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Abstract— Video forgery attacks threaten surveillance systems
by replacing the video captures with unrealistic synthesis, which
can be powered by the latest augmented reality and virtual
reality technologies. From the machine perception aspect, visual
objects often have RF signatures that are naturally synchronized
with them during recording. In contrast to video captures, the
RF signatures are more difficult to attack given their concealed
and ubiquitous nature. In this work, we investigate multimodal
video forgery attack detection methods using both visual and
wireless modalities. Since wireless signal-based human percep-
tion is environmentally sensitive, we propose a self-supervised
training strategy to enable the system to work without exter-
nal annotation and thus adapt to different environments. Our
method achieves a perfect human detection accuracy and a high
forgery attack detection accuracy of 94.38% which is comparable
with supervised methods. The code is publicly available at:
https://github.com/ChuiZhao/Secure-Mask.git

Index Terms—Human Perception, Wireless Signal, Forgery
Attack Detection

I. INTRODUCTION

In recent years, the unique properties e.g. concealment,
penetration, and ubiquity have been extensively investigated
in wireless-based perception methods. Person-in-WiFi [1] is a
pioneering work attempting to address fine-grained human per-
ception problems by using WiFi signals. The follow-up works
Secure-Pose [2] and its improved version [3] propose learning-
based methods to detect video forgery attacks using radio-
frequency (RF) signals. Besides the video forgery attack task,
RF-based methods can also achieve comparable performance
against visual-based methods in other visual representation
tasks [1], [4], [5]. However, most RF-based human perception
methods are environmentally sensitive [1], [5]–[8], thus it is
hard to adapt well-trained models to unseen environments,
which severely prevents them from practical applications.

To date, several methods have been tried to tackle the adap-
tation problem. Person-in-WiFi [1] proposes a style-transfer
method for CSI measurements utilizing the Cycle-GAN [9],
but the performance gain of the proposed module is limited
even after complicated synthetic data generation. WiPose [4]
extracted the environmental weak-dependent Body-coordinate
velocity profile(BVP) from CSI measurement combing with
an antenna selection strategy to ease the influence of the
background environment. Although many attempts have been
made to mitigate the impact of environment changes [1],
[4], [5], the cross-environment adaptation remain unfeasible
since the RF-based human perception heavily depends on

Fig. 1. Illustration of an original 2D motion vector and a binarized motion
vector produced by our method from compressed video. The top and bottom
figures of (a) are two adjacent frames in the video. The top and bottom figures
of (b) are the X-dimension motion vector and the Y-dimension motion vector.
The top and bottom figures of (c) are the original binarized motion vector
and the binarized motion vector after processing.

the Doppler effect and electromagnetic property differences
between human and background environment. Consequently,
the gaps between RF-based human perception performance in
the seen and unseen environment are hard to bridge from the
perspective of data augmentation and denoising.

On the other hand, a surveillance camera is a periphery
device for surveillance systems which captures visual infor-
mation of target environments and transmits it to a central
server. Due to the redundancy of the video modality, the video
compression is always conducted before transmission. Motion
vector is one of the essential components of the compressed
video which reflects the block-wise spatial position changes
across frames, and de facto fits the format of the label of the
RF-based perception system.

In this work, to solve the adaptation problem of RF-based
perception method, we introduce a self-supervised learning
scheme to enable the model to learn from compressed video
streams and further leverage it to conduct video forgery
detection. We name the proposed system Secure-Mask. In
particular, we adopt motion vectors from compressed video
streams to create the supervision for RF-based model. Fig. 1
shows an example of motion vector and generated mask.
Compared with other frame-based video forgery detection
methods [10], [11], Secure-Mask can work in a real-time man-
ner to generate fine-grained human segmentation and detect
video replacement attacks at the object level. The concealed
and ubiquitous properties of WiFi signals make it a good
alternative to surveillance video and can be suitable for future
secure systems to act on when cameras are offline, occluded
or attacked. Moreover, the self-supervised training scheme
enables Secure-Mask to adapt to the new environment which
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eliminates the redundant data labeling after environmental
changes (i.e. furniture movement). The contributions of this
paper are as follows.

• We propose a self-supervised learning scheme for RF-
based human perceptions leveraging the motion vector
as a source of supervision and proving its ability to work
without external annotations.

• We built up a self-supervised video forgery attack detec-
tion pipeline that can act in a real-time manner with high
accuracy of 94.38%. The performance of Secure-Mask is
comparable to its supervised counterpart Secure-Pose [2].

II. RELATED WORKS

Camera-based human perception. In the computer vision
field, many works [12], [13] used well-developed feature ex-
traction methods to accomplish challenging human perception
tasks. In addition, there have been many works in object seg-
mentation [14]–[18], pose estimation [19], [20], and activity
recognition [21], [22]. More recently, depth cues obtained by
the RGB-D camera have been introduced in human perception
tasks and some other works [23], [24] have shown that depth
cure can improve performance.
Sensor-based human perception. The Frequency Modu-
lated Continuous Wave (FMCW) radar system was first intro-
duced by Adib et al. [25] to capture coarse human bodies with
a delicate radar device. Later, they extended this system to do
pose estimation through the wall or other occlusions, with 2D
[26] and 3D [27] included. Compared with the above methods,
which rely heavily on expensive Radar equipment, WiFi
signals provide a more ubiquitous and cheap option. However,
WiFi-based works [6], [7] were not popularized before because
they have not been producing fine-grained human masks or
human skeletons until Wang et al. proposed Person-in-WiFi
[1]. After that, more and more researchers paid attention to
WiFi-based human perception works. For example, WiTA [8]
recognized human activity in an attention-based way using
commercial WiFi devices. Wi-Pose [5] reconstructed fine-
grained human poses using WiFi signals. In addition, some
previous works [28], [29] also investigate how to augment
data to achieve better performance.
Video Forgery Detection. Forgery detection for surveillance
systems has drawn researchers’ attention due to the advanced
video forgery technologies. Many researchers solved this prob-
lem by analyzing the spatiotemporal features in surveillance
video [10], [11]. These methods can determine the frame-
based forgery, for example, frame delete and insert. For the
object-based video forgery, Mohammed et al. proposed a
sequential and patch analysis method [30], which can gen-
erate coarse forgery traces in each surveillance video frame.
Relatedly, SurFi [31] compared timing information from WiFi
signals and the corresponding live video to detect camera
looping attacks. To generate fine-grained forgery traces while
detection, Secure-Pose [2] first proposed a cross-modal system
that can detect and localize forgery attacks in each video frame
through a supervised way.

Fig. 2. Secure-Mask overview. Dash lines indicate model updating. Secure-
Mask can be boiled down to four modules: multi-modal signal processing,
human detector, human segmentor, and forgery detector. In the training
phase, the motion vector Mt of video frame It is first synchronized to m
CSI measurements {Ct, · · · , Ct+m}. Then we conduct the preprocessing
separately for video and CSI data to get binarized masks St and CSI
measurements in matrix form {At, · · · , At+m}. After that, we generate
annotations for training the human detector and human segmentor networks.
Finally, we use the predicted masks acquired from the human segmentor to
generate annotations for training the forgery detector.

III. SECURE-MASK SYSTEM

In this section, we will elaborate on the detailed pipeline of
our proposed Secure-Mask system.

A. System Overview

The Secure-Mask is composed of four parts: multi-modal
signal processing, human detector, human segmentor, and
forgery detector. As shown in Fig. 2, in the training phase,
we leverage the motion vector in the live video stream to
update the networks. In the multi-modal signal processing
module, we first extract the motion vector {Mt}Tt=0 from video
frames {It}Tt=0 and synchronize it with the CSI measurements
{Ct}Tt=0, then conduct signal processing separately. After
that, the processed masks serve as labels to update networks.
In the inference phase, only the CSI branch in the multi-
modal signal processing module is activated. The processed
CSI measurements are sent to the human detector to detect
motions. To improve the efficiency of the whole system, the
human segmentor and forgery detector only acts when the
human detector confirms moving objects.

B. Multi-Modal Signal Processing

Secure-Mask is a cross-modal system that takes advantage
of both visual and wireless modalities. To ensure both modal-
ities contain homogeneous information, the data synchroniza-
tion is essential. Given the nature of wireless communication,



wireless signals always have a much higher sample rate than
video frames. Therefore, we assign multiple wireless frames
to one video frame. Let us denote the captured video frames as
{It}Tt=0 and CSI measurements {Ct}Tt=0 where It ∈ R3×H×W

and Ct ∈ CK×Ntx×Nrx . H and W are the height and width
of the video frames. Ntx, Nrx and K are the number of
transmitters, receivers and subcarriers, respectively. We assign
m CSI measurements {Ct, · · · , Ct+m−1} to one frame It.
We consider the amplitude of CSI measurements {At}Tt=0

to make it a real matrix. After that we get the data pairs
{It, {At, · · · , At+m}}Tt=0.
CSI Processing. The environment noise can cause sudden
changes in the CSI measurements, which will impact the
efficiency of extracting the amplitude features from it. To filter
out outliers in the CSI measurements, we utilize the Hampel
identifier [32] to denoise the CSI data as Secure-Pose [2] did.
Video Processing. To improve video storage and transmis-
sion, it is common to perform video compression. Typically,
the compression techniques such as MPEG-4 and H.264
leverage the temporal continuity of successive frames and
retain only a few complete frames while reconstructing other
frames using the motion vector and residual error. Our solution
utilizes the 2D motion vector to create masks, which can be
separated into binarization, denoising, and refinement. The
motion vectors within a group of pictures (GOP) can be
denoted as {Mt}Gt=0 where M ∈ RH×W×2. Since the velocity
of human activity is slow compared to the video frame rate,
by using a short GOP length, the human movement can be
assumed as the same in each GOP. We determine the binary
mask of the human movement from two dimensions of the
motion vector, angle and amplitude. Let M̂ be the sum of all
motion vectors in a GOP and M̄ be the φ3×3(M̂) where φ3×3

is an gaussian smooth function with a kernel size of 3. For
a single GOP, the binarized mask can be denoted as S and
computed as:

S =

1, if ‖M̂i,j‖2 + λ
< M̄i,j , M̂i,j >

|M̄i,j | · |M̂i,j |
> τ

0, else

(1)

where λ and τ are constants. The first term and second term
filter motion vector based on amplitude and degree respec-
tively. Here we set λ = 1 and τ = 0.5. The mask S is further
processed through a stack of soothing and morphological
operations after binarization.

C. Human Detector

The human detector network is a lightweight network that
aims to determine the existence of human motion. The Human
detector takes CSI as input and outputs the binary result
judging the human movement. We utilize both the convolution
layer and the Long-Short Term Memory (LSTM) layer to
process the CSI data, as it includes both spatial and temporal
features. In particular, the CSI measurements {At, · · · , At+m}
are concatenated in the subcarriers dimension to form Ac

t ∈
RmK×Ntx×Nrx . The CSI data Ac

t is first processed by two
convolution layers followed by one LSTM layer. The final

output is obtained by applying two linear layers to the LSTM
output. With the human detector, we can save computational
resources by only activating the following modules after
detecting human motion.

We supervise the human detector by binary cross-entropy
loss. Since the human detector is a binary classification net-
work, the binarized ground-truth is obtained by the following
criterion.

C(S) =

1 if

∑W
i=0

∑H
j=0 Si,j

W ×H
≥ η

0 else

(2)

where W and H are the width and height of the pseudo mask
S and η is a constant threshold, and we set η = 0.

D. Human Segmentor

Given the concatenated CSI data Ac
t , the human segmentor

generates masks of moving humans in the perception field.
To conduct this challenging task, an UNet-liked structure is
leveraged. The input CSI data Ac

t is first tiled to image size
before feeding to the network. After that, the upsampled tensor
is fed into an encoder to produce the encoded feature map.
Then a transposed convolution-based decoder is utilized to
transform wireless features to image space. Both encoder and
decoder contain four downsample and upsample operations
with a stride of 2 and, after each scaling operation, a 2D
convolution is involved to refine the feature map before the
next scaling. In particular, skip connections are used to retain
swallow wireless features in later layers. Let us denote the hu-
man segmentor as S, the human mask prediction Pt ∈ RH×W

can be denoted as Pt = S(Ac
t)

We supervise the human segmentor by binary cross-entropy
loss Lbce and Dice loss LDice. The overall loss for training is
L = LDice + λbLbce.

E. Forgery Detector

The forgery detector aims to detect video forgery attacks
using multimodal data. Since wireless perception heavily
depends on the Doppler effect which is caused by the mo-
tion of objects, the motion vector and wireless data contain
homogeneous representations of the moving humans in the
perception area. We leverage the human mask as a proxy to
conduct contrastive learning for video forgery detection. Given
a clip of video {It, · · · , It+g}, we can obtain the motion
vectors {Mt, · · · ,Mt+g} freely from the compressed video
streams. We further processed it to obtain the pseudo mask
{St, · · · , St+g}. The human segmentor predicts the human
masks {Pt, · · · , Pt+g} from the wireless modality. We tailor
a network to compare the human masks from visual and
wireless modalities to determine their homogeneity. The masks
from the visual modality {St, · · · , St+g} and masks from
the wireless modality {Pt, · · · , Pt+g} are concatenated as
{Qt, · · · , Qt+g} where Qt ∈ R2×H×W . We extract features
for each time step separately with a ResNet-based network.
After that, extracted features are fed into a one-layer LSTM



followed by two fully connected layers before the final output.
We predict the homogeneity in a clip-wise manner.

Similar to the human detector, we utilize binary cross-
entropy to supervise the training. We generate unmatched input
sequence pairs to synthesis video forgery attacks by selecting
unsynchronized masks pairs.

IV. EXPERIMENTS

To the best of our knowledge, there is no public multi-modal
dataset for video forgery. Thus, we conduct experiments using
the same dataset used in Secure-Pose [2]. In this section, we
will show the qualitative result for the human segmentor and
the quantitative result for both the human detector and forgery
detector. In the quantitative result, we report the evaluation
metrics including the accuracy (Acc), the false positive rate
(FPR), and the true positive rate (TPR).

A. Dataset Description

The dataset (same as the dataset used in [2]) was collected
in an 8m× 16m office room with 5 volunteers. As shown in
Table I, during the experiment phase, zero to three volunteers
were asked to perform walking, sitting, waving hands, or
random movements concurrently in the perception area.

TABLE I
STATISTIC OF THE DATASET. P: NUMBER OF CONCURRENT PERSON. F:

NUMBER OF VIDEO FRAMES.

P 0 1 2 3 total
F 2242 4488 4498 911 12139

Human Detector. For the human detector model, we utilize
all the video frames and their corresponding CSI measure-
ments. Then we split them randomly, in which 9663 data pairs
are used for training and 1024 data pairs are used for testing.
Human Segmentor. If the human in the video is not moving,
we cannot leverage the motion vector to generate a reliable
human mask. Therefore, we select those video frames that
can generate valid motion vector and their corresponding CSI
measurements. Then we split them randomly to train the
human segmentor model first, in which 8574 data pairs are
used for training and 870 data pairs are used for testing.
Forgery Detector. After the human segmentor model is
well trained, we feed the CSI measurements from the hu-
man segmentor’s dataset into the human segmentor model to
prepare the dataset for the forgery detector model. We get
8574 predicted masks and 870 predicted masks for the training
and testing sets of the forgery detector, respectively. Then,
we concatenate those predicted masks with the motion vector
masks to get the labels: 0 if corresponding, else 1. Finally,
for the forgery detector model, 8530 data pairs are used for
training and 826 data pairs are used for testing.

B. Implementation Details

The human detector network, human segmentor network,
forgery detector network are all implemented for 20 epochs
on the Pytorch framework.

TABLE II
QUANTITATIVE RESULTS OF HUMAN DETECTOR AND FORGERY

DETECTOR. WE SET m = 5 AND g = 7 FOR BOTH RESULTS.

Module Acc FPR TPR
Human Detector 100% 0% 100%
Forgery Detector 94.38% 4.01% 92.27%

Human Detector. The learning rate starts from 1e − 6 and
is divided by 10 for each 5 epochs. The batchsize = 16
and a RMSprop optimizer [33] with weight decay = 1e− 8,
momentum = 0.9 is leveraged.
Human Segmentor. The learning rate starts from 1e − 3
and is divided by 10 for each 5 epochs. The batchsize = 32
and an adam [34] optimizer with β1 = 0.9, β2 = 0.999 and
weight decay = 1e− 5 is leveraged.
Forgery Detector. The learning rate starts from 1e− 3 and
is divided by 10 for each 5 epochs. The batchsize = 32
and an adam [34] optimizer with β1 = 0.9, β2 = 0.999 and
weight decay = 2e− 5 is leveraged.

C. Main Results

In this section, we report the performance of the human de-
tector, human segmentor and the forgery detector. In addition,
we also compare the result of the forgery detector with other
recent methods.
Qualitative results. Since the dataset does not contain
manually annotated segmentation labels, we only show the
qualitative results of the predicted masks. As shown in Fig. 3,
the predicted masks have the corrected spatial position ,
but the detailed shapes are not recovered. Two reasons can
account for the shape difference. First, the spatial resolution
of the commercial Wi-Fi signals is less than one decimeter,
which makes it difficult for wireless data to capture detailed
human boundary information. Second, the motion vector only
provides coarse supervision compared to masks predicted by
neural networks or manual annotation.
Quantitative results. We report the quantitative results of
the human detector and the forgery detector. In the experiment,
we set the number of CSI measurements per video frame
m = 5 and the number of input video frames to the forgery
detector g = 7. As shown in Table II, the human detector has
a perfect performance. This is because the wireless signals
are sensitive to moving objects. In the indoor scenario, the
motion information can be effectively carried by the Wi-Fi
signals: the CSI data contains the spatial information because
of the Doppler effect, and as a kind of sampled signal, CSI
data contains the temporal information naturally. Therefore,
when considering the feature extraction strategy, combining
the convolution layer with the LSTM layer is much better
than the pure convolution operation as well.

The forgery detector also shows its promising performance,
whose overall accuracy can reach 94.38%. We compare our
method with other recent approaches [2], [11], [30], [31],
which are supervised learning-based method. As shown in
Table III, event- and frame-based forgery detection generally



Fig. 3. Qualitative results of the human segmentor. We provide four video clips in total and each row contains two video clips. In clips (a) and (b), there is
one person in the perception field and there are two people in the perception field for clips (c) and (d). For each clip, we show both the motion vector masks
and the predicted masks, which reports the predicted masks having the corrected spatial position while the detailed shapes are lost.

TABLE III
COMPARISON RESULT OF FORGERY ATTACK DETECTION METHODS.

THOSE METHODS USE DIFFERENT DATASETS TO INSTRUCT THE FORGERY
ATTACK DETECTION AT DIFFERENT LEVELS. F: FRAME-BASED FORGERY
DETECTION. E: EVENT-BASED FORGERY DETECTION. O: OBJECT-BASED

FORGERY DETECTION

Method Level Multi-Modal Acc
Fadl [11] F 98.0%

Lakshmanan [31] E X 98.9%
Aloraini [30] O 93.18%

Huang [2] (Secure-Pose) O X 94.9%
Secure-Mask (Ours) O X 94.38%

have a higher accuracy than those at the object level. However,
forgery detection only at the event and frame level will be
limited in some situations (i.e., the forgery attack on the entire
video). When considering the working pattern, the overall
accuracy of Secure-Mask is only 0.52% lower compared to its
counterpart, Secure-Pose, which needs work in a supervised
way. However, our self-supervised approach enables the sys-
tem to maintain its performance as the environment changes.

We also report the inference speed of the proposed system.
As shown in Table IV, even using a normal GPU, our system
can perform in a real-time manner.

D. Ablation Study

In this section, we conduct extensive ablation experiments
to study the core factors of our method.
CSI measurements per video frame m. We first train
the human segmentor with different amounts of the CSI
measurements per video frame to evaluate the influence of
the single predicted video frame on the forgery detector. As
reported in Table V, with the number of the CSI measurements
per video frame varying from 1 to 5, the Accuracy increases
from 90.25% to 94.38%. This result suggests that an addi-
tional temporal information can make it easier for the human

TABLE IV
INFERENCE SPEED. ALL RESULTS ARE MEASURED ON SINGLE NVIDIA
2070 GPU. HD: HUMAN DETECTOR. HS: HUMAN SEGMENTOR. FD:

FORGERY DETECTOR.

Module HD HS FD
FPS 230 70 280

TABLE V
CSI MEASUREMENTS PER VIDEO FRAME. THE PERFORMANCE

IMPROVE AS THE AMOUNT OF THE CSI MEASUREMENTS PER VIDEO
FRAME INCREASES. THE RATIO HERE REFERS TO THE CSI

MEASUREMENTS PER VIDEO FRAME.

Ratio (m) Acc FPR TPR
1 90.25% 10.11% 90.57%
3 91.25% 3.47% 84.60%
5 94.38% 4.01% 92.27%

segmentor to learn how to decode human motion information
from CSI measurements. Indeed, this kind of improvement
makes the performance of the forgery detector better.
Number of the input video frames to forgery detector g.
We then train the forgery detector with different numbers of
the input video frames to evaluate the effect of the amount
of the video frames on the model. As reported in Table VI,
with the number varying from 3 to 7, the accuracy increases
from 87.17% to 94.38%. This result shows that feeding more
video frames into the model does improve its performance.
The LSTM component in the forgery detector model can
account for this since the LSTM component can learn the
forgery information more efficiently when additional special
information combined with temporal information is provided.
As the video was recorded at 7.5 FPS from the camera, we set
the largest amount of the input video frames as 7 to avoid fail
detection with the short-time forgery. Moreover, we argue that
if we recorded the video at a higher FPS, the forgery detector



TABLE VI
NUMBER OF THE INPUT VIDEO FRAMES. THE PERFORMANCE IMPROVE

AS THE NUMBER OF THE INPUT VIDEO FRAMES INCREASES

Frames (g) Acc FPR TPR
3 87.17% 4.35% 79.08%
5 92.01% 4.39% 87.50%
7 94.38% 4.01% 92.27%

can achieve even better performance.

V. CONCLUSION

In this paper, we build a novel self-supervised system for
video forgery detection eliminating the need for external anno-
tations. Notably, our method achieves comparable performance
against the previous supervised methods in forgery detection.
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