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Abstract—In the framework of 5G-and-beyond Industry 4.0,
jamming attacks for denial of service are a rising threat which
can severely compromise the system performance. Therefore,
in this paper we deal with the problem of jamming detection
and mitigation in indoor factory deployments. We design two
jamming detectors based on pseudo-random blanking of sub-
carriers with orthogonal frequency division multiplexing and
consider jamming mitigation with frequency hopping and ran-
dom scheduling of the user equipments. We then evaluate the
performance of the system in terms of achievable block error rate
(BLER) with ultra-reliable low-latency communications traffic
and jamming missed detection probability. Simulations are per-
formed considering a 3rd Generation Partnership Project spatial
channel model for the factory floor with a jammer stationed
outside the plant trying to disrupt the communication inside the
factory. Numerical results show that jamming resiliency increases
when using a distributed access point deployment and exploiting
channel correlation among antennas for jamming detection, while
frequency hopping is helpful in jamming mitigation only for strict
BLER requirements.

Index Terms—5G, 6G, URLLC, jamming detection, physical
layer security, Industry 4.0

I. INTRODUCTION

Security has been one of the main drivers in the design of
the fifth generation (5G) of mobile communication systems
by the 3rd Generation Partnership Project (3GPP). In fact, 5G
provides several security measures at higher layers to guar-
antee authentication, privacy and data integrity [1]. Moreover,
radio jamming by a malicious device has also been recognized
as an important type of security attack that can threaten the
performance of a 5G deployment, in particular in Industry
4.0 scenarios. Despite the very affordable cost with a starting
price of a few hundred dollars [2], some of these devices
can be quite advanced and smart, e.g., the so-called reactive
jammers [3], as capable to sense the channel and remain
quiet until an ongoing legitimate transmission is detected.
In fact, ultra-reliable low-latency communications (URLLC)
are inherently more susceptible to the interference impact of
such a denial of service attack due to their stringent quality
of service requirements. For instance, a jammer stationed
outside a factory that disrupts the communication among the
devices inside the plant can cause large economic losses to the
factory owner if production needs to be stopped. Furthermore,

handling jamming attacks has already been recognized as a
very relevant theme also for sixth generation (6G) technologies
[4], with physical layer security expected to play an important
role in future mobile networks [5].

A jamming resilient communication system must provide
both a) detection, to discriminate between the presence of
a jammer and legitimate interference, and b) mitigation ca-
pabilities, to limit the caused damage by applying ad-hoc
techniques. Non-reactive jammers can be detected by moni-
toring basic statistics like the received signal strength or the
carrier sensing time, whereas the detection of smart jammers
require advanced techniques combining several statistics [6].
In [7] authors propose a detection technique based on pseudo-
random hopping of the scheduled user equipments (UEs)
among the pilot sequences and the application of a jamming-
resilient combiner exploiting massive multiple-input multiple-
output (MIMO) base stations. In our previous work [8], we
proposed a novel method to detect smart jamming attacks
based on pseudo-random blanking of subcarriers with or-
thogonal frequency division multiplexing (OFDM). Regarding
the mitigation problem, several schemes have already been
studied, for instance applying beamforming, direct sequence
spread spectrum, and power control [9]. In fact, once a jammer
is detected and characterized, an off-the-shelf interference
management scheme can be applied tailoring it to the specific
scenario, e.g., with beamforming creating nulls toward a
jammer whose channel can be estimated in the detection phase.

In this paper we extend the jamming detection proposal in
[8] by providing realistic performance evaluations that con-
sider indoor factory deployments with 3GPP spatial channel
model. Moreover, we propose a new detector that exploits an-
tenna correlation at the receiver. Finally, we consider jamming
mitigation techniques with frequency hopping and random
scheduling of the UEs. The benefits of the proposed schemes
are evaluated in terms of jamming detection probability and
block error rate (BLER) performance with URLLC.

Notation. We use (·)H to denote conjugate transpose. ‖x‖
indicates the norm of vector x. |·| denotes the absolute value.
[x]n is the n-th entry of vector x. F−1X (x) denotes the inverse
of the cumulative distribution function (CDF) of the random
variable (r.v.) X evaluated at x.
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Fig. 1. Representation of the considered uplink scenario for the partially
distributed deployment (NAP = 4) and a total of Nant = 16 antennas.

II. SYSTEM MODEL

We consider an industrial scenario as in Fig. 1 with a factory
hall of dimensions 100×50×6 m, and with NAP access points
(APs) mounted on the factory ceiling. For a fair comparison
among different deployments, we consider in the whole factory
a total of Nant omni-directional antennas so that each AP is
equipped with a square antenna array with N (AP)

ant = Nant/NAP
antennas. The following AP deployments are compared [10]:
• Centralized deployment: NAP = 1 AP placed at the center

of the factory hall;
• Partially distributed deployment: NAP = 4 APs located

such that the inter-AP distance (IAD) along the longest
side is 50m and the IAD along the shortest side is 25m.
An example of this deployment is reported in Fig. 1.

• Fully distributed deployment: NAP = 16 APs located such
that the IAD along the longest side is 25m and the IAD
along the shortest side is 12.5m.

We have NUE UEs active and each UE is randomly dropped
within the factory at an height of 1.5m, is equipped with
a single omni-directional antenna, and transmits with power
PUE = 10 dBm.

We assume a system operating at a central carrier frequency
of fC = 3.75GHz. Regarding the channel model, we consider
the proposal in [11], where the 3GPP indoor office (InO)
model is used as starting point and path-loss, shadowing,
and line of sight (LOS) probability values are chosen on
the basis of extensive measurements done in two different
operational factories. This novel indoor industrial (InI) model
encompasses different scenarios and here we consider the
dense factory clutter model with clutter-embedded APs (more
details in [11, Tab. 3]).

A. Numerology and resource allocation

We adopt an OFDM modulation compliant to the 5G nu-
merology with 60 kHz subcarrier spacing. The subcarriers are
grouped into physical resource blocks (PRBs), each consisting
of Nsc = 12 consecutive subcarriers over a transmission
interval of Nsymb = 14 OFDM symbols [1]. Therefore, each

PRB consists of N
(PRB)
RE = Nsc · Nsymb = 168 resource

elements (REs) and has a bandwidth of BPRB = 720 kHz.
We consider two scenarios for our system: a total bandwidth
of B = 20MHz (with a total number of PRBs NPRB = 25)
with NUE = 4 UEs, and a total bandwidth of B = 100MHz
(NPRB = 125) with NUE = 20 UEs: in both cases we set the
guard band to be 10% of B. We assume URLLC traffic, such
that each UE transmits a small packet of size C = 20 bytes
in each slot, with no retransmission opportunities because of
the tight latency constraint. We consider a resource allocation
where interference among the active UEs is managed by
allocating different UEs on different PRBs, i.e., the only
interference source in the system is the jammer. The PRBs
available for data transmissions are then evenly shared among
the UEs, that apply equal power allocation on them. More
details about the allocation of UEs to PRBs is part of the
jamming mitigation strategy and will be described in Section
III.

B. Jammer model

We consider an attacker stationed outside the factory at
height of 1.5m and dropped randomly within a rectangular
perimeter with sides d = 10m far from the factory walls (see
Fig. 1). The jammer is equipped with a single omni-directional
antenna element that transmits with power PJ, ranging from
20 dBm to 60 dBm [2]. Moreover, we assume the jammer
to allocate equal power on the attacked PRBs and consider
both a) a wide-band jammer that attacks the whole bandwidth
and b) a narrow-band jammer attacking a few PRBs but with
stronger power spectral density. Finally, we assume for the
jammer the same InI channel model as for the UEs inside the
factory, but adding a factory wall penetration loss modelled as
a Gaussian r.v. PLwall ∼ N (µP , σ

2
P ), with mean µP = 27.5 dB

and standard deviation σP = 6.5 dB [12, Tab. 7.4.3-2].

C. Imperfect channel state information (CSI)

We assume a time division duplex (TDD) setup with pilot
sequence length T = 16 [10]. Note that here we have no
pilot contamination as different UEs are scheduled on different
PRBs, but jamming affects channel estimation. Let hi,j be
the (1×N (AP)

ant )-dimensional channel vector from the i-th UE
to the j-th AP on a certain PRB, with i = 1, . . . , NUE, and
j = 1, . . . , NAP. The minimum mean squared error (MMSE)
estimate [ĥi,j ]n of [hi,j ]n can be defined as [10, Eq. (6)]:

[ĥi,j ]n =
γi,jT

1 + γi,jT
([hi,j ]n + zi) , (1)

where γi,j = P
(PRB)
UE,i σ2

hi,j
/σ2

w is the signal
to noise ratio (SNR) of UE i at AP j and
zi ∼ CN (0, (σ2

w + P
(PRB)
J σ2

hJ,j
)/(P

(PRB)
UE,i T )) is a complex

Gaussian r.v. representing noise and interference on channel
estimation. In particular, P

(PRB)
UE,i is the power of UE i

allocated to a single PRB, σ2
hi,j

denotes the large-scale fading
attenuation between UE i and AP j, and σ2

w is the noise
statistical power on a single PRB, computed considering a
noise figure of 7 dB at the receiver. Moreover, P (PRB)

J is the



jammer power allocated to a single PRB and σ2
hJ,j

is the
large-scale fading attenuation between the jammer and AP j.

D. Beamforming at the receiver

At the receiver, we assume joint reception (JR), such that
the signals received by the APs are combined in a central unit.
Since there is no interference among the active UEs in our
framework, because they are scheduled on different subbands,
we adopt maximum ratio combining (MRC), that maximizes
the UE SNR and is easy to implement in a distributed
MIMO setup. We denote with ĥi = [ĥi,1, ĥi,2, . . . , ĥi,NAP ] the
(1×Nant)-dimensional vector collecting the estimated channels
between the i-th UE and all the APs. The MRC beamforming
is then defined as:

gi = ĥH
i /‖ĥi‖ . (2)

E. System key performance indicators (KPIs)

In order to quantify the impact of the jammer to the system,
we introduce two KPIs: signal to interference plus noise ratio
(SINR) on data transmission and BLER. We define the SINR
of UE i on a certain PRB, whose index is skipped for the sake
of clarity, as

SINRi =
|higi|2P (PRB)

UE,i

σ2
w + |hJgi|2P (PRB)

J

, (3)

where at the denominator we have the malicious interference
from the jammer, with hJ the (1×Nant)-dimensional channel
vector collecting the channels between the jammer and all the
AP antennas.

We assume that UE i sends its packet over Fi PRBs and
define Ccod,i = Fi ·N (PRB)

RE as the number of REs allocated to
that packet. Then, for our analysis, we use the exponential
effective SINR metric (EESM) as link-to-system mapping
criterion [13, Eq. (3)] to compute, as a function of the different
SINRs (3) experienced by a certain UE on different PRBs, a
single SINRpkt, that represents the equivalent SINR for the
packet. We then use this SINRpkt to compute the BLER of
UE i from the normal approximation of the finite blocklength
capacity [14, Eq. (5)]:

BLERpkt,i = Q

([
log2

(
1 + SINRpkt,i

)
− ρi

+
log2 C̃cod,i

2C̃cod,i

]√
C̃cod,i

V

)
, (4)

where V is the channel dispersion [14, Eq. (8)], ρi = C/C̃cod,i
is the spectral efficiency for the UE i packet, and
C̃cod,i = Ccod,i(1−O) is the coded packet size in REs taking
into account the system overhead O = 0.25 for control and
pilots.

III. DEFENSE STRATEGY

In this work we consider the defense strategy framework
for performing jamming detection that we initially proposed
in [8], where some PRBs in each slot are blanked in a
pseudo-random manner, such that the attacker cannot predict
in advance which resources will be used for transmission
and which will be blanked. In detail, in each slot all the
UEs blank a set MP ⊂ {1, . . . , NPRB} (with cardinality
MP = |MP |) of PRBs, where the set elements are chosen in a
pseudo-random manner; the remaining PRBs are used for data
transmission. At the same time, the attacker transmits on a set
LP ⊆ {1, . . . , NPRB} (with cardinality LP = |LP |) of PRBs,
where the set elements are chosen according to the jammer
strategy. In this work we assume that the jammer chooses
the attacked PRBs pseudo-randomly and it evenly splits its
power among them. Moreover, for the sake of notation, when
LP = NPRB we refer to the attacker as a wide-band jammer,
otherwise we call it narrow-band jammer.

A. Jamming detection strategies

The detection strategy takes advantage of the blanked PRBs
to detect the presence of jamming by means of statistical
hypothesis testing [15]. Moreover, we assume that jamming
detection is performed by a central unit collecting the signals
received from all the APs distributed in the factory hall. The
two hypotheses for the sequence of blanked PRBs are as
follows:
• There is no jamming and we have just thermal noise (null

hypothesis H0);
• There is jamming (alternative hypothesis H1).

The above hypotheses translate to the following hypothesis
test: {

H0 : r = w

H1 : r = w + j
, (5)

where r, w, and j are ((NRE ·Nant)× 1)-dimensional vectors,
with NRE = MP · N (PRB)

RE , containing the samples of the
blanked REs of all the antennas. In particular, r is the total
received signal by the APs, w is the noise vector with elements
[w]n ∼ CN (0, σ2

w/N
(PRB)
RE ), and j is the jamming signal with

unknown distribution. Then, the test decides for H1 if

T (r) > δ , (6)

where T (r) is the test statistic and δ is the threshold, which
depends on the test statistic and is function of a target false
alarm (FA) probability PFA, i.e., the probability of declaring
jamming even if it is not present. Then, in Section IV we will
evaluate the effectiveness of the proposed detection technique
against a Gaussian jammer in terms of missed detection (MD)
probability PMD, i.e., the probability of declaring no-jamming
even if it is present. Note that with (5) we perform jamming
detection in each slot: however, the proposed scheme can be
applied, depending on the use case, also to multiple slots for
improved performance. Regarding the test statistic, we now
propose two options.



1) Generalized likelihood ratio test (GLRT): This test de-
fines the test statistic simply as [8]

TGLRT =
‖r‖2

NRE ·Nant
, (7)

which is an energy detector. The threshold for this detector is
derived as

δGLRT = F−1TGLRT(r;H0)
(1− PFA) , (8)

where TGLRT(r;H0) ∼ Gamma
(
NRE ·Nant,

σ2
w/N

(PRB)
RE

NRE·Nant

)
is the

test statistic distribution under H0, with Gamma(k, θ) being
the gamma distribution with shape parameter k and scale
parameter θ. The main advantage of this detector is the very
low computational complexity, as just the received power on
the blanked PRBs needs to be computed.

2) Roy’s largest root test (RLRT): Differently from the
GLRT, this test exploits the channel correlations among the
AP antennas. For deriving the test statistic, we follow the
following procedure:

1) We denote with rm, m = 1, 2, ..., NRE the column vector
collecting the entries of r received by all antennas on
RE m.

2) We define R = [r1, . . . , rNRE ], which is a (Nant×NRE)-
dimensional matrix.

3) We compute the sample covariance matrix as
C = 1

NRE
RRH.

4) We define the test statistic as [16]

TRLRT =
λ

σ2
w

, (9)

where λ is the largest eigenvalue of C.

The threshold for this detector is derived as

δRLRT ≈ µ+ ξ · F−1TW2(1− PFA) , (10)

where TW2 is the Tracy-Widom distribution of 2nd order,
while µ and ξ depend on Nant and NRE. In particular, authors
in [16] show that the approximation holds for Nant, NRE →∞.

When compared to the GLRT, with this detector we exploit
the spatial correlation among antennas. The computational
complexity increases, but is still very low as we just need
to compute an eigenvalue. A second potential disadvantage is
that the approximation in (10) creates a mismatch between
empirical and target FA probabilities. Therefore, in order to
evaluate the impact of this mismatch, in Fig. 2 we show the
empirical FA probability derived in an authentic scenario, i.e.,
a scenario without jamming, versus the target FA probability,
for a factory with Nant = 16 antennas. Three different
curves are displayed: a theoretical one, for which the two
probabilities coincide, and two empirical curves corresponding
to NRE = 168, 840 (i.e., MP = 1, 5). As we can see, both the
empirical curves are close to the theoretical one, meaning that
the approximation (10) holds very well even with realistic low
values of Nant and NRE.
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Fig. 2. Empirical FA probability versus target FA probability for Nant = 16.

B. Jamming mitigation strategies

Alongside the above detection strategy, we consider two
jamming mitigation schemes designed for narrow-band at-
tacks: one based on user scheduling and the other one ex-
ploiting the pseudo-random blanking concept.

In Section IV we will assume sequential scheduling as base-
line, such that adjacent PRBs are allocated to each active UE.
As a first mitigation strategy, we consider random scheduling,
where PRBs are allocated to each UE in a pseudo-random
way, with the constraint that still, as introduced in Section
II-A, a PRB is allocated to just one active UE, to guarantee
orthogonality among UEs. The purpose of this approach is to
counteract smart jammers that can learn allocation and, for
instance, focus their attack on a specific subband that is used
by just one or few UEs. With this method then the jammer
cannot know in advance which UE will be scheduled on each
PRB.

As a second mitigation strategy, we consider frequency hop-
ping, where in each slot just a small number of PRBs is used
for transmission, and that is implemented in our framework by
greatly increasing the number of blanked PRBs MP . The main
objective is to lower the probability of intersection between
jammed and data PRBs, so advantages of frequency hopping
are expected with narrow- rather than wide-band jammers.
When using a large number of blanked PRBs, the same packet
needs to be transmitted on a lower number of data PRBs
but with higher power per PRB, i.e., a higher packet spectral
efficiency is needed in (4), but higher SINR is also experienced
on those data PRBs: that, in fact, can be beneficial in certain
interference conditions. Moreover, a large number of blanked
PRBs has the benefit of performing jamming detection on
more resources, thus decreasing the MD probability.

IV. NUMERICAL RESULTS

In this section we show the numerical results obtained by
performing Monte Carlo simulations of the above described
system. In particular, we focus on the system KPIs degradation
caused by the jammer and on the MD probability of the
attacker. If not otherwise specified, the following parameters
are used for the simulations: Nant = 64 antennas, high power
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jammer with PJ = 60 dBm, MP = 5 blanked PRBs, and
random scheduling of UEs.

Fig. 3 shows the CDF of the SINR for NAP = 1, 4, 16,
B = 20MHz, PJ = 20, 60 dBm (low- and high-power
jammer), and LP = 25 (wide-band jammer). Moreover, the
SNR curves are also shown, representing a jamming free
scenario. First, we notice as expected that the SINR is higher
in the distributed deployments, i.e., with higher NAP, because
some of the AP antennas are closer to the UEs. On the other
hand, with jamming the SINR gap among the deployments
is reduced when compared to the jamming free scenario:
that happens because some of the AP antennas are, with the
distributed approaches, also closer to the jammer stationed
outside the factory. Finally, we observe that, while on the
median the SINR is still quite high even with a high-power
jammer, on lower quantiles the SINR is strongly affected,
for instance with about 50 dB loss at the 1st percentile, i.e.,
considering a CDF value of 0.01, with NAP = 16.

To evaluate the performance degradation with URLLC type
of traffic, Fig. 4 shows the BLER (4) as a function of PJ
for NAP = 1, 4, 16, B = 20MHz, and LP = 5, 25 (narrow-
and wide-band jammer). Better BLER is achieved by the
distributed deployments. Moreover, we observe that the wide-

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
FA

10
-4

10
-3

10
-2

10
-1

10
0

P
M

D

N
AP

 = 1, GLRT

N
AP

 = 1, RLRT

N
AP

 = 4, GLRT

N
AP

 = 4, RLRT

N
AP

 = 16, GLRT

N
AP

 = 16, RLRT
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Fig. 6. PMD versus PFA for NAP = 16, B = 20MHz, and RLRT detector.

band attack is much more harmful than the narrow-band attack,
and a huge BLER degradation is observed with a wide-band
jammer: for instance, BLER increases with NAP = 4 from
about 10−6 to 10−2 when we increase the jamming power
from 20 dBm to 60 dBm.

Regarding the performance evaluation of the defense strat-
egy, Fig. 5 shows the MD probability as a function of the
FA probability, a.k.a. receiver operating characteristic (ROC)
curve, for B = 20MHz, LP = 25, and comparing GLRT
against RLRT detectors. The first thing to notice is that the MD
probability is lower, i.e., better, in the distributed approaches
because AP antennas are closer to the jammer. Then, MD prob-
ability is slightly lower with the RLRT detector for relevant
values of FA probability, confirming that exploiting spatial
correlation among antennas brings benefit to the detection.

In Fig. 6 we show the ROC curve for NAP = 16,
B = 20MHz, Nant = 16, 64, LP = 5, 25, and RLRT detector.
Lower MD probability is achieved with more AP antennas.
On the other hand, in the narrow-band case MD probability
is high and similar for different number of antennas, because
limited by the probability of intersection between blanked and
jammed PRBs.

As last result regarding the detection performance, in Fig.
7 we report the ROC curve for NAP = 16, B = 100MHz,
MP = 5, 85, LP = 5, 25, 125 (very narrow-band, narrow-
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band and wide-band jammer), and RLRT detector. In this case,
thanks to the larger number of available PRBs, a massive
blanking approach can be implemented and, indeed, MD
probability is lower with more blanked PRBs. Moreover, with
massive blanking MD probability is similar across the different
jamming strategies, thus allowing to better detect narrow-band
jammers.

Regarding the comparison among the different mitigation
strategies, we consider Fig. 8, which reports BLER as a
function of PJ for for NAP = 1, B = 100MHz, random
and sequential scheduling, MP = 25, 85, 105, and LP = 25.
First, we notice that the scheduling-based mitigation works,
although just a very small improvement is achieved by random
scheduling when compared to the sequential one. Then, we
observe a trade-off when applying frequency hopping: small
MP (large bandwidth for data transmission) provides better
performance in most ranges, but frequency hopping (large
MP ) starts obtaining better performance when the jamming
power is low, under whose conditions lower BLER can also be
achieved by the system. In other words, these results tell that
frequency hopping becomes helpful as a jamming mitigation
scheme mainly when reliability requirements with URLLC are
stricter, otherwise the increase in SINR is not sufficient to even
compensate for the reduced bandwidth.

V. CONCLUSIONS

In this paper we considered the problem of jamming at-
tacks in 5G-and-beyond indoor factory deployments. We a)
provided extensive simulations in a realistic scenario of a
factory hall with 3GPP spatial channel model and a jammer
stationed outside the plant, b) proposed and compared two
detectors based on pseudo random blanking of subcarriers,
and c) evaluated random scheduling and frequency hopping as
jamming mitigation strategies. Numerical results show that a
high-power jammer can strongly degrade BLER with URLLC.
As promising countermeasures, a distributed deployment is
more jamming resilient than a centralized one, and the RLRT
detector is capable to provide good jamming detection perfor-
mance by exploiting channel correlations among the deployed
antennas. Finally, frequency hopping is beneficial in mitigating
jamming attacks only with narrow-band jammers and with
more strict reliability requirements. Future works will include
more advanced mitigation schemes exploiting MIMO and
multi-connectivity.
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