
Communication-Efficient Second-Order
Newton-Type Approach for Decentralized Learning

Mounssif Krouka, Anis Elgabli, Chaouki ben Issaid, and Mehdi Bennis
Centre for Wireless Communications (CWC)

University of Oulu, Finland
Email: {mounssif.krouka, anis.elgabli, chaouki.benissaid, mehdi.bennis}@oulu.fi

Abstract—In this paper, we propose a decentralized Newton-
type approach to solve the problem of decentralized feder-
ated learning (FL). Notably, our proposed algorithm leverages
the fast convergence of the second-order methods while avoid
sending the hessian matrix at each iteration. Therefore, the
proposed approach significantly reduces the communication cost
and preserves the privacy. Specifically, we alternate between
two problems. The inner problem approximates the inverse
Hessian-gradient product which is formulated as a quadratic
optimization problem and approximately solved in a decentral-
ized manner using one step of the group alternating direction
method of multipliers (GADMM) method. The outer problem
learns the model, which is solved by performing one decen-
tralized Newton step at every iteration. Moreover, to reduce
the communication-overhead per iteration, a quantized version
(leveraging stochastic quantization) is also proposed. Simulation
results illustrate that our algorithm outperforms the baselines
of GADMM, Q-GADMM, Newton tracking, and Decentralized
SGD, and provides energy and communication-efficient solutions
for bandwidth-limited systems under different SNR regimes.

Index Terms—Decentralized optimization, communication-
efficient Federated learning, decentralized Newton method, model
quantization.

I. INTRODUCTION

The rapid development in wireless technologies has led to
the prevalent connectivity of a massive number of devices to
the internet, generating huge amounts of data. This abundance
of information allowed the emergence of highly performant
machine learning (ML) algorithms that are applied in many
scenarios, such as trajectory optimization [1], image classi-
fication [2], and resource scheduling [3]. The conventional
way to train such ML algorithms is to send raw information
from the devices/nodes to a powerful remote parameter server
(PS), where all the computational processes occur. However,
sharing raw data creates privacy and communication issues.
i.e., huge communication resources are required, which can
be a bottleneck for bandwidth-limited systems. Consequently,
federated learning (FL) has recently gained attention due to
its ability to enable privacy-preserving and communication-
efficient training. In FL, instead of exchanging raw data, the
nodes only transmit small-sized updates such as the model
or gradient, which provides a significant reduction in com-
munication cost. Also, the system privacy is preserved since

This work is supported by the European Union’s Horizon Europe program
through the project ADROIT6G, CENTRIC, and DESIRE6G.

the raw data is kept locally at every node. The state-of-the-
art algorithms in FL utilize first-order gradient-based methods
and propose ways to make it more communication-efficient.
However, recently, second-order based schemes for the PS-
based setting have been investigated. In this paper, we propose
a communication-efficient and fully decentralized algorithm
that is based on the second-order method. In what follows,
we discuss the main aspects of these works and highlight the
contributions of our proposed algorithm.

A. First-order Methods

FL is commonly performed using first-order methods. For
example, when using local SGD, at each iteration, the par-
ticipating nodes solve the learning task by locally updating
the global model using one/few gradient descent steps and
then sending the updated models to the PS, which averages
them to produce the new global model. However, the exchange
between the PS and the nodes requires a large number of
communication rounds until convergence, hence, incurring
high latency and communication costs. For this reason, many
works proposed communication-efficient solutions that i) re-
duce the payload size per communication round by applying
different tools such as quantization [4], sparsification [5],
[6], and gradient reuse [7], and ii) reduce the number of
communication rounds by using techniques including adaptive
learning rates [8], [9] and momentum acceleration [10].

B. Second-order Methods

Despite their popularity and ease of implementation, first-
order methods suffer from slow convergence due to their de-
pendence on the condition number, where the latter is related
to the convexity and the smoothness of the loss function. To
overcome this issue, second-order methods were proposed. By
leveraging second-order information, the convergence speed
can be accelerated by utilizing both the Hessian and the gra-
dient in the learning process. The standard Newton’s method
at training iteration r + 1 can be written as follows

xr+1 = xr − (∇2f(xr))−1∇f(xr), (1)

where xr, ∇f(xr), and ∇2f(xr) are the model, gradient and
Hessian of f(xr), respectively. The solution to this problem
requires all the nodes to compute the gradient and the Hessian
locally and then transmit them to the PS. Nonetheless, this



incurs huge communication costs. To tackle this issue, the
work in [11] suggested a communication-efficient distributed
asynchronous quasi-Newton algorithm where nodes transmit
three model-sized vectors to the PS. Moreover, the authors
in [12] proposed FedNL, a communication-efficient Hessian
learning technique, where the nodes share a compressed
version of the Hessian to the PS. Although this technique
reduces the communication cost, the compression operation
depends on the rank of the Hessian matrix. The same article
suggested another algorithm called Newton-zero, where the
Hessian matrix is computed and transmitted only at the first
learning iteration r = 0, as shown below

xr+1 = xr − (∇2f(x0))−1∇f(xr). (2)

We note that computing the Hessian only at the first iteration
minimizes the local computational complexity. However, trans-
mitting the zero Hessian matrix requires more communication
resources than model-sized vector sharing, especially when the
model’s size is large.

C. Decentralized Approaches

Note that the above-mentioned algorithms require the PS
to collect the information from all the nodes. This scheme
may not be communication-efficient as: i) the competition
over the communication resources increases when more nodes
participate in the learning, which creates a bottleneck for
limited bandwidth systems, ii) the nodes can be dispersed
and located outside the PS coverage zone, and iii) the com-
munication rate is hindered by the node experiencing the
weakest communication channel. Accordingly, works on de-
centralized solutions for both first-order [13]–[15] and second-
order [16]–[18] methods have been investigated. For first-
order decentralized methods, the work in [13] presented a
generalized decentralized stochastic gradient descent (SGD)
framework for gradient sharing. On the other hand, the authors
in [14] considered a framework named GADMM, based on the
alternating direction method of multipliers (ADMM), where
each node is communicating with only two neighbors, and at
most half of the workers are competing on the limited com-
munication resources at any given time. A quantized version
of GADMM was also proposed in [15]. Regarding second-
order decentralized methods, the authors in [16] proposed a
decentralized consensus algorithm using a quadratic approx-
imation of the objective function, where each node updates
its local variable using neighboring and historical information.
The work in [17] considered a distributed adaptive Newton al-
gorithm with a global quadratic convergence rate that requires
N−1 rounds of information exchange at every communication
round. Nonetheless, combining both communication efficiency
of first-order methods and fast convergence of second-order
methods can further improve the communication cost.

D. Contributions & Paper Organization

This paper proposes a novel bilevel decentralized second-
order learning approach that attains the fast convergence
property of second-order methods and low communication cost
per iteration of first-order methods. In particular, for the inner

level problem, we formulate the learning of the inverse zero
Hessian-gradient product as a quadratic optimization problem,
solved in a decentralized manner. Precisely, we approximate
the solution by applying one GADMM step [14], where
every node sends only two model-sized vector updates to its
two neighbors, which reduces the required communication
resources. Next, the model is updated by performing one
Newton step at every iteration. Finally, we leverage stochastic
quantization to achieve more communication-efficient model
training. The major contributions of our work are summarized
as follows.

• To extend our previous work in [19], we propose a
second-order Newton-type approach to solve the prob-
lem of decentralized FL. In particular, we Leverage
the GADMM algorithm to provide a communication-
efficient approach, coined as DNGAM–Decentralized
Newton Group ADMM, that enables the inner-level prob-
lem solution approximation in a decentralized manner.

• We apply stochastic quantization following [15] to further
reduce the communication cost.

• Simulation results illustrate that our algorithm Q-
DNGAM outperforms the baselines and provides a energy
and communication-efficient solution. Additionally, our
algorithm shows a robust and enhanced performance for
bandwidth-limited systems under different SNR regimes.

The rest of the paper is structured as follows. In Section II,
we describe the system model and formulate our proposed
algorithm DNGAM. Then, in Section II-C, we illustrate the
steps for Q-DNGAM as we apply the quantization operation
for further reduction in communication cost. In Section III, we
present and discuss the simulation results. Finally, we conclude
our work in Section IV.

II. PROBLEM FORMULATION AND PROPOSED ALGORITHM

We consider a system consisting of N nodes, each having
fn(x) as a local loss function evaluated at the model x ∈ Rd,
where d is the size of the model. Our aim is to solve the
following learning problem in a fully decentralized way

min
x∈Rd

f(x) with f(x) =
1

N

N∑
n=1

fn(x). (3)

If problem (3) is solved using Newton-zero with the aid of a
PS, then the updating step at iteration r + 1 will be:

xr+1 = xr −
( 1

N

N∑
n=1

∇2fn(x
0)
)−1( 1

N

N∑
n=1

∇fn(x
r)
)
,

(4)

where ∇2fn(x
0) ∈ Rd×d and ∇fn(x

r) are the zero Hessian
(i.e., Hessian at r = 0) and the gradient of fn(x

r), respec-
tively. For ease of notation, we use H0

n = ∇2fn(x
0) and

gr
n = ∇fn(x

r). Moreover, we define the system Hessian and
gradient as

H0 =
1

N

N∑
n=1

H0
n and gr =

1

N

N∑
n=1

gr
n. (5)



Hence, we can write the step in (4) as follows

xr+1 = xr − (H0)−1gr. (6)

We note that the second term on the right hand side of (6) is
computed at every iteration r. Equivalently, we can replace the
inverse zero Hessian-gradient product with the exact solution
of the following optimization problem

wr⋆ = argmin
w∈Rd

1

2
wTH0w −wTgr. (7)

Specifically, wr⋆ = (H0)−1gr is the optimal solution to
problem (7). Nevertheless, the solution of this problem cannot
be obtained in a decentralized manner. To this end, we
reformulate the problem in (7) as the following decentralized
problem,

wr⋆ = argmin
{wn}N

n=1∈Rd

N∑
n=1

1

2
wT

nH
0
nwn −wT

ng
r
n

s.t. wn = wn+1, ∀ n = {1, 2, · · · , N − 1} (8)

where wr⋆ is the optimal solution. At the convergence point,
the constraint in (8) implies that wr⋆

n−1 = wr⋆
n and wr⋆

n =
wr⋆

n+1 for all n. Hence, a unique global update wr⋆ is
obtained by all the nodes. However, solving (8) at every
iteration r to update the model xr+1 can also be expensive in
terms of the communication cost since it introduces a double
loop with many communication rounds. Hence, we propose
to perform one update for the solution of the inner problem
at each outer (Newton) step. In particular, We approximate
the inverse zero Hessian-gradient product, i.e, the solution of
(8), by performing one GADMM iteration. Then, we apply a
Newton step to update the model xr+1 for all the nodes. In the
following, we explain the details of the proposed framework
to solve the problem in (3).

A. Decentralized Newton Group ADMM

As previously mentioned, the idea behind the DNGAM algo-
rithm is to cluster the nodes into two groups, namely head and
tail. Thus, at every communication round, only half the nodes
are sending their two vector updates to their two corresponding
neighbors from the other group (except for the first and the last
nodes). Let Nh = {1, 3, . . . , N − 1} and Nt = {2, 4, . . . , N}
denote the head and tail groups, respectively. We formulate
the augmented Lagrangian for problem (8) as

Lρ({wn}Nn=1,λ)

=

N∑
n=1

[1
2
wT

nH
0
nwn −wT

ng
r
n

]
+

N∑
n=1

⟨λn,wn −wn+1⟩

+
ρ

2

N∑
n=1

∥wn −wn+1∥2 , (9)

where λn is the dual variable for node n and ρ > 0 is
the parameter that adjusts the mismatch between the primal
variables of nodes n and n+1. At iteration r+1, every node
n in the head group updates the primal variable wr+1

n by
solving

wr+1
n = argmin

wn

Lρ({wn}Nn=1,λ
r
n). (10)

Taking the derivative of Lρ({wn}Nn=1,λ
r
n) and equating to

zero, yields the following closed-form expression

wr+1
n =

(
H0

n+2ρI
)−1(

gr
n+λr

n−1−λr
n+ρ(wr

n−1+wr
n+1)

)
.

(11)

After that, the local version of the model xr+ 1
2

n is computed

x
r+ 1

2
n = xr

n − αwr+1
n , (12)

where α is a step size we introduce. In the subsequent
communication round, after receiving wr+1

n∈Nh
and x

r+ 1
2

n∈Nh
,

each node n in the tail group computes the primal variable
wr+1

n as

wr+1
n =

(
H0

n+2ρI
)−1(

gr
n+λr

n−1−λr
n+ρ(wr+1

n−1+wr+1
n+1)

)
,

(13)

and the local model xr+ 1
2

n using (12), followed by a consensus
step where each node in the tail group averages its local model
x
r+ 1

2
n with its two neighbors from the head group, as shown

below

xr+1
n =

1

3
(x

r+ 1
2

n−1 + x
r+ 1

2
n + x

r+ 1
2

n+1 ). (14)

Next, after receiving the updates from tail neighbors (wr+1
n∈Nt

and xr+1
n∈Nt

), each node in the head group updates the model
xr+1
n using (14). Finally, every node n ∈ N updates the dual

variables λr+1
n−1 and λr+1

n using

λr+1
n = λr

n − ρ(wr+1
n −wr+1

n+1), (15)

The detailed steps of DNGAM are shown in Algorithm 1. As
mentioned earlier, to perform one DNGAM iteration, every
node has to transmit two vectors to its two neighboring nodes:
(i) the primal update from the approximate solution of (8), and
(ii) the model xn. In the next section, we consider applying
stochastic quantization to reduce the communication overhead
per iteration, i.e., the quantized versions of the updates from
the neighbors are used to update the variables of the inner
problem (primal and dual) and the model, for every node n.

B. Quantization Operation

In this subsection, we describe the quantization process
following the work in [15]. For the sake of brevity, we describe
the quantization operations only for the primal variable since
the same steps apply to the model quantization.

At iteration r, every node n quantizes the difference be-
tween the current primal variable and the previous quantized
primal variable such that wr

n − ŵr−1
n = Qn(w

r
n, ŵ

r−1
n ),

where Qn(.) is the stochastic quantization operation that
depends on both the number of bits brn and the quantization
probability prn,i for every vector element i. We place the
ith element [ŵr−1

n ]i of the previously quantized variable at
the center of the quantization range 2Rr

n which is equally
divided into 2b

r
n − 1 levels. Hence, the quantization step size

is δrn = 2Rr
n/(2

brn − 1). Consequently, the difference between



Algorithm 1 DNGAM

1: Input: N, fn(·), ρ, R, d, ∀n,
2: Output: x ∀n
3: Initialization: x0

n,w
0
n,λ

0
n, ∀n.

4: while r ≤ R do
5: Head group nodes (n ∈ Nh): in parallel
6: Compute wr+1

n via (11) then update x
r+ 1

2
n via (12)

7: Send wr+1
n , xr+ 1

2
n to the neighbors n− 1 and n+ 1

8: Tail group nodes (n ∈ Nt): in parallel
9: Compute wr+1

n via (13), xr+ 1
2

n via (12), and xr+1
n via

(14)
10: Send wr+1

n , xr+1
n to the neighbors n− 1 and n+ 1

11: Every node updates λr+1
n−1 and λr+1

n via (15) and
xr+1
n∈Nh

via (14)
12: end while

the ith element of the current update [wr
n]i and [ŵr−1

n ]i is
computed as

[cn(w
r
n)]i =

1

δrn

(
[wr

n]i − [ŵr−1
n ]i +Rr

n

)
, (16)

where we add the term Rr
n to ensure that the quantized value

is non-negative. Hence, we map [cn(w
r
n)]i to the quantization

levels as follows

[qn(w
r
n)]i =

{
⌈[cn(wr

n)]i⌉ with probability prn
⌊[cn(wr

n)]i⌋ with probability 1− prn
(17)

where ⌈·⌉ and ⌊·⌋ stand for the ceiling and floor functions,
respectively. According to [15], to ensure an unbiased quanti-
zation error, and to guarantee non-increasing quantization step
sizes which is required for algorithm convergence, the choices
of both prn and brn are given, respectively, as follows

prn =
(
[cn(w

r
n)]i − ⌊[cn(wr

n)]i⌋
)
, (18)

brn ≥
⌈
log2

(
1 + (2b

r−1
n − 1)Rr

n/R
r−1
n

)⌉
. (19)

As a result, for node n to reconstruct the quantization variable
ŵr

n, it requires the quantities Rr
n, brn, and qn(w

r
n) to be

received from its two neighboring nodes. The reconstruction
step is done as follows

ŵr
n = ŵr−1

n + δrnq
r
n(w

r
n)−Rr

n1. (20)

The required number of bits to transmit one vector update at
every communication round using Q-DNGAM is brnd+ (brn +
Rr

n) where Rr
n ≤ 32 and brn ≤ 32, compared to 32d bits

for DNGAM. This results in communication-efficient solution
with a huge reduction in communication resources.

C. Q-DNGAM Updates

Here, we detail the update steps for Q-DNGAM to solve the
problem (3). First, every node n in the head group updates its
primal variable wr+1

n as follows

wr+1
n =

(
H0

n + 2ρI
)−1(

gr
n + λr

n−1 − λr
n

+ ρ(ŵr
n−1 + ŵr

n+1)
)
, n ∈ Nh \ {1}. (21)

After that, the local model xr+ 1
2

n is updated using (12). Sub-
sequently, every head node transmits the quantized versions
of its primal variable ŵr+1

n and local model x̂r+ 1
2

n to its tail
neighbors, and every tail node updates its primal variable as

wr+1
n =

(
H0

n + 2ρI
)−1(

gr
n + λr

n−1 − λr
n

+ ρ(ŵr+1
n−1 + ŵr+1

n+1)
)
, n ∈ Nt \ {N}. (22)

Moreover, the model is locally updated using (12) and then
averaged with the quantized local models from the head
neighbors, such that

xr+1
n =

1

3
(x

r+ 1
2

n + x̂
r+ 1

2
n−1 + x̂

r+ 1
2

n+1 ), n ∈ N \{1, N}. (23)

Next, the head nodes receive ŵr+1
n∈Nt

and x̂r+1
n∈Nt

from tail
neighbors and update x̂r+1

n using (23). Finally, all the nodes
n ∈ N update their dual variables as follows

λr+1
n = λr

n − ρ(wr+1
n − ŵr+1

n+1). (24)

Note that node n = 1 communicates solely with node n = 2.
Hence, its update steps for wr+1

1 and xr+1
1 are

wr+1
1 =

(
H0

1 + 2ρI
)−1(

gr
1 − λr

1 + ρŵr
2

)
, (25)

xr+1
1 =

1

2
(x

r+ 1
2

1 + x̂r+1
2 ). (26)

Similarly, node n = N can only exchange the updates with
node n = N−1. Thus, we get the following update expressions

wr+1
N =

(
H0

N − 2ρI
)−1(

gr
N + λr

N−1 + ρŵr
N−1

)
, (27)

xr+1
N =

1

2
(x

r+ 1
2

N + x̂
r+ 1

2

N−1). (28)

III. SIMULATION RESULTS

In this section, we numerically evaluate the performance
of DNGAM and Q-DNGAM apropos different baselines:
GADMM, Q-GADMM, Newton tracking, and DSGD. We select
α = 0.13 and ρ = 500. In the following, we describe the
learning problem, the network and communication settings,
and the simulation results.

A. Simulation Setting & Baselines

We consider the regularized logistic regression problem

min
x∈Rd

{
f(x) :=

1

N

N∑
n=1

fn(x) +
η

2
||x||2

}
, (29)

where

fn(x) =
1

M

M∑
m=1

log
(
1 + exp(−bn,maTn,mx)

)
. (30)

Where {an,m, bn,m}m∈[M ] denote the data samples for node
n, M is the number of samples allocated for every node, and
η is a regularization parameter. We make use of the dataset
a1a from LibSVM [20].



Fig. 1: Loss with respect to: a) number of communication rounds, b) communication bits per node, and c) transmission energy
per node (Joule).

For all the simulation results, we set a fixed number of
subcarriers Ns = 64 divided across all the nodes, where every
subcarrier provides W = 15KHz of bandwidth for a time
duration τ = 1ms. Moreover, we set the number of quanti-
zation bits bn = 6 bits. We consider the time-varying fading
channel between the nodes to follow a Rayleigh distribution
with zero mean and unit variance, i.e., h ∼ CN (0, 1). We
assume the channel coherence time is 10 iterations. Regarding
the communication scheme, the number of time slots needed
to transmit data from every node depends on the number of
bits to be sent, as well as on the condition of the channel
between the communicating nodes. In particular, we consider
the required number of uploading time slots to exchange the
updates from node n to node m as the minimum τn such that
the following inequality is satisfied

τn∑
t=0

Ns
N∑

s=1

τRs
n,m(t) ≥ Dn, (31)

where Rs
n,m(t) = W log2

(
1 + Pn|hs

n,m(t)|2/N0W
)

is the
rate expression, and N0 = 10−9 W/Hz is the noise power
spectral density. Dn is the number of transmitted bits for
node n, which is algorithm-specific (for example 2 × 32d
for DNGAM and 2 × (bnd + (bn + Rn)) for Q-DNGAM).
Consequently, we can quantify the transmission energy at node
n as, En = τn · Pn. Throughout the simulations, we assume
that we have a perfect channel estimation for the duration
t ∈ [0, τn).

We compare our proposed algorithms with the baselines,
and we select the simulation parameters that result in the best
performance.

• GADMM: First-order decentralized algorithm based on
ADMM where the nodes exchange the primal variables
only with two neighbors (α = 1, ρ = 10, Dn = 32d).

• Q-GADMM: The quantized version of GADMM, (α =

1, ρ = 10, Dn = bnd+ (bn +Rn)).
• Newton tracking: Second-order decentralized algorithm,

where each node updates its local variable along a
modified local Newton direction using neighboring and
historical information, (ϵ = 5, α = 0.07, Dn = 32d).

• DSGD: First-order decentralized SGD algorithm where
the nodes share their updated gradients to their neighbors,
followed by averaging the model, (α = 10−4, Dn = 64d).

B. Simulation Results and Discussion
We evaluate the performance of our proposed algorithms

DNGAM and Q-DNGAM (detailed in section II) in terms of the
loss |f(xr)− f(x∗)| with respect to different metrics, where
the value f(x∗) is obtained at the convergence point when
performing the standard Newton’s method. Fig. 1(a-c) shows
the loss with respect to the number of communication rounds,
the communication bits per node, and the transmission energy
per node, respectively. Figs. 2 and 3 present the loss versus
different signal-to-noise ratio (SNR) values for two different
numbers of available channel uses (CUs). The number of CUs
is defined as CUs =

∑J
j=1 Sj , where Sj is the number of

available subcarriers at time slot j.
In Fig. 1a, we notice that both DNGAM and Q-DNGAM

achieve the target loss 10−4 at almost the same number
of communication rounds, which is low compared to first-
order counterparts (Q-)GADMM and DSGD. For instance,
our algorithms take at most 1023 rounds compared to 2306
for (Q-)GADMM. This is justified by the effect of second-
order information on the convergence speed. Newton tracking
baseline suffers from a slow convergence, which can be related
to the poor estimation of the Newton direction, when only
the information from two neighbors is used to minimize the
consensus errors. In Fig. 1b, we show that our quantized
algorithm Q-DNGAM transmits less number of bits per node
to reach the target loss, compared to other baselines. This is
due to the low number of bits per iteration that quantization



-20 -15 -10 -5 0 5 10 15 20

SNR values

10
-4

10
-2

10
0

10
2

10
4

L
o

s
s

CUs = 64  103

Q-DNGAM

DNGAM

Q-GADMM

GADMM

Newton tracking

DSGD

Fig. 2: Loss with respect to different SNR values for CUs =
64× 103.

achieves. To highlight the transmission energy aspect, Fig.
1c demonstrates the advantage of Q-DNGAM as an energy-
efficient solution with respect to other baselines. Specifically,
the first-order quantized baseline Q-GADMM requires more
than 2.2 times transmission energy per node compared to Q-
DNGAM.

In Figs. 2 and 3, we consider different SNR values by fixing
N0W and varying the transmission power. For Fig. 2, we
limit the number of available CUs to CUs = 64 × 103. We
see that Q-DNGAM achieves the target loss at SNR = 8 dB,
whereas the other algorithms fail to attain the target even for
SNR= 20dB. This is since Q-DNGAM enjoys a low number
of transmitted bits per iteration and a faster convergence.
We notice also that increasing the SNR value improves the
performance of the baselines, except for DSGD and Newton
tracking, which require high number of iterations to converge,
hence more communication resources. As for Fig. 3, when we
increase the number of available CUs to CUs = 192×103, we
observe an improvement in the performance of the algorithms.
Notably, both Q-DNGAM and Q-GADMM reach the target loss
starting from SNR= −4dB and SNR= −1dB, respectively.
Moreover, we notice that the quantized algorithms (Q-DNGAM
and Q-GADMM) outperform their non-quantized counterparts
(DNGAM and GADMM) for all SNR values, which justifies
the adoption of quantization to achieve extra communication
efficiency.

IV. CONCLUSION

In this paper, we presented a communication-efficient
second-order Newton-type approach to solve the problem of
decentralized FL. In particular, we reformulate the Newton
step as a solution to a convex quadratic problem and ap-
proximate it using one GADMM step. Consequently, every
node transmits two model-sized vector updates to its two
neighbors, which saves communication resources. Moreover,
we apply stochastic quantization for further reduction in
communication costs. Simulation results illustrate that our
algorithm Q-DNGAM outperforms the baselines and provides
an energy and communication-efficient solution. Additionally,
our algorithm shows a robust and enhanced performance for

-20 -15 -10 -5 0 5 10 15 20

SNR values

10
-4

10
-2

10
0

10
2

10
4

L
o

s
s

CUs = 192  103

Q-DNGAM

DNGAM

Q-GADMM

GADMM

Newton tracking

DSGD

Fig. 3: Loss with respect to different SNR values for CUs =
192× 103.

bandwidth-limited systems under different SNR regimes. For
future directions, we aim to extend this work for generalized
network topology and investigate channel estimation and syn-
chronization between the nodes.

REFERENCES

[1] M. Krouka, A. Elgabli, C. Ben Issaid, and M. Bennis, “Communication-
efficient and federated multi-agent reinforcement learning,” IEEE Trans-
actions on Cognitive Communications and Networking, vol. 8, no. 1, pp.
311–320, 2022.

[2] M. Krouka, A. Elgabli, C. b. Issaid, and M. Bennis, “Communication-
efficient split learning based on analog communication and over the
air aggregation,” in 2021 IEEE Global Communications Conference
(GLOBECOM), 2021, pp. 1–6.

[3] A. Elgabli, H. Khan, M. Krouka, and M. Bennis, “Reinforcement
learning based scheduling algorithm for optimizing age of information
in ultra reliable low latency networks,” in 2019 IEEE Symposium on
Computers and Communications (ISCC), 2019, pp. 1–6.

[4] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signSGD: Compressed optimisation for non-convex problems,” in Pro-
ceedings of the 35th International Conference on Machine Learning,
vol. 80. PMLR, 10–15 Jul 2018, pp. 560–569.

[5] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Proceedings of
the 32nd International Conference on Neural Information Processing
Systems, ser. NIPS’18, 2018, p. 1306–1316.

[6] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and
S. Wright, “Atomo: Communication-efficient learning via atomic sparsi-
fication,” in Advances in Neural Information Processing Systems, vol. 31,
2018.

[7] T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggregated
gradient for communication-efficient distributed learning,” in Advances
in Neural Information Processing Systems, vol. 31, 2018.

[8] Y. Malitsky and K. Mishchenko, “Adaptive gradient descent without de-
scent,” in Proceedings of the 37th International Conference on Machine
Learning, ser. ICML’20. JMLR.org, 2020.

[9] C. Xie, O. Koyejo, I. Gupta, and H. Lin, “Local adaalter:
Communication-efficient stochastic gradient descent with adaptive learn-
ing rates,” arXiv preprint arXiv:1911.09030, 2019.

[10] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of
communication efficient momentum SGD for distributed non-convex op-
timization,” in International Conference on Machine Learning. PMLR,
2019, pp. 7184–7193.

[11] S. Soori, K. Mischenko, A. Mokhtari, M. M. Dehnavi, and M. Gur-
buzbalaban, “DAve-QN: A distributed averaged quasi-newton method
with local superlinear convergence rate,” in AISTATS, 2020.

[12] M. Safaryan, R. Islamov, X. Qian, and P. Richtárik, “FedNL: Making
newton-type methods applicable to federated learning,” International
Workshop on Federated Learning for User Privacy and Data Confi-
dentiality in Conjunction with ICML 2021 (FL-ICML’21), 2021.



[13] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A unified
theory of decentralized SGD with changing topology and local updates,”
in Proceedings of the 37th International Conference on Machine Learn-
ing, vol. 119. PMLR, 13–18 Jul 2020, pp. 5381–5393.

[14] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, “GADMM:
Fast and communication efficient framework for distributed machine
learning,” Journal of Machine Learning Research, vol. 21, no. 76, pp.
1–39, 2020.

[15] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, “Q-
GADMM: Quantized group ADMM for communication efficient de-
centralized machine learning,” in ICASSP, 2020, pp. 8876–8880.

[16] J. Zhang, Q. Ling, and A. M.-C. So, “A newton tracking algorithm
with exact linear convergence for decentralized consensus optimization,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 7, pp. 346–358, 2021.

[17] J. Zhang, K. You, and T. Başar, “Distributed adaptive newton methods
with global superlinear convergence,” Automatica, vol. 138, p. 110156,
2022.

[18] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized
second-order method with exact linear convergence rate for consensus
optimization,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 2, no. 4, pp. 507–522, 2016.

[19] M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, “Communication-
efficient federated learning: A second order newton-type method with
analog over-the-air aggregation,” IEEE Transactions on Green Commu-
nications and Networking, vol. 6, no. 3, pp. 1862–1874, 2022.

[20] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, may 2011.


