirichlet sinc
functions to generate the pulse, and 𝑠 (𝑛)

𝑘,𝑖
is a random symbol

on the unit-circle. Therefore, the proposed scheme defines two
pulse positions over two different time resources for one vote.
If 𝑚+ = 𝑚− and 𝑙+ = 𝑙−+1 for all 𝑖, the adjacent time resources
of 𝑚+th DFT-s-OFDM symbol are used for voting. The MV
calculation with proposed scheme under this specific mapping
is referred to as PPM-based MV (PPM-MV) in this study.

1) Pulse Shape: We choose p as
√
𝐸s × [1,−1, 1,−1, · · · ]T

since this sequence yields a rectangular-like pulse shape in the
time domain for DFT-s-OFDM, as illustrated in Section IV,
where 𝐸s = 2(𝑀pulse+𝑀gap)/𝑀pulse is an energy normalization
factor. It is worth noting that the proposed framework allows
one to design p for various pulse shapes, which can be
considered for further optimization of the proposed scheme.

B. Edge Server - Receiver

At the ES, we first calculate the pairs (𝑚+, 𝑙+) and (𝑚−, 𝑙−)
based on 𝑓 for a given 𝑖. We then obtain the MV for the 𝑖th

gradient with an energy detector as

𝑣
(𝑛)
𝑖

= sign
(
Δ
(𝑛)
𝑖

)
, (7)

where Δ
(𝑛)
𝑖
, 𝑒+

𝑖
− 𝑒−

𝑖
for

𝑒+𝑖 , ‖(d̃(𝑛)
𝑚+ )𝑙

+ (𝑀pulse+𝑀gap)+𝑀pulse+𝑀gap−1
𝑙+ (𝑀pulse+𝑀gap) ‖2

2 , (8)

and

𝑒−𝑖 , ‖(d̃(𝑛)
𝑚− )𝑙

− (𝑀pulse+𝑀gap)+𝑀pulse+𝑀gap−1
𝑙− (𝑀pulse+𝑀gap) ‖2

2 . (9)

Since the multipath channel disperses the pulses in the time
domain and the synchronization error changes the position of
the pulse in time, we consider 𝑀pulse+𝑀gap bins for the energy
calculations in (8) and (9).

In Fig. 1, the transmitter and the receiver block diagrams
are provided based on the aforementioned discussions.

C. Why Does It Work without CSI at the EDs and ES?

Let 𝐾+
𝑖

and 𝐾−
𝑖

= 𝐾 − 𝐾+
𝑖

be the numbers of EDs that
contribute a vote towards 1 and −1 for the 𝑖th gradient,
respectively. It is trivial to show that 𝑒+

𝑖
and 𝑒−

𝑖
are exponen-

tial random variables, where their means are approximately
𝜇+
𝑖
, E

[
𝑒+
𝑖

]
≈ 𝑀pulse𝐸s𝐾

+
𝑖
+ (𝑀pulse + 𝑀gap)𝜎2

n and 𝜇−
𝑖
,

E
[
𝑒−
𝑖

]
≈ 𝑀pulse𝐸s𝐾

−
𝑖
+ (𝑀pulse + 𝑀gap)𝜎2

n .1 Since 𝜇+
𝑖

and 𝜇−
𝑖

are linear functions of 𝐾+
𝑖

and 𝐾−
𝑖

, respectively, the proposed
scheme obtains the correct MV probabilistically as the PPM
symbols may not coherently add up and their amplitudes
may not be aligned in fading channel. Therefore, the MV
calculated in (7) is different from the original MV given in
(3). Hence, to provide a convincing answer to the question if
the proposed scheme maintains the convergence of the original
MV in [8], we need to show the convergence for a non-convex
loss function 𝐹 (w). To this end, we consider several standard
assumptions made in the literature [7], [8]:

Assumption 1 (Bounded loss function). 𝐹 (w) ≥ 𝐹∗, ∀w.

Assumption 2 (Smooth). Let g be the gradient of 𝐹 (w)
evaluated at w. For all w and w′, the expression given by��𝐹 (w′) − (𝐹 (w) + gT (w′ − w))

�� ≤ 1
2

𝑞∑︁
𝑖=1

𝐿𝑖 (𝑤′
𝑖 − 𝑤𝑖)2 ,

holds for a non-negative constant vector L = [𝐿1, . . ., 𝐿𝑞]T.

1The reason for the approximation is that the interference between PPM
symbols in a multipath channel is assumed to be negligible for a large 𝑀gap.



Assumption 3 (Variance bound). The stochastic gradient
estimates {g̃𝑘 = [𝑔̃𝑘,1, . . ., 𝑔̃𝑘,𝑞]T = ∇𝐹𝑘 (w(𝑛) )}, ∀𝑘 , are inde-
pendent and unbiased estimates of g = [𝑔1, . . ., 𝑔𝑞]T = ∇𝐹 (w)
with a coordinate bounded variance, i.e.,

E [g̃𝑘 ] = g, ∀𝑘, (10)

E
[
(𝑔̃𝑘,𝑖 − 𝑔𝑖)2] ≤ 𝜎2

𝑖 /𝑛b, ∀𝑘, 𝑖, (11)

where σ = [𝜎1, . . ., 𝜎𝑞]T is a non-negative constant vector.

Assumption 4 (Unimodal, symmetric gradient noise). For any
given w, the elements of the vector g̃𝑘 , ∀𝑘 , has a unimodal
distribution that is also symmetric around its mean.

Theorem 1. For 𝑛b = 𝑁/𝛾 and 𝜂 = 1/
√︁
‖L‖1𝑛b, the

convergence rate of the distributed training by the MV based
on PPM in fading channel is

E

[
1
𝑁

𝑁−1∑︁
𝑛=0

‖g(𝑛) ‖1

]
≤ 1

√
𝑁

(
𝑎
√︁
‖L‖1

(
𝐹 (w(0) ) − 𝐹∗ + 𝛾

2

)
+

2
√︁

2𝛾
3

‖σ‖1

)
, (12)

where 𝑎 = (1 + 2
𝜉𝐾

) 1√
𝛾

for 𝜉 , 𝑀pulse𝐸s

(𝑀pulse+𝑀gap)𝜎2
n
.

Proof: Let g(𝑛) be the gradient of 𝐹 (w(𝑛) ) (i.e., the true
gradient ). By using Assumption 2 and using (7), we can write

𝐹 (w(𝑛+1) ) − 𝐹 (w(𝑛) ) ≤ −𝜂g(𝑛)Tv(𝑛) + 𝜂
2

2
‖L‖1

= − 𝜂‖g(𝑛) ‖1 +
𝜂2

2
‖L‖1

+ 2𝜂
𝑞∑︁
𝑖=1

|𝑔 (𝑛)
𝑖

|I
[
sign

(
Δ
(𝑛)
𝑖

)
≠ sign

(
𝑔
(𝑛)
𝑖

)]
.

Thus,

E
[
𝐹 (w(𝑛+1) ) − 𝐹 (w(𝑛) ) |w(𝑛)

]
≤ −𝜂‖g(𝑛) ‖1 +

𝜂2

2
‖L‖1

+ 2𝜂
𝑞∑︁
𝑖=1

|𝑔 (𝑛)
𝑖

| P
[
sign

(
Δ
(𝑛)
𝑖

)
≠ sign

(
𝑔
(𝑛)
𝑖

)]
︸                                ︷︷                                ︸

,𝑃err
𝑖︸                                                  ︷︷                                                  ︸

Stochasticity-induced error

.

A bound on the stochasticity-induced error can be obtained as
follows: Assume that sign

(
𝑔
(𝑛)
𝑖

)
= 1. Let 𝑍 be a random

variable for counting the number of EDs with the correct
decision, i.e., sign

(
𝑔
(𝑛)
𝑖

)
= 1. The random variable 𝑍 can then

be model as the sum of 𝐾 independent Bernoulli trials, i.e.,
a binomial variable with the success and failure probabilities
given by

𝑝𝑖 , P
[
sign

(
𝑔̃
(𝑛)
𝑘,𝑖

)
= sign

(
𝑔
(𝑛)
𝑖

)]
,

𝑞𝑖 , P
[
sign

(
𝑔̃
(𝑛)
𝑘,𝑖

)
≠ sign

(
𝑔
(𝑛)
𝑖

)]
,

respectively, for all 𝑘 . This implies that

𝑃err
𝑖 =

𝐾∑︁
𝐾 +
𝑖
=0
P

[
sign

(
Δ
(𝑛)
𝑖

)
≠ 1|𝑍 = 𝐾+

𝑖

]
P

[
𝑍 = 𝐾+

𝑖

]
,

where P
[
𝑍 = 𝐾+

𝑖

]
=

( 𝐾
𝐾 +
𝑖

)
𝑝
𝐾 +
𝑖

𝑖
𝑞
𝐾−𝐾 +

𝑖

𝑖
. To calculate

P
[
sign

(
Δ
(𝑛)
𝑖

)
≠ 1|𝑍 = 𝐾+

𝑖

]
, we use the distribution of

Δ
(𝑛)
𝑖

, which can be obtained by using the properties of
exponential random variables as

𝑓 (Δ(𝑛)
𝑖

) =


e
−
Δ
(𝑛)
𝑖
𝜇−
𝑖

𝜇+
𝑖
+𝜇−

𝑖

, Δ
(𝑛)
𝑖

≤ 0

e
−
Δ
(𝑛)
𝑖
𝜇+
𝑖

𝜇+
𝑖
+𝜇−

𝑖

, Δ
(𝑛)
𝑖

> 0

. (13)

Thus, by integrating (13) with respect to Δ
(𝑛)
𝑖

,

P
[
sign

(
Δ
(𝑛)
𝑖

)
≠ 1|𝑍 = 𝐾+

𝑖

]
=

𝜇−
𝑖

𝜇+
𝑖
+ 𝜇−

𝑖

=
(𝐾 − 𝐾+

𝑖
) + 1/𝜉

𝐾 + 2/𝜉 .

(14)

Hence, by using (14) and the properties of binomial coeffi-
cients

𝑃err
𝑖 =

𝐾∑︁
𝐾 +
𝑖
=0

(𝐾 − 𝐾+
𝑖
) + 1/𝜉

1 + 2/𝜉

(
𝐾

𝐾+
𝑖

)
𝑝
𝐾 +
𝑖

𝑖
𝑞
𝐾−𝐾 +

𝑖

𝑖
=

1
𝜉𝐾

+ 𝑞𝑖
1 + 2

𝐾 𝜉

.

Under Assumption 2 and Assumption 3, by using the deriva-
tions in [8], 𝑞𝑖 ≤

√
2𝜎𝑖

3 |𝑔 (𝑛)
𝑖

|√𝑛b
holds true. Hence, an upper bound

on the stochasticity-induced error can be obtained as
𝑞∑︁
𝑖=1

|𝑔 (𝑛)
𝑖

|𝑃err
𝑖 ≤

1
𝜉𝐾

1 + 2
𝐾 𝜉

‖g(𝑛) ‖1 +
1

√
𝑛b

√
2/3

1 + 2
𝐾 𝜉

‖σ‖1 .

Based on Assumption 1, we can show that

𝐹 (w(0) ) − 𝐹∗ ≥ 𝐹 (w(0) ) − E
[
𝐹 (w(𝑁 ) )

]
= E

[
𝑁−1∑︁
𝑛=0

𝐹 (w(𝑛) ) − 𝐹 (w(𝑛+1) )
]

≥ E
[
𝑁−1∑︁
𝑛=0

𝜂

1 + 2
𝐾 𝜉

‖g(𝑛) ‖1 −
𝜂2

2
‖L‖1 −

𝜂
√
𝑛b

2
√

2/3
1 + 2

𝐾 𝜉

‖σ‖1

]
.

(15)

By rearranging the terms in (15) and using the expressions for
𝑛b and 𝜂, (12) is reached.

Theorem 1 shows that when 𝜉 and 𝐾 are large, the conver-
gence with the proposed scheme in fading channel is similar
to the one with signSGD in an ideal channel [8, Theorem 1].

D. Implementation Details, Trade-offs, and Comparisons

The main difference of the proposed scheme as compared
to the approaches in [6] and [7] is that it does not need TCI
at the EDs and prevents the loss of the gradients due to the
truncation. As opposed to the methods in [9] and [10], it also
does not require CSI at the ES or multiple antennas. Therefore,
the proposed scheme offers practical distributed learning in
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Fig. 2. Test accuracy results in fading channel (ITU EPA). The FEEL with the PPM-MV works without the CSI at the EDs and ES (𝑛b = 64).

mobile networks. The second major difference of the proposed
scheme is that it leads to an interesting trade-off between
PMEPR and resource utilization as shown in Section IV. For
a given 𝑀gap, as 𝑀pulse increases, the pulse energy distributes
more evenly in time and the amplitude decreases as less
votes are carried. This results in a decreasing PMEPR, but
more resource consumption. The shortcoming of the proposed
scheme is that it consumes a larger number of DFT-s-OFDM
symbols as compared to OBDA. Although this appears to be a
limitation, we emphasize that the proposed method eliminates
the non-negligible channel estimation overhead and is immune
to the time-variations of the channel and time synchronization
error. Finally, we choose 𝑠 (𝑛)

𝑘,𝑖
as random QPSK in this study

since this is implementation-friendly and randomizes 𝑒+
𝑖

and
𝑒−
𝑖

in a static channel, which is needed for obtaining the correct
MV probabilistically, as discussed in Section III-C.

IV. NUMERICAL RESULTS

We consider a handwritten-digit recognition learning task
over a FEEL system, in which we compare the proposed
scheme with OBDA [7]. The learning task uses the MNIST

database that contains labeled handwritten-digit images of size
28 × 28, from 0 to 9. 20000 training images are randomly
partitioned into equal shares for 𝐾 ∈ {10, 50} EDs. We
consider a convolutional neural network (CNN) for the model.
It consists of one 5 × 5 and two 3 × 3 convolutional layers,
each consisting of 20 filters, and the subsequent layers to
each are a batch normalization and rectified-linear unit (ReLU)
activation layer. Following the final ReLU layer, a fully-
connected layer of 10 units corresponding to the 0 to 9 digits
and a softmax layer are utilized. The learning rate is set to
0.01 and 𝑛b = 64. For the test accuracy calculations, we use
10000 test images given in the database. Our model contains
𝑞 = 123090 learnable parameters, which corresponds to 𝑆 = 52
OFDM symbols for OBDA with 𝑀 = 1200 subcarriers. The
OFDM symbol duration 𝑇s and the threshold for TCI are set
to 66.67 𝜇s and 0.2, respectively. To test FEEL, two different
uplink signal-to-noise ratios (SNRs) (i.e., 1/𝜎2

n ) of 0 dB and
20 dB are considered. ITU Extended Pedestrian A (EPA) with
no mobility is considered for the fading channel, and the chan-
nels between the EDs and ES are regenerated to capture the
long-term channel variations. The root-mean-square (RMS)
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Fig. 3. Temporal characteristics.

delay spread of the EPA channel is 𝑇rms = 43.1 ns. As a
rule of thumb, we assume that the maximum-excess delay is
𝑇chn , 4𝑇rms = 172.5 ns. We set the sample rate to 30.72 Msps
and 𝑁IDFT = 2048. Unless otherwise stated, we assume
that the maximum synchronization error among the EDs is
𝑇sync = 55.6 ns (i.e., the reciprocal of the signal bandwidth
and approximately 2 samples within the CP window). We set
𝑀gap to 7 to ensure that 𝑀gap ≥ d(𝑇chn + 𝑇sync)/𝑇spacinge for
𝑇spacing = 55.6 ns. The number of DFT-s-OFDM symbols for
𝑀pulse = 1, 𝑀pulse = 3, 𝑀pulse = 8, and 𝑀pulse = 13 can be
then calculated as 1642, 2052, 3078, and 4108, respectively.
The simulations are performed in MATLAB.

The test accuracy results are provided in Fig. 2. The OBDA
provides high test accuracy in the case of ideal synchronization
when TCI presents. This is expected because the MV calcula-
tion requires a coherent superposition of the QPSK symbols.
However, it completely fails in the absence of TCI. It is also
very sensitive to time synchronization errors. On the other
hand, PPM-MV results in high test accuracy without TCI or
CSI at the ES as it exploits non-coherent techniques for the
MV computation and immune against time synchronization
errors. Fig. 3 details the temporal characteristics of OBDA
and PPM-MV. We see that the signal can be very peaky with
OBDA when all the QPSK symbols are similar to each other.
For PPM-MV, this is not an issue as the votes are represented
as separated pulses in time. Fig. 4 shows the PMEPR for
both OBDA and PPM-MV. We show the trade-off that 𝑀pulse
presents. For OBDA, the PMEPR can be exceptionally high. In
contrast, PPM-MV mitigates the PMEPR aggressively, which
is an important for factor for radios equipped with non-linear
power amplifiers. The trade-off displayed is that as 𝑀pulse
rises, the PMEPR curve diminishes, but, as demonstrated in
Fig. 3, more resources in time are consumed.

V. CONCLUDING REMARKS

Equalization methods used in traditional communications
cannot be trivially used with the state-of-the-art AirComp
schemes due to the superposition in the wireless channel.
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Fig. 4. PMEPR distributions.

This issue causes a major challenge for practical AirComp.
To address this problem, in this study, we propose an
AirComp method that relies on non-coherent detection and
PPM symbols. We show how to design the PPM symbols
with DFT-s-OFDM by taking time-synchronization errors into
account. The main benefits of the proposed scheme as com-
pared to the state-of-the-art solutions are that it eliminates CSI
at the EDs and ES and provides a high test accuracy even
when time synchronization is imperfect. Therefore, it offers
a promising solution for enabling distributed learning over
wireless networks. Also, it reduces the PMEPR as compared to
OBDA, where the improvement on PMEPR can be adjusted at
the expense of consuming more resources in the time domain.
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