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AbstractÐIntelligent transportation systems require a reliable
exchange of information between network terminals in different
vehicular communication environments. Making effective use of
the dedicated spectrum is crucial to maximizing communication
performance. This requires optimising the modulation order
according to different channel conditions. This paper proposes
a lightweight spectrum awareness methodology that uses wide-
band spectrum monitoring and deep learning-based modulation
classification techniques to optimise the modulation order. We
introduce a channel quality indicator block in which the clas-
sifier’s accuracy of detection is used as a forward indicator for
the choice of the best modulation type for transmission. By using
a 3D stochastic vehicular channel, we evaluate the classification
performance at different channel parameter settings, including,
speed, variance, and signal-to-noise ratio in urban and rural
areas. The experimental analyses demonstrate the capability of
the proposed approach to supporting a high detection probability
for acceptable false decision-making ≤ 20%.

Index TermsÐDeep learning, Modulation classification, Spec-
trum monitoring, Vehicular communication.

I. INTRODUCTION

The adoption of intelligent transportation systems con-

tributes to decreasing the number of road fatalities and improv-

ing transportation safety [1]. By allowing wireless communi-

cation between different vehicular ad-hoc network (VANET)

terminals, traffic-related messages are shared among vehicles

[2]. These messages include critical traffic information such

as location, speed, heading, etc. VANET is a mobile commu-

nication technology used in the vehicle domain that facilitates

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communications [1], [2]. Due to the recent influx of wire-

less technologies, the dedicated short-range communication

(DSRC) spectrum (5.85 to 5.925 GHz) becomes fully oc-

cupied, limiting the communication throughput, especially in

traffic congestion scenarios. This matter motivated researchers

to turn to the unoccupied frequency spectrum to increase the

network capacity [3]. Optimising communication performance

in VANET requires terminals to have a good observation of the

channel spectrum, referred to as ªspectrum awareness.º In gen-

eral, spectrum awareness includes interference environment

identification and modulation classification [4]. Accordingly,

it is imperative to implement reliable spectrum monitoring

techniques in order to ensure reliable communication.

Besides, successful classification of the modulation order

with high accuracy helps in identifying the best modulation

order. In other words, the classification accuracy can be used as

a forward channel quality indicator (CQI) engine to optimise

the modulation order, as shown in Fig. 1(a). One important

factor that can affect the transmission of data is the modulation

order, which refers to the number of possible states that the

carrier signal can take on. A higher modulation order allows

for more data to be transmitted, but it can also make the signal

more susceptible to interference. By using a CQI engine to

optimize the modulation order, it is possible to improve the

quality and reliability of data transmission over the forward

channel. The CQI index value is based on the accuracy of de-

tection rather than the traditional scale ranging from 0 (poorest

channel quality) to 15 (best channel quality). High detection

accuracy refers to better channel quality, thereby using the

same or higher classified modulation order at the transmission

and vice versa, as shown in Fig. 1(b). Due to the vehicular

channel quality fluctuation between high and low in urban and

rural areas, respectively, the modulation order must be opti-

mised between the communicating terminals for an acceptable

probability of error Pe. However, the channel’s unpredictable

behaviour (i.e., line-of-sight and non-line-of-sight variations)

and the hardware imperfections (i.e., carrier frequency offset

and the additive noise) lead to unexpected signal variations

which results in increasing Pe, posing a challenging scenario.

This makes the need for a reliable modulation classification

technique for fast and slow fading vehicular channels crucial.

The current state-of-the-art of modulation optimisation for

mobile and vehicular communication depends on channel

probing [5], which consumes high communication overhead.

Pilot-based channel estimation schemes are characterized by

a high amount of communication overhead and low spectrum

utilization. In this challenging scenario, this paper contributes

the following:

1) For effective observation of unoccupied channels, we

apply the spectrum aggregation-based ultra-wideband

spectrum monitoring method.

2) By using deep learning, this work develops a lightweight

feature-based modulation classification approach that

can detect modulation order with high probability of

detection for an acceptable Pe.

3) Based on a 3-dimension (3D) stochastic vehicular chan-

nel, the proposed approach was evaluated at various ve-
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Fig. 1: The proposed spectrum awareness approach.

hicle speeds, signal-to-noise ratios (SNRs), and channel

variations in urban and rural areas.

The paper is organised as follows. Section II introduces

related works. Section III presents the 3D stochastic V2V

channel model and deep learning model. Sections IV and V

discuss the proposed approach and performance evaluation,

respectively. Finally, Section VI concludes the paper.

II. RELATED WORKS

In this section, we review the recent works related to

spectrum monitoring and modulation classification.

A. Spectrum monitoring techniques

According to the literature presented by Gupta et al. [4], two

major schemes are presented for spectrum monitoring, receiver

statistics-based, and energy ratio-based spectrum monitoring.

The former is used to detect the presence of primary users

by counting the bit error using a low-density parity check

code and comparing it with a threshold value. However, the

hardware impairments affects the bit error counting used for

spectrum monitoring. The latter observes the spectrum at the

transmitter end based on the subcarriers. For determining

the energy ratio, two same-level sliding windows are used

consecutively. Robert et al. [6] propose a real-time monitoring

system that can gather data from a three-axis antenna on three

synchronised receiving channels. Shiba et al. [7] introduce a

multi-frequency sampling network for designing a wideband

spectrum monitor in the internet of things applications. In

this study, we use the NI-LabView example block diagram

that utilizes the aggregate spectrum built up band-by-band for

spectrum monitoring; see ref. [8] for more information.
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B. Modulation classification techniques

The two major categories of modulation classification tech-

niques are likelihood-based (LB) [9], [10] and feature-based

(FB) [11], [12], see Fig. 2. The former classifies modulation

as multiple hypotheses testing problems that lead to optimal

solutions but are computationally complex and requires pre-

known channel parameters. As for the latter, it uses features to

represent the signal, and if features and classifiers are chosen

properly, it can achieve nearly optimal performance with

reduced complexity. To reduce the complexity of the LB tech-

nique, Shi et al. [9] propose two approximate LB algorithms

to classify linearly modulated signals using Gauss±Legendre

and Gauss±Hermite quadrature rules. Zheng et al. [10] intro-

duce a maximum average likelihood algorithm for orthogonal

frequency division multiplexing (OFDM) system to determine

the modulation order. However, complexity has a trade-off

with the total number of possible active subcarrier patterns.

For FB technique, Lee et al. [11] converted the characteristic

values of wireless signals into 2D images. Afterwards, signals

are classified using a convolutional neural network (CNN).

Nevertheless, this method is not capable of detecting all forms

of signals. On the basis of the feature selection algorithm,

Zhang et al. [12] present a mixed recognition algorithm. A

tree-like feature structure is also used to develop a multi-layer

smooth support vector machine classifier (SVM). However,

most existing classification techniques only consider classi-

fication performance at different SNRs without considering

variation and instability in channels [14], [15]. To the best of

our knowledge, this study is unique in that it evaluates the

proposed approach in urban and rural areas under different

channel conditions.

III. PRELIMINARIES

This section reviews the V2V channel modeled in [16] and

discusses the designed deep learning model.

A. Review of the 3D stochastic V2V channel [16]

This study adopts the stochastic vehicular channel modeled

in [16]. Consider a scenario in which two vehicles, Alice

and Bob, wirelessly communicate at a central frequency fc.

In this case, Bob’s received signal is the combination of a

number of L components coming from different moving and

fixed scatterers, see Fig. 3. The lth multipath component has a

different fading coefficient and phase delay denoted by al and
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Fig. 3: Vehicular channel model representation for spectrum

awareness.

TABLE I: Channel parameter settings

Channel Parameters Value

Number of multipath components (L) Urban: 16, Rural: 5

Speed of Tx/Rx 10, 20, 30 m/s
Speed of the scatterer 30 m/s
Azimuth departure/arrival angles

(

αA(B),l

)

U [−π, π)

Departure/arrivals’ elevation angles
(

βA(B),l

)

U [−π, π)

Incident reflected scatterers’ angles
(

α1(2),l

)

U [0, π/3)
Weibull distribution - scale coefficient (ρ) 2.985
Weibull distribution - shape coefficient (a) 0.428

ϕl, respectively. Hence, the channel observation at the side of

Bob at time t is represented by

HB(t) =

L∑

l=1

|al| exp (jϕl) exp (j2πvlt) (1)

where the doppler parameter vl combines Alice’s, Bob’s, and

the l scatterer’s doppler shifts, denoted by vA,l, vB,l, and vS,l,
respectively, as follows.

vl = vA,l + vB,l + vS,l (2)

where

vA(B),l = uA(B)max

fc
c
cosαA(B),l cosβA(B),l

vS,l = uS

fc
c
(cosα1,l + cosα2,l)

(3)

where uA(B)max
is the Alice’s and Bob’s vehicles maximum

speeds, αA(B),l and βA(B),l are the Alice’s and Bob’s azimuth

and elevation angles of departure and arrivals, respectively,

and αS,l and βS,l are the scatterers’ incident and reflected

angles, respectively. According to ref. [16], the randomness of

scatterer’s speed uS follows the Weibull distribution denoted

by

puS
(uS) = wua−1

S exp (−wua
S/a) (4)

where w and a are scale and shape parameters, respectively.

In this study, we modeled the V2V channel with parameter

settings listed in Table I.

 

Classification 

SoftMax 

Fully Connected 
Outsize: 6 

(6) 
1,2 

(5) 
1,2 

(4) 
1,2 

(3) 
1,2 

(2) 
1,2 

Max Pooling 2D (1) 
Pool size: 1,2 & Stride: 1,2 

(6) (5) (4) (3) (2) Relu (1) 

(6) 
0.1 
0.1 

0.0001 

(5) 
0.1 
0.1 

0.0001 

(4) 
0.1 
0.1 

0.0001 

(3) 
0.1 
0.1 

0.0001 

(2) 
0.1 
0.1 

0.0001 

Batch Normalization (1) 
Mean Decay: 0.1  

Variance Decay: 0.1 

Epsilon: 0.00001 

(6) 
1,8 
96 

1,1 

(5) 
1,8 
64 

1,1 

(4) 
1,8 
48 

1,1 

(3) 
1,8 

32 

1,1 

(2) 
1,8 

24 

1,1 

Convolution 2D (1) 
Filter size: 1,8 
No. Filters: 16 

Stride: 1,1 & Dilation Factor:1,1 

Input 
Input size: 273,328,3 

Fig. 4: The proposed deep learning model architecture.

B. The proposed image-based deep learning model

This subsection details the deep neural network (DNN)

classification block highlighted in yellow in Fig. 1(a). Fig.

4 presents the flowchart of the proposed image-based deep

learning model. The input layer is an RGB image layer

having dimensions 273 × 328 pixels followed by 6 con-

secutive 2D convolution layers with filter numbers equal to

{16, 24, 32, 48, 64, 96}. Each convolution layer is followed by

batch normalization, ReLU activation, and 2D max pooling

layers. The last max pooling layer is connected to a fully

connected (FC) layer with 6 classes and weight and bias learn

rate factors equal 10. Finally, the FC layer is followed by

softmax and classification output layers. The total number

of layers is 28 layers. Training the network involves tuning

some of the parameters. Correctly adjusting these parameters

according to constellation image data input helps create a good

model in less computational time. For the training process, we

use the ºadamº solver, set the initial learn rate to 0.001, the

validation frequency to 50, max epochs to 30, and mini-batch

size to 64.

IV. SPECTRUM AWARENESS APPROACH

This section discusses the employed spectrum awareness

approach, including spectrum monitoring and modulation clas-

sification techniques. For ultra-wideband spectrum monitoring,

we use the NI-LabView example given in [8] and the USRP

X310-1st RF channel. Then, we set the start and stop fre-

quencies to be 5.88 to 5.91 GHz, respectively. In addition,

we run the signal transmission at the 2nd channel of the

USRP at fc = 5.9 GHz. Fig. 5 shows the received spectrum,



Fig. 5: Spectrum monitoring from 5.88 to 5.91 GHz.
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Fig. 6: Implementation block diagram.

highlighting the USRP X310 transmitter channel. It can be

noted that the amplitude of the spectrum sensed at 5.9 GHz is

higher than that of unoccupied channels. Then, we present the

modulation classification technique in a two-phase process as

follows.

A. The training phase

In this phase, the training dataset setting, depicted in Fig.

6, is adjusted for acquiring the dataset used for training the

DNN. It is noteworthy to mention that the training dataset

has the internal additive complex gaussian noise of the USRP

X310 receiver channel. We use an OFDM communication

system at fc = 5.9 GHz for the DSRC, with 256 subcarriers,

64 cyclic-prefix, and 125 subcarriers holding the transmitted

data. Then, we use 2-PSK, 4-PSK, 8-PSK, 16-PSK, 8-QAM,

and 16-QAM modulation and demodulation processes at the

side of the transmitter and receiver, respectively. According

to the modulation order, we acquired 150 training images

with dimensions 273 × 328 pixels for each constellation

type. Training samples for different constellations in the polar

coordinates (in-phase and quadrature axes) are presented in

Fig. 7. Based on the obtained data, the total training time was

[74:13] minutes using Core-i7 CPU @ 2.7 GHz laptop with

16 GB RAM.

B. The classification phase

In this phase, using the testing dataset setting depicted in

Fig. 6, we simulated the 3D stochastic V2V channel reviewed

in subsection III(A). Using the channel parameter settings

listed in Table I and the complex additive gaussian noise block,

` 

(a) 2-PSK (b) 4-PSK (c) 8-PSK 

(d) 16-PSK (e) 8-QAM (f) 16-QAM 

Fig. 7: Training samples of different constellations.

we evaluated the classifier’s performance at different SNRs,

vehicle speeds, and channel variations in urban and rural areas.

For urban and rural areas, we set L to 16 and 5 multipath

components, respectively. These components are convoluted

with the received OFDM symbol at the receiver side. Based on

the power of the added complex gaussian noise, we evaluated

the probability of detection Pd at different SNRs.

V. PERFORMANCE EVALUATION

In this section, we examine how classification performance

is affected under different test parameters (i.e., channel vari-

ations var., speed, SNRs) in urban and rural areas. Four

experiments were conducted where three parameters were

kept constant while one parameter varied for each case. The

following are the experiments analyses.

A. Experiment 1: Pd at different channel variations var.

In this experiment, we set the maximum vehicle speeds

uA(B)max
in (3) to 30 m/s and SNR value to 25 dB simulated

in an urban area (i.e, L equals 16 multipath components).

Then, we adjusted the value of the channel variation var. to

0.1, 0.3, and 0.6. Table II shows Pd of the six modulation

constellations at the mentioned var. values. It can be noted that

Pd is inversely proportional to the increase in the var. value.

For example, for 8-PSK, the Pd equals 90.1% at var. = 0.1.

While this value at var. = 0.3 and 0.6 are 87.1% and 86.5%,

respectively. The reason for this fact is that the increment in

the var. value results in higher scattered constellations, leading

to lower Pd. According to the 16-QAM constellation, the Pd

is not affected by the var. as it has unique constellation points

compared to other classes.

B. Experiment 2: Pd at different vehicle speeds uA(B)max

In this experiment, we set the channel variation var. to 0.3

and SNR value to 25 dB simulated in an urban area. Then, we

adjusted the value of uA(B)max
to 10, 20, and 30 m/s. Table

III shows Pd of the six modulation constellations at different

vehicle speeds. It can be noted that Pd is inversely proportional

to the increase in the uA(B)max
value. For example, for 8-

PSK, the Pd equals 89.1% at uA(B)max
= 10 m/s. While this



TABLE II: Pd at different channel variations

Modulation SNR = 25 dB, Speed = 30 m/s, Urban
order var. = 0.1 var. = 0.3 var. = 0.6

2-PSK 76.9% 76.2% 72.7%

4-PSK 98.7% 98.6% 98.1%

8-PSK 90.1% 87.1% 86.5%

16-PSK 87.5% 86.5% 85.9%

8-QAM 79.3% 78.7% 77.3%

16-QAM 100% 100% 100%

TABLE III: Pd at different vehicle speeds

Modulation SNR = 25 dB, var. = 0.3, Urban
order Speed Speed Speed

= 10 m/s = 20 m/s = 30 m/s
2-PSK 77.8% 76.9% 76.2%

4-PSK 98.9% 98.9% 98.6%

8-PSK 89.1% 88.6% 87.1%

16-PSK 88.7% 88.1% 86.5%

8-QAM 81.5% 79.5% 78.7%

16-QAM 100% 100% 100%

value at uA(B)max
= 20 and 30 m/s are 88.6% and 87.1%,

respectively.

C. Experiment 3: Pd at different SNRs

In this experiment, we set the channel variation var. to 0.3

and uA(B)max
in (3) to 30 m/s simulated in an urban area.

Then, we adjusted the value of the SNR to 15, 20, and 25

dB. Table IV shows Pd of the six modulation constellations at

different SNRs. It can be noted that Pd is directly proportional

to the increase in the SNR. For example, for 8-PSK, the Pd

equals 87.1% at SNR = 25 dB. While this value at SNR = 20

and 15 dB are 84.5% and 82.3%, respectively.

D. Experiment 4: Pd in urban and rural areas

In this experiment, we set the channel variation var. to 0.3,

uA(B)max
in (3) to 30 m/s, and SNR to 25 dB. Then, we

adjusted the value of the L in (1) to 16 and 5 multipath

components for urban and rural areas, respectively. Table

V shows Pd of the six modulation constellations in both

scenarios. It can be noted that Pd in a rural area is better

than that of an urban area. For example, for 8-PSK, the Pd

equals 98.5% in a rural area. While this value equals 87.1%
in an urban area.

Finally, we summarise a case experiment in the form of a

confusion matrix, as presented in Table VI. These results are

obtained at var. = 0.3, uA(B)max
= 30 m/s, and SNR = 25 dB

simulated in an urban area. As shown in the matrix, there are

two major confusing cases. In case 1, the network confuses 2-

PSK with 8-QAM, which only happens at low SNRs and high

uA(B)max
and var.. In case 2, the network confuses 16-PSK

with 16 QAM due to the same reasons discussed in case 1,

leading to false detection probability.

VI. CONCLUSIONS

This paper introduces an efficient deep learning-based mod-

ulation optimisation order that saves significant communica-

TABLE IV: Pd at different signal-to-noise ratios

Modulation Speed= 30 m/s, var. = 0.3, Urban
order SNR = 15 dB SNR = 20 dB SNR = 25 dB

2-PSK 68.3% 72.4% 76.2%

4-PSK 91.7% 97.7% 98.6%

8-PSK 82.3% 84.5% 87.1%

16-PSK 84.9% 85.7% 86.5%

8-QAM 73.4% 74.7% 78.7%

16-QAM 100% 100% 100%

TABLE V: Pd in urban and rural areas

Modulation Speed= 30 m/s, var. = 0.3, SNR = 25 dB
order Urban Rural

2-PSK 76.2% 99.1%

4-PSK 98.6% 100%

8-PSK 87.1% 98.5%

16-PSK 86.5% 100%

8-QAM 78.7% 97.9%

16-QAM 100% 100%

TABLE VI: The confusion matrix at Speed= 30 m/s, var. =
0.3, and SNR = 25 dB in urban area

T
ru

e

2-PSK 76.2 0 0 0 23.8 0

4-PSK 0 98.6 0 0 0 1.4

8-PSK 0 0 87.1 12.8 0 0.01

16-PSK 0 0 0.3 86.5 0 13.2

8-QAM 0 0 1.3 9.2 78.7 1.8

16-QAM 0 0 0 0 0 100
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tion overhead compared to channel probing-based approaches.

By designing a CQI engine block, we optimise the modulation

order for V2V channel. The evaluation process discussed the

effects of the channel variations, vehicle speeds, and SNR

values on the classifier’s detection probability in urban and

rural areas. Based on the experimental results, the proposed

classifier has sufficient detection probability for an acceptable

false detection ≤ 20%. In future work, we will explore the

possibility of testing the classifier on a realistic vehicular

wireless channel at varying terminal speeds.
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