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Abstract—In order to support delay-sensitive applications
of vehicle equipment (V-UE) in the Internet-of-Vehicles (IoV)
systems, it is necessary to allow V-UEs to offload their computa-
tionally intensive applications to a cloud or fog computing server.
Existing works mainly focused on minimising the transmission
and processing delays while ignoring the mobility of V-UEs
and/or the queueing delays at the cloud or fog servers. In this
paper, we consider a vehicular network supported by a mixed
fog and cloud computing system, where the queues at the fog
node (FN) and the cloud centre are modelled following the
M/M/1 and M/M/C queueing models, respectively. To minimise
the maximum service delay (which includes the transmission
delay, queueing delay and processing delay) among the V-UEs,
we propose to jointly optimise the offloading decisions of all V-
UEs and the computation resource allocation at the FN while
considering the V-UEs’ mobility and queueing delays at the
FN and cloud centre. This is achieved by devising a fireworks
algorithm-based offloading decision optimisation algorithm in
conjunction with a bisection method-based FN computation
resource allocation scheme. Simulation results demonstrate that
our proposed algorithm achieves a much lower maximum service
delay than the benchmarks.

Index Terms—Vehicular networks, computation offloading,
fireworks algorithm, cloud/fog computing, queueing delay

I. INTRODUCTION

Intelligent transportation systems and the Internet of Ve-

hicles (IoV) have drawn a growing interest from both the

academia and the industry in the last few years. As vehicle

user equipment (V-UE) has limited capacity to process its

applications, while cloud computing may lead to a large of-

floading delay, fog computing has been considered to provide

storage and computation services to nearby V-UEs with a

much reduced offloading delay [1].

To support delay-sensitive applications of V-UEs, compu-

tation offloading has been investigated to allow V-UEs to

offload their computationally intensive applications to a cloud

or fog computing server. Zhu et al. [2] designed a vehicu-

lar fog computing system to shorten the average offloading

latency of V-UEs while satisfying the application-specific

requirements. Lyu et al. [3] proposed to maximise a system

utility metric defined based on the task completion time and

energy consumption of individual UE by jointly optimizing

the offloading decisions and communication and computation
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resources of multiple UEs in a proximate cloud scenario. Liu

et al. [4] proposed an Mobile Edge Computing (MEC) based

computation offloading scheme for a vehicular network to

improve the quality of experience (QoE) of vehicle users by

jointly optimising the vehicular terminal’s computation time,

computation resources and energy consumption. Feng et al.

[5] proposed a distributed iterative algorithm to minimise task

completion delay and energy consumption at each UE side,

while satisfying the constraints of task offloading deadline in

a MEC system. Wang et al. [6] proposed a branch-and-bound

algorithm to minimise the average response time for V-UEs in

a fog-enabled real-time traffic management system. Du et al.

[7] designed a mixed fog/cloud system for mobile applications

offloading and proposed to minimise the maximum delay

among all mobile devices by jointly optimising the offload-

ing decisions, resource allocation and energy consumption.

However, the above existing works on cloud/fog/MEC based

computation offloading have not sufficiently considered the

mobility of vehicles that may increase the delay and energy

consumption of computation offloading.

Taking into account the high mobility of vehicles, Zhou et

al. [8] proposed a contract-matching approach for computa-

tion resource allocation and task assignment optimization to

minimise the sum offloading delay of all V-UEs in a vehicular

fog-computing system. Liu et al. [9] proposed a one-to-many

matching-based task offloading algorithm to minimise the total

offloading delay of all the V-UEs in a vehicular edge comput-

ing system. Wang et al. [10] proposed an ellipsoid method

based computation offloading algorithm to jointly minimise

the sum computation delay and the energy consumption of

V-UEs in an MEC enabled vehicular network. Xu et al. [11]

proposed a non-dominated genetic algorithm to minimise the

total offloading delay of all V-UEs by jointly optimising the

computation resource utilisation of multiple edge nodes. We

note that, the above existing works ignored the queueing delay

in their offloading models, but tasks may need to wait in

queues at the computing servers before they are processed.

The queueing delay will increase the offloading delay of V-

UEs and should be considered in making offloading decisions

for V-UEs. In [12], a priority-aware task offloading scheme

was proposed to minimise the overall offloading time of all IoT

devices’ tasks by leveraging multi-level feedback queueing in

a fog-computing system, where the offloading decisions were

made according to the priority of each task. The authors in [13]

proposed to maximise the total sum-rate of an MEC-enabled



vehicular network by jointly optimising the computation of-

floading decisions, power allocation and channel assignment,

but neglected local processing or mobility of V-UEs.

In this paper, in order to enable low-latency, computation-

intensive applications (e.g., live streaming video [14]) of V-

UEs while guaranteeing fairness among them, we minimise

the maximum service delay (which includes the transmission

delay, queueing delay and processing delay) among all V-

UEs in a vehicular network supported by a mixed fog/cloud

computing system. More specifically, we propose a three-

layer (vehicle-fog-cloud) computation offloading framework

to model the service delays of V-UEs locally processing or

offloading their computationally intensive applications to the

cloud or fog servers, where the queues at the fog node (FN)

and the cloud centre are modelled following the M/M/1 and

M/M/C queueing models, respectively. Based on the modeled

service delays, the maximum service delay among all V-UEs

is minimised by devising a mobility and queueing-based of-

floading decision optimisation algorithm (MQA), which jointly

optimises the computation offloading decisions of all the V-

UEs while considering their mobility and potential queueing

delays at the FN and cloud centre, in conjunction with a

bisection method-based algorithm that optimises the FN com-

putation resource allocation for the fog-processing V-UEs. The

performance of the proposed algorithms is evaluated through

simulations in comparison with the benchmarks, including

pure local processing, fog processing, cloud processing, and

random processing.

II. SYSTEM MODEL

In this section, we first introduce the three-layer architecture

of a vehicle-fog-cloud network, then derive the service delay

of the local, fog and cloud processing modes, respectively.

A. Vehicle-Fog-Cloud Architecture

FN

Cloud 

CentreV2I Links

Wired Link

Fig. 1. System architecture of a three-layer computing system.

We consider a three-layer system model as shown in Fig.1.

The vehicle layer is composed of V V-UEs, the fog layer in-

cludes a fog node (FN) collocated with a roadside unit (RSU),

and the cloud layer is mainly a distant cloud centre with C
cloud servers. Denote the set of V-UEs and cloud servers as

V = {1, 2, ..., V } and C = {1, 2, ..., C}, respectively. All

V-UEs in coverage are connected to the FN by vehicle-to-

infrastructure (V2I) wireless links, while the FN is connected

to the cloud centre by a wired link.

For simplicity, we assume that each V-UE has one ap-

plication to process and the road-trip time (RTT) can be

ignored. A V-UE may process its application by itself (i.e.,

local processing) or offload the application to the FN or a

cloud server for remote processing. Firstly, a V-UE sends

an offloading request (including the information about its

application, location, velocity, heading direction and channel

condition) to the manager in the FN [7]. Upon receiving the

request, the manager optimises the offloading decisions of all

V-UEs considering the offloading requests of other V-UEs and

the available resources in the FN and in the cloud centre.

The offloading decision for V-UE v is denoted by

xv, yv, zv ∈ {0, 1}, where xv = 1, yv = 1, zv = 1 indicate

that the application is processed by V-UE v itself, by the FN,

or by a cloud server, respectively; otherwise, xv = 0, yv =
0, zv = 0; and we have

xv + yv + zv = 1, ∀v ∈ V. (1)

Denoting the offloading decisions matrix of all V-UEs by O,

where the vth row contains the offloading decision for V-UE

v, we have

O =







x1, y1, z1
...

...
...

xV , yV , zV







V×3

. (2)

B. Transmission Delay
If the application of a V-UE is locally processed, there is

no transmission delay for this application. If the application of

a V-UE is for remote processing, then the transmission delay

for uploading the input data of the application to a computing

server can be calculated according to the offloading decision.

Fog processing : If the application is to be processed by

the FN, the maximum achievable transmission rate (in bit/s)

from V-UE v to the FN for a selected channel is given by

rv,f = Wf log2

(

1 +
Pgv,f
N0

)

, (3)

where Wf is the bandwidth of a selected resource block (RB)

(in Hz) between a V-UE and the FN, in order to avoid severe

interference, we assume that each V2I link is allocated an

orthogonal RB, i.e., there is no interference between V2I links;

P is the V-UE transmission power that is assumed to be the

same for all V-UEs [12]; gv,f is the channel power gain from

V-UE v to the FN [15]; and N0 is the additive white Gaussian

noise (AWGN) power at the FN.

The transmission delay from V-UE v to the FN is given by

T trans
v,f =

Dv

rv,f
, (4)

where Dv is the data size (in bits) of V-UE v’s application.

Cloud processing : If the application is to be processed

by a cloud server, then the application is forwarded by the FN

to the cloud centre. Given rf,c (in bit/s) as the transmission

rate on the high-speed wired link from the FN to the cloud

centre, the transmission delay from the FN to the cloud centre

is given by

T trans
v,f,c =

Dv

rf,c
. (5)

The total transmission delay from V-UE v to the cloud

server is given by

T trans
v,c = T trans

v,f + T trans
v,f,c . (6)



C. Queueing Delay

We consider a time-slotted system, where t = {0, 1, ..., t}
denotes the set of time slots and the length of each time-slot

is ∆t. When t < 0, both the queues at the FN and the cloud

centre are empty.

Fog processing : The queue at the FN follows the M/M/1

queueing model. Based on Little’s formula, the average queue-

ing delay of an application in the FN queue is given by [16],

Twait
f =

ρf
µf − λf

, (7)

where λf ∈ [1, 3] is the rate of application arrival, which

follows a Poisson process, µf is the service rate of the FN,

and ρf = λf/µf < 1 is the utilization rate of the FN.

Cloud processing : The queue at the cloud centre follows

the M/M/C model [16]. We assume the same service rate for

each cloud server, i.e., µcloud. The applications arrive at the

cloud centre also following a Poisson process with the rate of

λcloud. Then, the utilization rate of the cloud centre is given

by ρcloud = λcloud/(Cµcloud) < 1, where it is assumed that

each of the C cloud servers has enough capacity to process

the received applications.

The average queueing delay of an application at the cloud

centre is given by [16]

Twait
c =

(αcloud)
Cp0

C!(Cµcloud)(1− ρcloud)2
, (8)

where αcloud = λcloud/µcloud and

p0 =
1

(

C−1
∑

n=0

(αcloud)
n

n!
+

(αcloud)
C

C! (1− ρcloud)

) . (9)

D. Processing Delay
The application being processed by the V-UE locally, the

FN, or a cloud server will lead to a different processing delay.

Local processing : Denote the local processing capability

of V-UE v by f local
v (in CPU cycles/s) , then the processing

delay of local processing can be expressed as

T proc
v =

Av

f local
v

, (10)

where Av represents the total number of CPU cycles are

required to process the application of V-UE v and it is given

by Av = Dvλv , where λv is the processing density (in CPU

cycles/bit) of the application.

Fog processing : If the application of V-UE v is processed

by the FN, given the fog processing capability of V-UE v as

ffog
v (in CPU cycles/s), the fog-processing delay is given by

T proc
v,f =

Av

ffog
v

. (11)

Cloud processing : If the application is processed by a

cloud server, denoting the cloud processing capability for V-

UE v by f cloud
v (in CPU cycles/s), then the cloud-processing

delay can be expressed as

T proc
v,c =

Av

f cloud
v

. (12)

E. Service Delay

The service delay of an application may include the trans-

mission delay, the queueing delay and the processing delay

according to the offloading decision. Thus, the service delay

of an application of V-UE v is given by

Tv = xvT
local
v + yvT

fog
v + zvT

cloud
v , (13)

where T local
v is given in (10) as the application does not need

to be transmitted to any remote server, and

T fog
v = T trans

v,f + T proc
v,f + Twait

f , (13a)

T cloud
v = T trans

v,c + T proc
v,c + Twait

c . (13b)

III. PROBLEM FORMULATION AND PROPOSED

ALGORITHM

In this section, we first formulate the min-max service delay

problem, then propose a mobility and queueing based offload-

ing decision optimisation algorithm, in conjunction with a

bisection method based FN computation resource allocation

algorithm to solve the min-max problem.

A. Problem Formulation

We propose to minimise the maximum service delay among

all V-UEs by jointly optimising the offloading decisions

O and the FN computation resource allocation ffog =
{ffog

1 , ..., ffog
V

}. To reduce the computation complexity, we

offload applications via selected channels to neglect the com-

munication resource allocation issue [12] and assume that the

cloud computation resources for each V-UE are constant at the

cloud centre [7]. Accordingly, we formulate the optimisation

problem as follows,
P1 : min

O,ffog
max
v∈V

Tv (14)

s.t. xv, yv, zv ∈ {0, 1}, ∀v ∈ V, (14a)

xv + yv + zv = 1, ∀v ∈ V, (14b)
∑

v∈V

yvf
fog
v ≤ F fog, (14c)

0 ≤ f local
v ≤ ffog

v ≪ f cloud
v , ∀v ∈ V, (14d)

yvT
fog
v + zvT

cloud
v ≤ τv, ∀v ∈ V, (14e)

where F fog is the total computation capability in the FN

and τv is the estimated service delay threshold for V-UE v;

(14a) and (14b) are the constraints on the binary offloading

decision indicators for each V-UE; (14c) requires that the total

allocated computation resources at the FN cannot exceed its

computation capability; (14d) indicates that for each V-UE, the

amount of computation resource available at the cloud centre

is the largest, followed by that at the FN, while that available

for local processing is the smallest but should be non-negative;

and (14e) indicates that the service delay should be kept below

the estimated threshold for each V-UE.

B. Mobility and Queueing Based Offloading Decision Optimi-

sation Algorithm

For any given allocation of computation resources at the FN,

we propose a mobility and queueing based offloading decision

optimisation algorithm (MQA), based on the traditional fire-

works algorithm [17], to solve the formulated problem (14).

The MQA is summarised in Algorithm 1. Firstly, we initialise



I random offloading decisions for all V-UEs (O
(0)
1 , ...,O

(0)
I ) in

the solution space. In the meantime, we calculate the service

delay threshold of V-UE v for remote processing based on

its information (i.e., its position with respect to the FN, its

moving direction and velocity) as follows,

τv =
dv
sv

, ∀v ∈ V, (15)

where dv is the distance between V-UE v and the coverage

edge of the FN in its direction of moving, and sv is the velocity

of V-UE v.

For all v ∈ V and i = 1, ..., I , the estimated service delay of

V-UE v based on the corresponding initial offloading decision

in O
(0)
i for remote-processing, i.e., T fog

v in (13a) and T cloud
v

in (13b), will be compared with its service delay threshold

τv . If max{T fog
v , T cloud

v } ≤ τv , then the smallest estimated

service delay between T fog
v and T cloud

v will be selected and

the offloading decision for V-UE v in O
(0)
i will be updated

accordingly. If T fog
v ≤ τv and T cloud

v > τv (T cloud
v ≤ τv

and T fog
v > τv), then T fog

v (T cloud
v ) will be selected and the

offloading decision for V-UE v in O
(0)
i will be updated to

be fog processing (cloud processing). Otherwise, V-UE v can

only process its application locally and the offloading decision

for V-UE v in O
(0)
i is updated accordingly. After the all the

initial offloading decision matrices (O
(0)
1 , ...,O

(0)
I ) have been

updated, they become the initial fireworks, O
(1)
i , i = 1, ..., I .

In the lth iteration (l = 1, ..., L, where L is the maximum

allowed iteration), each firework O
(l)
i generates ŝ

(l)
i new of-

floading decision matrices, which are called explosion sparks

[17]. Each explosion spark of firework O
(l)
i is generated by

randomly choosing α rows (where α ∈ [1, V )) of O
(l)
i and

performing left circular shift by 1 position on each chosen

row, while the other (V − α) rows of the explosion spark

are the same as the corresponding ones of firework O
(l)
i . We

take the objective function of (14) as the fitness function, i.e.,

F (O
(l)
i ) = max

v∈V
Tv(O

(l)
i ), and the number of explosion sparks

generated by firework O
(l)
i is given by

ŝ
(l)
i = ceil









M
Fmax − F (O

(l)
i ) + ǫ1

I
∑

i=1

(Fmax − F (O
(l)
i )) + ǫ1









, (16)

where ceil(·) denotes the ceiling function, M is a constant

parameter for constraining the number of explosion sparks,

Fmax = max
i

(F (O
(l)
i )), and ǫ1 is an extremely small number

to avoid zero division errors.

In addition to the explosion sparks, m̂ (1 ≤ m̂ ≤ I) muta-

tion sparks are generated by randomly selecting m̂ fireworks

from the I fireworks (O
(l)
1 , ...,O

(l)
I ) and randomly resetting

some offloading decisions therein.

For each firework, explosion spark and mutation spark, the

FN computation resource allocation is obtained by using the

bisection method [18] (which will be presented in Section

III-C), and accordingly the fitness function value is calcu-

lated. Among all the fireworks, explosion sparks and mutation

sparks, the one with the smallest fitness value is selected as

firework O
(l+1)
1 for the next iteration. Denoting the set of

all fireworks, explosion sparks and mutation sparks excluding

O
(l+1)
1 in the lth iteration by R

(l)
est (i.e., O

(l+1)
1 /∈ R

(l)
est), the

other (I - 1) fireworks (O
(l+1)
2 , ...,O

(l+1)
I ) are selected from

R
(l)
est according to the roulette wheel selection method [17],

where the probability of A
(l)
n (A

(l)
n ∈ R

(l)
est, n = 1, ..., |R

(l)
est|)

being selected is determined based on the Manhattan distance

[19] as follows,

p(A(l)
n ) =

R(A
(l)
n )

|R
(l)
est|
∑

m=1
R(A

(l)
m )

, (17)

where R(A
(l)
n ) is the sum of Manhattan distances between

matrix A
(l)
n and all the other matrices in set R

(l)
est, which is

given by

R(A(l)
n ) =

|R
(l)
est|

∑

m=1,m 6=n

‖ A
(l)
n − A

(l)
m ‖ . (18)

When the iteration converges or reaches the maximum

allowed iteration, among all the fireworks, explosion sparks

and mutation sparks, the one with the smallest fitness value

is chosen as the optimal offloading decision O
∗ and the cor-

responding computation resource allocation at the FN returns

the optimal fog computation resource allocation f
fog∗.

C. Fog Computation Resource Allocation
In the lth iteration, for each offloading decision matrix

(O
(l)
1 , ...,O

(l)
I ), the problem in (14) reduces to the optimisation

of computation resource allocation at the FN, i.e.,

P2 : min
f fog

max
v∈Vfog

Av

ffog
v

+∆v (19)

s.t. (14c), (14d),

where Vfog denotes the set of fog-processing V-UEs, for ∀v ∈
Vfog, xv = zv = 0, yv = 1, and ∆v = Dv/rv,f + Twait

f is a

constant. Letting Θ = max
v∈Vfog

{Av/f
fog
v + ∆v}, the problem

P2 is converted to

P3 : min
f fog,Θ

Θ (20)

s.t. (14c), (14d),

Av

ffog
v

+∆v ≤ Θ, ∀v ∈ Vfog. (20a)

Since Av/f
fog
v ≥ 0 and based on (14c) and (20a), we

have
∑

v∈Vfog

Av/(Θ − ∆v) ≤
∑

v∈Vfog

ffog
v ≤ F fog . As

Av/(Θ−∆v) is a monotonically decreasing function of Θ, the

maximum service delay among all the fog-processing V-UEs is

minimised when
∑

v∈Vfog

Av/(Θ−∆v) =
∑

v∈Vfog

ffog
v = F fog ,

and P3 can be converted to
P4 : min

Θ
Θ (21)

s.t.
∑

v∈Vfog

Av

Θ−∆v

= F fog. (21a)

We adopt the bisection method to solve problem P4 as

summarised in Algorithm 2, where V fog is the number of

fog-processing V-UEs; Θ∗ denotes the minimum value of Θ,

and the optimal fog computation resource allocation for V-UE

v is given by ffog∗
v = Av/(Θ

∗ −∆v).



Algorithm 1 Mobility and Queueing Based Offloading Deci-

sion Optimisation Algorithm (MQA)

1: Generate I random fireworks {O
(0)
1 , ...,O

(0)
I }.

2: For each firework, randomly allocate fog computation resources.
3: for v = 1 : V do
4: Calculate the service delay threshold of V-UE v using (15).
5: for i = 1 : I do
6: Calculate the estimated service delay of V-UE v using (13).
7: if min{T fog

v , T cloud
v } > τv then

8: The (v, 1)th element of O
(0)
i is substituted by xv = 1.

9: else if T fog
v < T cloud

v then

10: The (v, 2)th element of O
(0)
i is substituted by yv = 1.

11: else
12: The (v, 3)th element of O

(0)
i is substituted by zv = 1.

13: end if
14: end for
15: end for
16: return The updated fireworks as {O

(1)
1 , ...,O

(1)
I } .

Input: l = 1, F (0) = 0, ǫ = 10−6.
17: while l ≤ L do
18: for i = 1 : I do
19: For firework O

(l)
i , run Algorithm 2 and calculate its fitness

value.
20: Calculate ŝ

(l)
i according to (16).

21: Generate ŝ
(l)
i explosion sparks from firework O

(l)
i .

22: For each explosion spark, run Algorithm 2.
23: Calculate the fitness value of each explosion spark.
24: end for
25: Generate m̂ mutation sparks.
26: For each mutation spark, run Algorithm 2.
27: Calculate the fitness value of each mutation spark.
28: The firework, explosion spark or mutation spark with the

smallest fitness value is chosen as O
(l+1)
1 , and the smallest

fitness value is denoted by F (l).

29: if |F (l) − F (l−1)| < ǫ then
30: break;
31: else
32: Fireworks (O

(l+1)
2 , ...,O

(l+1)
I ) are selected according to

(17), (18).
33: l = l + 1;
34: end if
35: end while
36: return The optimal offloading decision O

∗ = O
(l+1)
1 if l < L,

otherwise O
∗ = O

(L+1)
1 , and the corresponding fog computation

resource allocation f fog
∗

.

Algorithm 2 Fog Computation Resource Allocation

1: Initialise the precision ǫ2 > 0, Θdown = max
v∈Vfog

∆v

and Θup =
∑

v∈Vfog

(AvV
fog/F fog +∆v)

2: repeat
3: Θ = (Θup +Θdown)/2.

4: if
∑

v∈Vfog

(Av/Θ−∆v) > F fog then

5: Θdown = Θ.
6: else
7: Θup = Θ.
8: end if
9: until |Θup −Θdown| ≤ ǫ2.

10: Θ∗ = |Θup −Θdown|/2.

11: Output: f fog
∗

IV. SIMULATION RESULTS

In this section, we present the simulation results. We assume

a single cell scenario with one FN located in the centre of

a 500 m × 500 m urban area as illustrated in Fig.1. There

is a straight two-lane road (with one lane in each direction)

passing through the middle of the considered square area,

dividing the area into two equal rectangles. The width of each

lane is 6 metres. Moreover, we assume that all the V-UEs are

uniformly distributed in the rectangular area of 12m x 500m

spanned by the two-lane straight road, where the movement

direction of each V-UE is determined by the direction of the

line that it locates in, and the local processing capability f local
v

is uniformly distributed in [50,400] M cycles/s. All parameter

values used in the simulation are given in TABLE I [7], [15],

[14], unless otherwise specified.
TABLE I

SIMULATION PARAMETERS [7], [15],[14]

Parameters Value

Transmit bandwidth, Wf 180 kHz

Transmit power of V-UE v, Pv 200 mW

The noise power density at the FN, N0 -174 dBm/Hz

Data size of an application of V-UE v, Dv 0.42 MB

Processing density of the application of V-UE v, λv 297.62 cycles/bit

Total computation capability of the FN, F fog
2 G cycles/s

Cloud processing capability for V-UE v, fcloud
v 5 G cycles/s

The service rate of the FN/cloud server, µf/µc 6

Wired link rate between the FN and the cloud, rf,c 1 Mb/s
The number of cloud servers, C 2

The average vehicular velocity 70 km/h
The number of fireworks, I 6

The number of total explosion sparks, M 4

The number of mutation sparks, m̂ 1

The maximum number of iterations of FA, L 100

Fig.2 plots the maximum service delay Tservice versus the

iterations of the outer loop in Algorithm 1. We can see that

Algorithm 1 converges after the third iteration.
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Fig. 2. Convergence of Algorithm 1, where V = 5.

Fig. 3 shows the maximum service delay versus the number

of V-UEs, where ‘MQA’ denotes our proposed Algorithm 1,

‘Local-Processing’, ‘Fog-Processing’ and ‘Cloud-Processing’

denote the cases where all applications of the V-UEs are pro-

cessed locally, by the FN, or by the cloud servers, respectively,

and ‘Random-Processing’ denotes the case where each V-UE’s

application has the equal probability of being processed by

itself locally, the FN, or a cloud server. We can see that the

maximum service delay increases with the number of V-UEs in



all the considered cases, among which MQA performs the best

for any given number of V-UEs due to the joint optimisation

of offloading decisions for all the V-UEs while considering

their mobility and queueing delays at the FN and cloud centre.

When the number of V-UEs is lager than 7, fog-processing

leads to the highest maximum service delay. This is due to

the long queueing and processing delays caused by many

applications sharing the limited computation capacity of the

FN.
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Fig. 3. Maximum service delay versus the number of V-UEs.

Fig. 4 and Fig. 5 show how the individual application’s

data size Dv and processing density λv affect the maximum

service delay, respectively, where V = 5. We can see that

the larger the data size or the higher processing density of

each application, the higher the maximum service delay in

each considered case. MQA always performs the best among

all the considered cases. Moreover, local-processing is most

significantly affected by a large data size or a high processing

density of an application, due to the limited computation

capability at each V-UE.
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Fig. 4. Maximum service delay versus the data size of the application.

V. CONCLUSION
In this paper, we have proposed a mobility and queueing-

based offloading decision optimisation algorithm, in conjunc-

tion with a bisection method-based FN computation resource

allocation algorithm to minimise the maximum service delay

of all V-UEs in an IoV system, where each V-UE may offload

its task to a fog or cloud computing server or process it

locally. The simulation results demonstrate that the proposed

algorithms achieve a much lower maximum service delay

than local-processing, fog-processing, cloud-processing, and

random-processing.
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Fig. 5. Maximum service delay versus the processing density.
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