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Abstract—Split learning (SL) is an emergent distributed learn-
ing framework which can mitigate the computation and wireless
communication overhead of federated learning. It splits a ma-
chine learning model into a device-side model and a server-side
model at a cut layer. Devices only train their allocated model and
transmit the activations of the cut layer to the server. However,
SL can lead to data leakage as the server can reconstruct
the input data using the correlation between the input and
intermediate activations. Although allocating more layers to a
device-side model can reduce the possibility of data leakage, this
will lead to more energy consumption for resource-constrained
devices and more training time for the server. Moreover, non-iid
datasets across devices will reduce the convergence rate leading
to increased training time. In this paper, a new personalized SL
framework is proposed. For this framework, a novel approach for
choosing the cut layer that can optimize the tradeoff between the
energy consumption for computation and wireless transmission,
training time, and data privacy is developed. In the considered
framework, each device personalizes its device-side model to
mitigate non-iid datasets while sharing the same server-side
model for generalization. To balance the energy consumption
for computation and wireless transmission, training time, and
data privacy, a multiplayer bargaining problem is formulated to
find the optimal cut layer between devices and the server. To
solve the problem, the Kalai-Smorodinsky bargaining solution
(KSBS) is obtained using the bisection method with the feasibility
test. Simulation results show that the proposed personalized
SL framework with the cut layer from the KSBS can achieve
the optimal sum utilities by balancing the energy consumption,
training time, and data privacy, and it is also robust to non-iid
datasets.

I. INTRODUCTION

Federated learning (FL) is a promising solution for dis-

tributed inference as it enables multiple devices and a server

to train a shared model without revealing private data [1].

Since each device trains a whole model and transmits it to

the server iteratively, significant wireless communication and

computation overhead can exist on devices. To mitigate this

challenge, split learning (SL) was proposed in [2], In SL the

model is split into two separate portions, which are a device-

side model and a server-side model, at the cut layer. The

devices and the server communicate over a wireless channel. A

device only needs to train its allocated model and transmit the

activations of the cut layer to the server. Then, the server with

more computing resources trains the remaining model based

on the received information. However, the server can still

reconstruct the private data of the devices from the received

activations due to the high correlation between the activations
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and the input when the allocated device-side model is too

shallow [3], [4]. Although one can reduce the possibility

of data leakage by increasing the device-side model, the

training will become computationally intensive for resource-

constrained devices. In addition, this will increase the training

time as the server should wait until devices finish processing

their models. Moreover, non-iid datasets across devices will

increase the training time by reducing the convergence rate.

Thus, it is important to find the optimal cut layer by balancing

the energy consumption related to computation and wireless

transmission, training time, and data privacy and to develop

an algorithm for robust performance over non-iid datasets.

Several prior works [3]–[6] studied the problems of data

privacy and non-iid datasets in SL scenarios over commu-

nication networks. In [5], the authors proposed SplitFed in

which device-side training was parallelized and differential

privacy was incorporated to improve data privacy. The work in

[3] demonstrated that data leakage can happen when training

convolutional neural networks in SL. In [4], the authors

proposed a novel SL algorithm to enhance data privacy by

minimizing the distance correlation between the intermediate

activations and the input data. Meanwhile, in [6], the authors

studied the use of SL at inference stage over wireless networks

and the impact of non-iid datasets on its performance.

However, these works [3]–[6] did not consider the impact

of the cut layer on energy consumption, training time, and

data privacy. Only few works such as [7] and [8] considered

the optimal cut layer in terms of training latency. The work in

[7] developed a local-loss-based training for SL and derived

the optimal cut layer to minimize the training latency. In [8],

cluster-based parallel SL was proposed along with a resource

management algorithm to minimize its training time by opti-

mizing the cut layer selection. To the best of our knowledge,

there are no prior works on SL that jointly consider energy

consumption for computation and communication, training

time, and data privacy to obtain the optimal cut layer for

devices and the server.

The main contribution of this paper is a novel personalized

SL framework that can handle heterogeneous datasets and

that is equipped with a new approach to find the optimal cut

layer between devices and the server1. In our personalized

SL model, the learning model is divided into two separate

portions: a device-side model and a server-side model. Each

device personalizes its own device-side model while sharing

1The source code is publicly available on https://github.com/news-vt.
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Fig. 1: An illustration of the personalized SL system over

wireless networks.

the same server-side model. At the beginning of the learning,

each device performs forward propagation on its allocated

model in parallel and transmits the activations of the cut

layer to the server. Then, the server completes the forward

propagation with each device’s activations and performs back

propagation on its model separately, in parallel. The server

transmits the gradients of its last layer to the corresponding

devices so that they can finish back propagation. Subsequently,

the server performs FedAvg on its updated models to generate

a new server-side model. We then formulate utility functions

for the devices and the server by capturing energy consumption

of computation and communication, training time, and data

privacy. In particular, devices can reduce energy consumption

by choosing a shallow cut layer. However, this can result in

data leakage due to the high correlation between the cut layer’s

activations and the input data. Meanwhile, the server may want

to choose the shallow cut layer so that it can leverage its

computing capability to minimize the training time. To capture

this conflict over the cut layer between devices and the server,

we formulate a multiplayer bargaining problem whose goal is

to maximize the utilities of devices and the server. To solve the

problem, we obtain the Kalai-Smorodinsky bargaining solution

(KSBS) using the bisection method with the feasibility test.

Simulation results show that personalized SL with the optimal

cut layer from the KSBS can achieve robust performance over

non-iid datasets with fast convergence while achieving the best

sum utilities by balancing the energy consumption, training

time, and data privacy.

The rest of this paper is organized as follows. Section II

presents the system model. In Section III, we formulate the

bargaining problem. Section IV provides simulation results.

Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a personalized SL system, in which one server

and a set of devices N with |N | = N (e.g. mobile or Inter-

net of Things (IoT) devices) collaboratively train a machine

learning (ML) model to execute a certain data analysis task.

All devices have their personalized layers while sharing the

same subsequent layers with the server as shown in Fig. 1. The

server generates an ML model w for an image classification

task. Let |w| be the number of model parameters in the

generated model. For device k, we define wd,k as the device-

side model, ∀k ∈ N and wS as the server-side model. We

use α such that 0 ≤ α ≤ 1 to allocate |wd,k| = α|w|,
∀k ∈ N , model parameters to a device-side model and

|wS | = (1−α)|w| model parameters to the server-side model.

Note that all device-side models share the same architecture

while they are personalized to each device. The main goal of

the personalized SL system is to solve the following problem:

min
wd,wS

1

D

∑

k∈N

∑

l∈Dk

ℓ(wd,k,wS ,xkl, ykl), (1)

where wd = (wd,1, . . . ,wd,N), Dk is the input dataset of

device k with |Dk| = Dk, D =
∑

k∈N Dk is the total number

of data samples across devices, and ℓ(·, ·, ·, ·) is a loss function

for a given sample. We assume that all devices use the same

loss function. xkl is an input vector l of device k, and ykl is

the corresponding output with l = {1, . . . , Dk}. Without loss

of generality, we consider unbalanced and non-iid dataset Dk

across devices.

A. Proposed Personalized SL algorithm

We now describe the proposed algorithm to solve problem

(1). The server uses FedAvg [1] to train wS while each device

updates its personalized layers using a gradient based algo-

rithm. For a given α, each device k ∈ N receives its device-

side model wd,k from the server and initializes it. The server

also generates wS,k, ∀k ∈ N . Motivated by [5] and [9], we

assume that each device k ∈ N performs forward propagation

in parallel on wd,k at each local step using mini-batch ξk.

Then, device k ∈ N transmits the intermediate outputs, i.e.,

activations, ad,k and the corresponding labels Yk ∈ ξk to

the server. Based on the received information, the server can

finish forward propagation and perform back propagation on

wS,k(t). Subsequently, it transmits the gradients of its last

layer to the corresponding device. Then, device k can update

wd,k(t) using the received gradients. After I local steps, the

server perform FedAvg on wS,k(t), ∀k ∈ N , to generate

wS(t+1) =
∑

k∈N
Dk∑

k∈N
Dk

wS,k(t). Then, at the next global

round t+1, the server sets wS,k(t+1) = wS(t+1), ∀k ∈ N .
We summarize the aforementioned algorithm in Algorithm 1.

B. Wireless Transmission and Computing Model

1) Wireless transmission model: After device k finishes

forward propagation on wd,k, it transmits activations ad,k
and the corresponding labels Yk to the server using orthog-

onal frequency domain multiple access (OFDMA). Then, the

achievable rate of device k can be given by

Rk = W log2

(

1 +
Pkhk

N0W

)

, (2)

where W is the bandwidth allocated to device k, hk is the

channel gain between device k and the server, Pk is the



Algorithm 1: Proposed Personalized SL Algorithm

1 while global round t 6= R do

2 if t = 0 then

3 Initialize wd,k(0) and wS,k(0) ∀k ∈ N ;

4 for device k ∈ N do

5 while local step i 6= I do

/* Forward Propagation */

6 Device k samples mini-batch ξk
ad,k ← forward(wd,k(t), ξk);

7 Device k transmits ad,k and label Yk to server;

8 ŷk ← forward(wS,k(t), ad,k);

/* Backward Propagation */

9 ℓk(t)← loss(Yk, ŷk);

10 Server computes ∇ℓk(wS,k(t));

11 wS,k(t)← wS,k(t)− η∇ℓk(wS,k(t));

12 Server transmits gradient of its last layer dad,k(t) to device

k ;

13 Using dad,k(t), device k updates

wd,k(t)← wd,k(t)− η∇ℓk(wd,k(t))

/* FedAvg */

14 wS(t + 1)←
∑

k∈N

Dk∑
k∈N Dk

wS,k(t);

15 Set wS,k(t + 1) = wS(t + 1), ∀k ∈ N ;

transmission power, N0 is the power spectral density of white

Gaussian noise. Then, the transmission time to upload ad,k
and Yk will be

τk =
|ad,k|+ |Yk|

Rk

. (3)

Then, the energy consumption to transmit ad,k and Yk to the

server is EU
k = τkPk. Since the server usually has a high

transmission power and large bandwidth for the downlink, we

neglect the energy and the time to transmit the gradients of

its last layer [10].

2) Computing model: Let fk be the CPU frequency of

device k. Then the energy consumption to train wd,k for one

global round using Dk will be given by [7]

EC
k (α) = καDkLkf

2
k , (4)

where κ is the effective capacitance coefficient of CPU [11],

Lk is the number of required CPU cycles to process one data

sample. Note that EC
k (α) is a function of α since device k

processes wd,k, which has α|w| number of model parameters.

The computation time will be

Tk(α) =
αLkDk

fk
. (5)

Similarly, we can define the energy consumption of the server

for one global round t as ES(α) =
∑

k∈N Dk(1−α)κLSf
2
S ,

where LS is the number of requires CPU cycles to pro-

cess one data sample for the server and fS is its CPU

frequency. Then, the computation time of the server will

be TS(α) = maxk∈N Dk(1 − α)LS/fS . Since the server

processes wS,k, ∀k ∈ N in parallel, TS(α) will be determined

by the largest computation time.

C. Utility Functions

Now, we define the utility functions of each device and

the server. Since the server usually has a strong computing

capability, it may want to set α small so as to reduce the

elapsed time during training. For devices, the optimal α should

neither be too small because of the possibility of data leakage

nor too large because of the energy consumption for training.

Specifically, there exists high probability of data leakage

when device-side models are shallow. As α decreases, the

correlation between the input data and an intermediate layer

output, i.e., activations ad,k, increases. Hence, it is possible

to reconstruct input data from activations as shown in [3] and

[4]. In other words, an honest-but-curious server can do model

inversion attack during training to restore private input data

[12]. However, training a large device-side model would be

also infeasible for resource-constrained devices since training

a deep neural network consumes significant energy.

To capture this tradeoff between privacy and energy con-

sumption for devices, we define the utility function of each

device k ∈ N for one global round as follows

Ud,k(α) = ckfk
︸︷︷︸

(a)

−(EC
k (α) + IEU

k
︸ ︷︷ ︸

(b)

) + λk log2(1 + α)
︸ ︷︷ ︸

(c)

, (6)

where (a) is the received reward from the server for the

allocated computing resources with payoff ck, (b) is the

energy consumption for training wd,k and transmitting the

intermediate outputs to the server, and (c) is a function to

measure privacy protection with coefficient λk to capture

the preference of data privacy. Note that as α increases the

correlation between input data and the intermediate outputs

become decreased [4]. We then define the utility function of

the server for one global round as below

US(α) = B −

[
∑

k∈N

ckfk

︸ ︷︷ ︸

(a)

+γ ES(α)
︸ ︷︷ ︸

(b)

+ (1− γ)

{

TS(α) + max
k∈N

Tk(α) + IE[τk]

}

︸ ︷︷ ︸

(c)

]

, (7)

where B is the available budget of the server, (a) is the

amount of payoff for devices, (b) is the energy consumption

for training wS,k, ∀k ∈ N , (c) is the elapsed time to compute

wS,k, ∀k and the elapsed time to wait for the slowest device

to finish computing its model, E(·) is with respect to hk and

γ is a parameter to balance the interests between the energy

consumption and the training time. We assume that the server

can control ck so that US(α) and Ud,k(α), ∀k can be larger

than zero.

From the above utility functions, we can see that devices

and the server have conflicting interests over α. If the server

prioritizes minimizing training time, then it will try to set α
as a low value so as to leverage its high computing power.

However, when α is low, there exists high probability of data

leakage for the devices. Hence, they need to reach a certain

agreement for α to initiate personalized SL. This situation can

be modeled as a bargaining game between devices and the

server as they can mutually benefit from reaching the optimal

α∗ while conflict exists on the terms of the agreement [13].



In the following section, we obtain the KSBS to find the

optimal split.

III. PERSONALIZED SL AS A BARGAINING GAME

We formulate a bargaining game to reach an agreement over

α. We first define the set of all feasible utility functions as:

U = {Ud,1(α), . . . , Ud,N(α), US(α) | 0≤ α≤ 1} . (8)

Let φ = {φd,1, . . . , φd,N , φS} be the disagreement point,

which is a set of utilities when devices and the server fail

to come to an agreement. Then, our bargaining game can be

defined as the pair (U ,φ), and the bargaining solution is a

function f that maps (U ,φ) to a unique outcome f(U ,φ) ∈
U . Our bargaining solution should prioritize a device with

important or private-sensitive dataset so that it can achieve

a higher utility than devices with less important datasets.

Therefore, while there are many bargaining approaches (e.g.,

Nash bargaining, etc.), we choose the KSBS [13]. This is

because the monotonicty axiom of the KSBS can capture the

aforementioned benefit since a device with a stronger privacy

preference λk will be able to get a larger achievable maximum

utility and a larger utility set. Thus, it can have stronger

bargaining power than others leading to a better output α∗.
It is known that the KSBS is the largest element in U that

is on the line connecting φ and U ideal, where U ideal is the

vector of individually maximized utilities. The KSBS point is

essentially the solution to the following optimization problem:

max β (9)

s.t. φ+ β(U ideal − φ) ∈ U . (10)

For the disagreement point φ, we can set φ = 0 because the

server cannot initiate the learning if devices and the server fail

to negotiate on α. Then, we can simplify the problem as

max β (11)

s.t. βU ideal ∈ U . (12)

Now, the KSBS will lie on the line connecting the origin point

and U ideal. To solve problem (11), we use the bisection method

with a feasibility test to tackle constraint (12). Firstly, we

characterize U ideal = (U ideal
d,1 , U ideal

d,2 , . . . , U ideal
d,N , U ideal

S ). From

(6), it is straightforward to see that Ud,k(α) is concave with

respect to α as
∂2Ud,k(α)

∂α2 = −λk log 2
(1+α)2 < 0. Hence, we can

obtain U ideal
d,k from the first derivative test as below

∂Ud,k(α)

∂α
=

λk

log 2× (1 + α)
− κDkLkf

2
k = 0. (13)

Then, the solution of the above equation can be given by

α̂k =
λk

log 2× κLkDkf2
k

− 1. (14)

From (14), we can see that the optimal split ratio α̂k for device

k increases as the preference of data protection λk increases.

For the US(α), its first derivative can be given by

∂US(α)

∂α
=γ

∑

k∈N

κDkLSf
2
S+(1−γ)max

k∈N

[
DkLS

fS
−

DkLk

fk

]

,

(15)

Fig. 2: An illustration of the Algorithm 2 for the two player

case.

Algorithm 2: Algorithm for the KSBS

1 Set βmin = 0 and βmax = 1 ;

2 while |βmax − βmin| < ǫ do

3 β ←
βmax+βmin

2
;

4 Solve the feasibility problem (16) ;

5 if β is feasible then

6 βmin ← β ;

7 else

8 βmax ← β ;

where the first term is the energy consumption for training wS

and the second term is related to the elapsed time during one

global epoch. Hence, depending on the balancing parameter

γ, the optimal fraction α̂S will be either zero or one. From

(14) and (15), we can obtain U ideal. Then, for a given β, we

can formulate the feasibility problem as follows

Find α (16)

s.t. βU ideal = (Ud,1(α), . . . , Ud,N(α), US(α)). (17)

Since Ud,k(α) and US(α) are a concave and a linear function

with respect to α, respectively, it is straightforward to find α
such that Ud,k(α) = βU ideal

d,k , ∀k and US(α) = βU ideal
S using a

software solver.

We now obtain the KSBS by using the bisection method

with the feasibility problem (16) as shown in Fig. 2 [14]. We

first set βmax = 1, βmin = 0, and β = βmin+βmax

2 . Then, at

iteration n, we solve the feasibility problem (16) for β(n). If

it is feasible, we set βmin = β(n). Otherwise, we set βmax =
β(n). We repeat this iteration until a certain stopping criteria

becomes satisfied. The summary of our approach is provided

in Algorithm 2. The key complexity of Algorithm 2 stems

from solving the feasibility problem (16). Since we should

solve N equations in (16), the complexity of Algorithm 2 will

be proportional to the total number of devices N .

In practice, we can assume that the devices send their chan-

nel information, hardware information, size of dataset, and

preference toward privacy to the server through the designated

interface. Then, the server can perform Algorithm 2.

IV. SIMULATION RESULTS

For our simulations, we distribute N = 10 devices uni-

formly over a 50 m × 50 m square area and locate the server



Fig. 3: MLP model architecture with one input layer, 11 fully

connected layers, and one output layer.

Algorithms MNIST FMNIST

Proposed 93.52% 92.01%

SplitFed 92.90% 79.65%

TABLE I: Performance of different algorithms on test dataset

at the center. We adopt a Rayleigh fading channel model

with a path loss exponent of 4 between the devices and the

server. For a default setting, we use Pk = 100 mW, W = 10
MHz, N0 = −174 dBm, and κ = 2 × 10−28. fk follows

uniform distribution between (1.5, 2.4) GHz, λk is uniformly

distributed between (25, 30), and ck follows uniform distribu-

tion between (10−8, 10−7). We also set Lk = LS = 103, ∀k,

B = 1215, γ = 0.01, and fS = 4 GHz [11] [10]. We use

multi-layer perceptron (MLP) model to classify 10 digits and

clothes in the MNIST and FMNIST datasets, respectively. The

model consists of one input layer, 11 fully-connected layers

blocks, C0, C1, . . . , C10, and one classification layer as shown

in Fig. 3. Each block Ck consists of one dense layer and

ReLU activation. The total number of model parameters is

|w| = 287955. We split both the MNIST/FMNIST dataset into

55000 samples for training, 5000 samples for validation, and

10000 samples for testing. We distribute the training dataset

over devices in non-iid fashion. We choose two major and

eight minor labels for each device. Then, we allocate 40% of

each major label and 5% of each minor label to a device. We

also distribute the validation/test datasets over devices using

the same method as the training dataset [15]. We use Adam

optimizer with learning rate 0.01 and mini-batch size is 256.

For each global round, each device runs I = 25 local steps.

From the given setting, our KSBS is α∗ = 0.379 and this

corresponds to C3, which becomes the cut layer. Hence, the

input layer up to the cut layer C3 will be assigned to the

device-side model wd,k, ∀k with |wd,k| = 117135, and all

subsequent layers are assigned to the server-side model wS

with |wS | = 170820. All statistical results are averaged over

a large number of independent runs.

To benchmark our proposed learning algorithm, we use

SplitFed [5] as a baseline. In SplitFed, FedAvg is performed

on both device-side models and server-side models for every

global round while our proposed algorithm only averages

the server-side models. Specifically, after the server performs

FedAvg on wS,k(t), ∀k, each device k transmits its device-
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Fig. 4: Validation accuracy of the proposed algorithm and

SplitFed on non-iid MNIST dataset
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Fig. 5: Validation accuracy of the proposed algorithm and

SplitFed on non-iid FMNIST dataset

side model wd,k(t) to an edge server for averaging. Note

that the edge server only does FedAvg on wd,k(t) and does

not perform forward/back propagation. Subsequently, the Fed

server generates wd(t+1) = 1
N

∑

k∈N wd,k(t) and broadcasts

it to devices. Then, devices set wd,k(t+ 1) = wd(t + 1) for

the next global round.

Figures 4 and 5 show the accuracy on the MNIST/FMNIST

validation datasets as a function of global rounds for our

algorithm and SplitFed. In Figs. 4 and 5, we can see that

the proposed algorithm converges faster than the baseline

on both datasets. From Table I, we observe that, although

the baseline achieves similar performance with the proposed

algorithm on the MNIST test dataset, it does not perform

well on more difficult dataset, which is FMNIST. Meanwhile,

our algorithm shows more robust accuracy on both non-iid

datasets. This is because the proposed algorithm can mitigate

discrepancies among the individual device optimum via per-

sonalization. Unlike the baseline, our algorithm only averages

the server-side models while keeping the device-side models

personalized. Then, each device-side model can move toward

its local optimum during training. Therefore, it can achieve

fast convergence as well as generalization through the server-

side models. Meanwhile, SplitFed averages all layers and then

moves toward the average of all individual optimum points
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Fig. 6: Sum of utilities with different privacy parameter

distributions

resulting in slow convergence [16].

Figure 6 presents the sum of utilities for each cut layer with

different distribution of privacy parameters λ = {λ1, . . . , λN}.

From Fig. 6a, we can clearly see that our cut layer C3, which is

obtained from the KSBS, can achieve the best sum of utilities.

Moreover, as the number of required CPU cycles to process

one data sample Lk increases, we can see that the optimal

cut layer decreases. This is because devices have to spend

more energy for training, so having a large device-side model

is not beneficial. This also corroborates (14), which shows

that the optimal cut layer for each device is a decreasing

function of Lk. In Fig. 6b, λk, ∀k follows uniform distribution

between [30, 35] resulting in a stronger privacy preference for

all devices than Fig. 6a. From the given setting, the KSBS is

found to be 0.506, and this corresponds to C4 for the cut layer.

We can see that the optimal cut layer increased to C4 from

C3. This is because devices now have a stronger preference

for data protection and have more bargaining power due to the

monotonicity axiom of the KSBS.

V. CONCLUSION

In this paper, we have studied the problem of finding the

optimal split on a neural network in a personalized SL over

wireless networks. We have presented the training algorithm

for the proposed personalized SL to tackle non-iid datasets.

We also have introduced utility functions by considering

energy consumption, training time, and data privacy during

training. Then, we have formulated a multiplayer bargaining

problem to find the optimal cut layer between devices and

the server to maximize their utilities. To solve the problem,

we have obtained the KSBS using the bisection method and

the feasibility test. Our simulation results have shown that

the proposed learning algorithm can converge faster than the

baseline and the KSBS can provide the best sum utilities.

Moreover, we have shown that the proposed algorithm can

achieve significantly higher accuracy in non-iid datasets.
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