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Abstract—Reconfigurable Intelligent Surfaces (RIS) are pla-
nar structures connected to electronic circuitry, which can be
employed to steer the electromagnetic signals in a controlled
manner. Through this, the signal quality and the effective data
rate can be substantially improved. While the benefits of RIS-
assisted wireless communications have been investigated for
various scenarios, some aspects of the network design, such as
coverage, optimal placement of RIS, etc., often require complex
optimization and numerical simulations, since the achievable
effective rate is difficult to predict. This problem becomes even
more difficult in the presence of phase estimation errors or
location uncertainty, which can lead to substantial performance
degradation if neglected. Considering randomly distributed re-
ceivers within a ring-shaped RIS-assisted wireless network, this
paper mainly investigates the effective rate by taking into account
the above-mentioned impairments. Furthermore, exact closed-
form expressions for the effective rate are derived in terms
of Meijer’s G-function, which (i) reveals that the location and
phase estimation uncertainty should be well considered in the
deployment of RIS in wireless networks; and (ii) facilitates future
network design and performance prediction.

Index Terms—Reconfigurable intelligent surfaces (RISs), effec-
tive rate, phase estimation error, location uncertainty.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are considered
key enablers for future wireless communications [1]. Accord-
ingly, RISs have been proposed for various scenarios and
applications including 6G [2], internet of things (IoT) [3],
smart cities [4], challenging environments [5], etc. The benefit
of RIS lies in its capability of shaping the wireless propagation
environments by adjusting the signal reflections [6]. Through
this, the signal quality and connectivity can be substantially
improved. Furthermore, the energy consumption at RIS is
extremely low, which is a favorable property compared to
traditional relaying.

Various aspects of RIS-assisted networks have been inves-
tigated so far, such as optimal placement of RIS [7], signal
routing using multiple RIS [8], hybrid automatic repeat request
for RIS-aided communication systems [9], etc. Due to the
associated system complexity, the methods proposed in these
works typically employ highly complex and computationally
intensive optimization techniques. For the same reason, it is
difficult to predict the system performance for RIS-assisted
networks without accurate and thorough numerical evaluation.
On the other hand, if an important performance metric, such

as effective rate, can be directly determined without prior
simulations of the environment merely based on the known
network configuration, the network design and planning can be
substantially simplified. This motivates the analytical deriva-
tion of such metrics, which is the focus of this work.

Effective rate connecting both physical layer and link layer,
is a popular performance metric used in the RIS-aided wireless
networks. [10] describes the RIS-assisted links using the
cascaded fading channel model and also provides a derivation
of the effective rate with exact and approximated expressions.
The authors in [11] study the effective rate under two extreme
assumptions with regard to the availability of the channel
state information. However, the impact of phase estimation
errors and location uncertainty on the effective rate has not
been addressed yet. This paper aims at bridging this gap by
providing analytical expressions for the effective rate with
consideration of the aforementioned impairments.

The contributions of this work are three-fold:

• analytical closed-form expressions for the effective rate
are derived in terms of Meijer’s G-function;

• the obtained solution incorporates important impairments,
which are likely to occur in practical scenarios of RIS-
assisted networks, i.e. location uncertainty and imperfect
phase estimation;

• extensive simulations validate the accuracy of the derived
closed-form expressions independently from the network
configuration, impairments, and number of RIS elements.

The remainder of this paper is organized as follows. In
Section II, the system and signal propagation models are
described. In Section III, the closed-form expressions for
the effective rate under impairments are derived. Section
IV provides insights upon the numerical evaluation of the
derived expressions and the predicted system performance
under various conditions. Subsequently, Section V concludes
the paper.

Mathematical Functions and Notations: j =
√
−1, Kn(·)

is the modified Bessel function of the second kind [12, Eq.
(5.52)]. Γ(L) is the gamma function [12, Eq. (8.310.1)],
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Fig. 1: The system model.

Gm,np,q [·] is the univariate Meijer’s G-function1 [12, Eq.
(9.301)]. Hm,n

p,q [·] is the Fox’s H-function [15, Eq. (8.3.1.1)].
E[x] is the expectation operator over a random variable (RV)
x.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a single-input single-output (SISO) commu-
nication system assisted by a single RIS, embedded on the
surface of a building, shown in Fig. 1. Specifically, the
source node (S) transmits signal s, which is reflected by RIS
toward the destination node (D). The RIS comprises L passive
and low-cost reflecting elements. We assume that the direct
links are much weaker than the reflection-based ones due to
obstacles and fading effects [16]. Thus, the direct links are
omitted in our investigation. In addition, the exact location
of D and its distance to RIS might be unknown. As such,
D is assumed to be randomly located within a ring centered
at the RIS’s position according to homogeneous Poisson point
processes (HPPP), where the ring outer radius R2 indicates its
coverage region, and the inner radius R1 depicts the minimum
distance.

The instantaneous received signal at D is given by

yD =
√
P

∣∣∣∣∣
L∑
l=1

hlulgl

∣∣∣∣∣ s+ n, (1)

where P is the transmit power, hl = hl exp(−jφl) and
gl = gl exp(−jψl) are independent and identically distributed
(i.i.d.) Rayleigh RVs, which correspond to the channel coeffi-
cients from S to the l-th reflector element and the l-th reflector
element to D, respectively. hl, gl, φl, and ψl denote the ampli-
tudes and phases of the corresponding fading channel gains.
ul = wl(θl) exp(jθl) is the reflection coefficient produced by
the l-th element of the RIS, herein wl(θl) = 1 for the ideal
phase shifts, l = 1, · · · , L. s is the transmitted signal with unit

1It is worth mentioning that the univariate Meijer’s G-function is a built-in
function and available at MATLAB, i.e., meijerG(a, b, c, d, x), Mathematica,
and Maple. It can be flexibly transformed into many functions, e.g. the
exponential, logarithm, incomplete gamma functions, etc. More specifically,
it has been proved useful and generic when analyzing outage probability, bit
error rate, channel capacity, secrecy outage probability, etc. Interested readers
can find examples in [13], [14].

energy. n is the additive white Gaussian noise (AWGN) with
zero mean and σ2 variance.

Based on (1), the signal-to-noise ratio (SNR) observed at D
is obtained as

γD =
P

dδSRd
δ
RDσ

2

∣∣∣∣∣
L∑
l=1

hlgl exp
(
j(θl − φl − ψl)

)∣∣∣∣∣
2

=
ρ

dδSRd
δ
RD

∣∣∣∣∣
L∑
l=1

hlgl exp(jεl)

∣∣∣∣∣
2

, (2)

where ρ = P
σ2 and δ is the path loss exponent. dSR and

dRD denote the distances from S to RIS and from RIS to
D, respectively. The phase estimation error εl is assumed to
be an i.i.d. RV following the uniform distribution. Here, S may
employ a cheap off-the-shelf hardware, which has a very poor
phase estimation accuracy, i.e., εl ∼ U(−π, π). For simplicity
of notations, we fix dSR in our system setup, and let γ̄ = ρ

dδSR
.

Next, we would like to determine the probability density of
D, which is needed for the calculation of the effective rate.

Proposition 1. The probability density function (PDF) of γD
is given by (3), shown at the top of next page.

Proof. Let X =

∣∣∣∣ L∑
l=1

hlgl exp(jεl)

∣∣∣∣2, using the result in [16,

Eq. (43)], the cumulative distribution function (CDF) of X is
given by

FX(x) = 1− 21−L

Γ(L)

(√
x
)L

KL

(√
x
)
. (4)

Next, by taking the derivative of (4) with respect to x, and
then using d

dz [zLKL(z)] = −zLKL−1(z) from [12, Eq.
(8.486.14)], we obtain the PDF of X with

fX(x) =
1

2LΓ(L)

(√
x
)L−1

KL−1

(√
x
)

(a)
=

1

4Γ(L)
G2,0

0,2

[
x

4

∣∣∣∣ −
L− 1, 0

]
, (5)

where step (a) is developed using the technique [12, Eq.
(9.34.3)]. With [17, Eq. (28)] in mind, the PDF of dRD is
given by

fd(r) =
2r

R2
2 −R2

1

, R1 ≤ r ≤ R2, (6)

Correspondingly, the PDF of Y = dδRD is

fY (y) =
2y

2
δ−1

δ(R2
2 −R2

1)
, Rδ1 ≤ r ≤ Rδ2. (7)

Subsequently, plugging (5) and (7) into γD = γ̄XY leads to

fD(γ) =
1

γ̄

∫ Rδ2

Rδ1

yfX

(
γy

γ̄

)
fY (y)dy. (8)

Then, using [15, Eq. (1.16.4)], we derive (3) and the proof is
achieved. �



fD(γ) =
1

2δγ̄Γ(L)(R2
2 −R2

1)

[
R2+δ

2 G2,1
1,3

[
Rδ2γ

4γ̄

∣∣∣∣ − 2
δ

L− 1, 0,−1− 2
δ

]
−R2+δ

1 G2,1
1,3

[
Rδ1γ

4γ̄

∣∣∣∣ − 2
δ

L− 1, 0,−1− 2
δ

]]
, (3)

III. EFFECTIVE RATE

The effective rate is a dual concept connecting both physical
layer and link layer. It is widely used to determine the maximal
effective bandwidth that the system can support for a given
delay constraint [18]. Assuming the block fading channel for
our system configuration, the normalized effective rate at D is
analytically given by

R = − 1

A
log2

[
E
(
(1 + γM )−A

)]︸ ︷︷ ︸
M

bit/s/Hz, (9)

where A = θTB
ln 2 , where θ, T , and B represent the asymptotic

decay rate of the buffer occupancy, the block length, and the
system bandwidth, respectively.

Proposition 2. Considering the existence of phase estimation
error and unknown exact location, the effective rate for the
given system configuration is given by

R = − 1

A
log2

[
W

2δγ̄Γ(L)Γ(A)(R2
2 −R2

1)

]
, (10)

where

W =R2+δ
2 G3,2

2,4

[
Rδ2
4γ̄

∣∣∣∣ − 2
δ , 0

L− 1, 0, A− 1,−1− 2
δ

]
−R2+δ

1 G3,2
2,4

[
Rδ1
4γ̄

∣∣∣∣ − 2
δ , 0

L− 1, 0, A− 1,−1− 2
δ

]
.

Proof. The proof starts by re-expressing 1
(1+x)c in terms of

Meijer’s G-function [15, Chpt. 8.4]

1

(1 + x)c
=

1

Γ(c)
G1,1

1,1

[
x

∣∣∣∣ 1− c
0

]
(b)
=

1

Γ(c)
H1,1

1,1

[
x

∣∣∣∣ (1− c, 1)
(0, 1)

]
, (11)

where step (b) is developed using the property of Fox’s H-
function [15, Eq. (8.3.2.21)]. Next, we insert (11) and (3) into
M, the expression M can be easily stated as

M =
1

2δγ̄Γ(L)Γ(A)(R2
2 −R2

1)

∫ ∞
0

G1,1
1,1

[
γ

∣∣∣∣ 1−A
0

]
×
[
R2+δ

2 G2,1
1,3

[
Rδ2γ

4γ̄

∣∣∣∣ − 2
δ

L− 1, 0,−1− 2
δ

]
−R2+δ

1 G2,1
1,3

[
Rδ1γ

4γ̄

∣∣∣∣ − 2
δ

L− 1, 0,−1− 2
δ

]]
, (12)

subsequently performing the Mellin transform of the product
of two Fox’s H-function [15, Eq.(2.25.1)], the proof is even-
tually concluded. �

Remark 1. Considering the phase estimation error alone, the
effective rate for the given system is given by

R = − 1

A
log2

[
1

4γ̄Γ(A)Γ(L)
G3,1

1,3

[
1

4γ̄

∣∣∣∣ 0
L− 1.0, A− 1

]]
.

(13)

Proof. Fixing both dSR and dRD, the derivation of (13) is
based on the PDF of γD = γ̄X , which is obtained as follows

fD(γ) =
1

γ̄
fX

(
γ

γ̄

)
. (14)

Next plugging (14) and (11) intoM, and following the similar
line as in (12), the proof is finished. �

Remark 2. When ρ → ∞, i.e., at high SNR regime, the
asymptotic behavior of ER given in (10) is further simplified
as

R∞ ≈ − 1

A
log2

(
R2+δ

2 −R2+δ
1

γ̄ (2δ + 4) (L− 1)(A− 1)(R2
2 −R2

1)

)
.

(15)

Proof. When ρ is at high SNR regime, both Rδ2
4γ̄ and Rδ1

4γ̄ tend
to 0. Thus, the expression in (15) is obtained by expanding the
Meijer’s G-function at 0 and using the fact given in [19]. �

IV. NUMERICAL ANALYSIS

In this section, we provide numerical evaluations of the
theoretical ER and compare it with the results obtained using
Monte Carlo simulations with 106 runs.

We start with the analysis of effective rate for different
values of ρ and L. For this, we assume A = 5.4, δ = 3.4,
R1 = 2 m and R2 = 5 m. The results are depicted in
Fig. 2. We observe that the analytically determined effective
rate is close to the results obtained via extensive simulations.
Furthermore, we observe that the effective rate increases with
increasing number of RIS elements. This is expected, since
the spatial diversity increases with increasing L, which can
be used to improve the performance. In addition, we observe
that the results of the asymptotic approximation deviate sub-
stantially from the simulation and theory at low SNR regime.
Specifically, the approximation underestimates the effective
rate, especially with a low number of RIS elements. However,
with practical value of L, this effect vanishes, such that the
low complexity expression in (15) becomes accurate even at
low SNR.

In Fig. 3, the results are depicted for three scenarios
assuming L = 40: (i) without impacts from location and
phase error uncertainty; (ii) with phase error only; and (iii)
with both uncertainties. We observe a substantial performance
degradation in terms of effective rate in presence of the
phase and location uncertainties. Also, the location uncertainty
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Fig. 2: Effective rate R vs ρ for selected L.

affects the effective rate performance much less than the phase
uncertainty. Interestingly, the result obtained in [10] without
taking into account these practical impairments leads to a
dramatic overestimation of the expected system performance,
which may even render the whole network design based on
such an idealistic effective rate prediction incorrect.

Fig. 4 investigates the impact of the coverage area on the
effective rate. Here, ρ = 5 dB has been assumed. One can
observe that the effective rate decreases rapidly with increasing
coverage area, since the average distance between the user and
RIS increases, thus increasing the path loss. In practice, Fig.
4 being a theoretical proof, can be utilized to deduce e.g. the
required number of RIS elements in order to satisfy a given
network demand within a certain coverage area. Consequently,
no complicated numerical optimization is required for this
design problem anymore.

Considering four different kinds of mobile radio environ-
ments [20, Chapter 3.9], Fig. 5 plots R against the decay rate
θ for selected values of path loss exponent δ. For this, we fix
L = 20, R2 = 8 m, and A = θTB

ln 2 with TB = 1 while all
other parameters remain unchanged. Obviously, the effective
rate demonstrates a performance degradation as θ increases.
In other words, a smaller delay constraint results in a higher
effective rate performance. Correspondingly, a better quality of
service can be supported for delay-tolerant services. Starting
from θ ≈ 100 1/bit, the effective rate starts to drop to very
low values, i.e., the delay-sensitive communications services,
such as video conferencing or gaming, cannot be supported.
In addition, we observe that for a large value of δ, i.e., in
case of poor propagation conditions, the performance drops
significantly compared to low path loss exponents.

V. CONCLUSION

In this paper, we derived two novel closed-form expressions
of effective rate for RIS-assisted wireless networks under the
impacts of location uncertainty and phase errors. Our derived
closed-form results are validated via Monte-Carlo simulations
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Fig. 3: Effective rate R vs. ρ (a) dRD = 2; and (b) dRD = 5.

and their accuracy is displayed to be high. We further observed
a performance degradation in case of increasing decay rate and
compared the system performance in different environments.
Using the derived expression, it is possible to facilitate the
network designers with respect to the coverage area, placement
of RIS, etc. under realistic conditions of phase errors and
location uncertainty.
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