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Abstract—Considering the spectrum sharing system (SSS)
coexisting with multiple primary networks, we have employed a
well-designed reconfigurable intelligent surface (RIS) to control
the radio environments of wireless channels and relieve the
scarcity of the spectrum resource in this work. Specifically, the
enhancement of the spectral efficiency of the secondary user in
the considered SSS is decomposed into two subproblems which
are a second-order cone programming (SOCP) and a fractional
programming of the convex quadratic form (CQFP), respectively,
to optimize alternatively the beamforming vector at the secondary
access point (S-AP) and the reflecting coefficients at the RIS. The
SOCP subproblem is shown as a concave problem, which can be
solved optimally using standard convex optimization tools. The
CQFP subproblem can be solved by a low-complexity method
of gradient-based linearization with domain (GLD), providing
a sub-optimal solution for fast deployment. Taking the discrete
phase control at the RIS into account, a nearest point searching
with penalty (NPSP) method is also developed, realizing the
discretization of the phase shifts of the RIS in practice. The
simulation results indicate that both GLD and NPSP can achieve
an excellent performance.

I. INTRODUCTION

IN 6G era, the rapid development of digital economy and

the emerging applications in consumption and business

stimulate the tremendous demands about the enhancement

on data rate and the availability of spectrum access. Sharing

spectrum among multiple networks with different priorities

is a potential technology to satisfy these demands, where

secondary access points (S-APs) and secondary users (SUs)

are permitted to access the same spectrum and realize data

transmissions without disturbing the normal communications

between the primary access points (P-APs) and primary users

(PUs) in primary networks (PNs) [1]. Several PNs coexisting

in the same spectrum band of citizen broadband radio service

would worsen the data transmissions in the secondary network

(SN) seriously [2]. Therefore, controlling the interference from

the SN to PNs and improving the performance of the spectrum

sharing system (SSS) is an urgent problem to be solved.

Recently, reconfigurable intelligent surface (RIS) shows the

capability of controlling and optimizing the radio environ-

ments of wireless channels between transceivers, which could

improve the spectral efficiency (SE) in wireless communica-

tion systems [3]–[5]. Since the SSSs are interference-limited,

RIS can alleviate the interference and strengthen the useful

signals at the SUs by reconstructing the wireless channels

in the SSSs. The common scenarios in RIS-aided SSSs and

the mathematical methods to optimize the performance of

SUs were summarized and provided in [6], respectively. The

demo system of RIS-aided spectrum sharing was presented

in [7] to increase the indoor network capacity significantly

and relieve the overly crowded situation of spectrum resource.

For the deployments of the RIS embedded in the basic SSS,

the optimization for reflecting coefficients at the RIS and the

power allocation of the S-AP with a single antenna are jointly

designed with successive convex approximation [8]. The intel-

ligent spectrum learning with the trained convolutional neural

network is proposed in [9] to reduce the interfering signals

in the received signals reflected from the RIS and maximize

the signal-to-interference-plus-noise (SINR) by dynamically

activating the binary status of the RIS elements. When multiple

PNs are involved in the scenarios, more complicated coupling

of optimizing variables at the S-AP and the RIS in the

SSS is introduced. Hence, the effective methods should be

carefully investigated to control these variables. In particular,

the discretization of the reflecting coefficients at the RIS is

another concern for practical consideration about the hardware

of the RIS device.

In this paper, we focus on the enhancement of SE for the

SSS with multiple PNs by utilizing the RIS to manipulate wire-

less channels, relieving the interference between PNs and the

SSS with well-designed parameters. The main contributions

of this paper can be summarized as follows:

• A new system model about RIS-aided SSS coexisting

with multiple PNs is established, based on which an

achievable rate maximization problem is formulated.

With alternative optimization (AO) utilized for multiple

variables, the problem is split into two subproblems

including the SOCP and the CQFP. In particular, the cou-

pling between the RIS and the interferences is analysed

clearly in the process of the problem formulation.

• For optimizing the beamforming vector at the S-AP, the

SOCP subproblem is transformed equivalently into a con-

cave problem and solved by standard convex optimization

tools. For optimizing the reflecting coefficients of the RIS

in the CQFP, we propose the method of gradient-based

linearization with domain (GLD) to obtain a sub-optimal

solution with a low complexity.

• We propose the method of nearest point searching with

penalty (NPSP) to realize the discrete quantization on the
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Fig. 1. RIS-aided spectrum sharing coexisting with two primary networks.

phase shifts of the RIS for the practical consideration. The

NPSP has little loss on the performance compared with

the case with the continuous phase shifts of the RIS.

II. SYSTEM MODEL

In this paper, a RIS-aided SSS with J PNs is considered.

Fig. 1 shows the scenario including two PNs. The PNs

are usually controlled by the operators. Even the P-AP is

configured with multiple antennas, the beamforming vector at

the P-AP can not be adjusted by the SSS, whose channels to

the receiver would be equivalent as an effective channel from

a P-AP configured with a single antenna. Therefore, one P-AP

and several PUs (using one PU as a typical user) configured

with a single antenna are assumed in each PN. Moreover, the

SN includes one S-AP with M antennas and one typical SU

with a single antenna. Besides of the direct links from the P-

APs or the S-AP to the PUs or the SU, the transmit signals of

the P-APs or the S-AP can also be reflected by the RIS, with

the cascaded links to the PUs or the SU.

Denoting θ = [β̄1e
iφ̄1 , . . . , β̄Neiφ̄N ]T composed with the

reflecting amplitude β̄n and the phase shift φ̄n of n-th element

on RIS (n ∈ N = {1, · · · , N}), the reflecting coefficients

of RIS are expressed as diagonal matrix Θ = diag(θ). The

direct channels from a P-AP or S-AP to a PU or SU usually

can be modeled as Rayleigh channel [10]. Let hj and hpj ,b

(j ∈ J = {1, · · · , J}) denote direct channels from j-th P-

AP to the corresponding PU and the SU, respectively. hs,j ∈
CM×1 and hs ∈ CM×1 denote the direct channels from the

S-AP to the PUs and the SU, respectively. hpj ,r
∈ CN×1 and

Hs,r ∈ C
N×M are the channels from j-th P-AP and the S-AP

to the RIS, respectively. hr,j ∈ CN×1 and hr,b ∈ CN×1 refer to

the channels from the RIS to j-th PU and the SU, respectively.

The channels between RIS and the APs or the users can be

modeled as Rician fading channels [10]. The received signal

of the PU in j-th PN is expressed by

yj = (hH
r,jΘhpj ,r

+ hj)
√

Pjxj

+ (hH
r,jΘHs,r + h

H
s,j)vsxs + zj , j ∈ J ,

(1)

where Pj , xj , vs and zj denote the transmit power of the j-th

P-AP, the transmit symbol of the j-th P-AP, the beamforming

vector of the S-AP and the white Gaussian noise at the j-th

PU with zj ∼ CN (0, σ2
zj
), respectively. The received signal

of the SU is shown as

yb = (hH
r,bΘHs,r + h

H
s )vsxs

+
∑J

j=1
(hH

r,bΘhpj ,r
+ hpj ,b

)
√

Pjxj + zb,
(2)

where xs and zb denote the transmit symbol of the S-AP and

the white Gaussian noise at the SU with zb ∼ CN (0, σ2
zb
),

respectively. Then, the SINR of the SU is denoted by

γb =
|(hH

r,bΘHs,r + h
H
s )vs|2

∑J

j=1 Pj |hH
r,bΘhpj ,r

+ hpj ,b
|2 + σ2

b

. (3)

Since the SSS is interference-limited, the noise part in γb can

be ignored. Therefore, SINR in (3) can be simplified as SIR.

The interference from the S-AP to the j-th PU is denoted as

Γj = |(h
H
r,jΘHs,r + h

H
s,j)vs|

2, j ∈ J , (4)

where Γj is restricted such that the interference from S-AP

has little impact on the normal communications in j-th PN.

Then, the maximization of the achievable rate of the SU can

be formulated as

P0: max
θ̂,vs

log2

(

1 +
θ̂H(Ĥsvsv

H
s Ĥ

H
s )θ̂

θ̂H(
∑J

j=1 PjΦ̃j,b)θ̂

)

(5a)

s.t. |θ̂H
Ĥs,jvs|

2 ≤ Γj , j ∈ J , (5b)

|[θ̂]n| ≤ 1, n ∈ N , (5c)

[θ̂]N+1 = 1, (5d)

||vs||
2 ≤ Pmax, (5e)

where θ̂H = [θH 1], h̃
T
j,r,b = [(diag(hH

r,b)hpj ,r)
T hj,b], and

Φ̃j,b = h̃j,r,bh̃
H
j,r,b. Ĥs and Ĥs,j are shown as

Ĥs =

(

diag(hH
r,b)Hs,r

h
H
s

)

, Ĥs,j =

(

diag(hH
r,j)Hs,r

h
H
s,j

)

.

P0 is non-concave for jointly optimizing vs and θ̂ because

of the coupling between vs and θ̂ in (5a) and (5b). This

brings a big challenge to search the optimal beamforming

vector and reflecting coefficients jointly. In fact, even with

vs fixed, the optimization on θ̂ in P0 is still non-concave.

Since Ĥsvsv
H
s Ĥ

H
s � 0 and

∑J

j=1 PjΦ̃j,b � 0, the numerator

and denominator in the SIR of P0 are convex functions of

θ̂. Although the domain of θ̂ with the constraints in P0 is a

compact convex set, the fractional programming of the SIR in

P0 on θ̂ is convex-concave, causing the non-concave property.

III. ALTERNATIVE OPTIMIZATION

Since the non-concave property of the P0 causes the diffi-

culty to obtain the optimal solution by optimizing beamform-

ing vector and the reflecting coefficients jointly, we propose

to optimize vs and θ̂ in P0 alternatively for the sub-optimal

objective value. Although the thought of AO method is intu-

itional, the methods to optimize vs and θ̂ need to be explored

based on the characteristics of each subproblem, respectively.

Actually, the maximization of the achievable rate in P0 is



equivalent to maximizing the SIR in P0. It can be split into

two subproblems for utilizing AO, which are shown as

P1: max
vs

||θ̂H
Ĥsvs||2

θ̂H

(

∑J

j=1 PjΦ̃j,b

)

θ̂

s.t. (5b) and (5e),

(6)

and

P2: max
θ̂

θ̂H(Ĥsvsv
H
s Ĥ

H
s )θ̂

θ̂H

(

∑J

j=1 PjΦ̃j,b

)

θ̂

s.t. (5b), (5c) and (5d).

(7)

In the subsequent subsections, we investigate the solutions of

P1 and P2, respectively.

A. The Optimal Beamforming Vector at the S-AP

With the variable θ̂ fixed in P1, the SIR in P0 is optimized

with the beamforming vector vs of S-AP in P1. Since the value

of objective function in P1 remains the same with vs replaced

by eiφvs (∀φ ∈ [0, 2π)), P1 is equivalent to P3 shown as

P3: max
vs

Re
(

θ̂H
Ĥsvs

)

θ̂H

(

∑J

j=1 PjΦ̃j,b

)

θ̂

s.t. (5b), (5e) and Im(θ̂H
Ĥsvs) = 0,

(8)

where Re(·) and Im(·) denote the real part and the imaginary

part of a scalar, a vector or a matrix, respectively.

For the constraints of vs in P3, the feasible domain of vs is a

convex set. Besides, vs in (8) is a concave function with known

θ̂. This implies that P3 can be verified as the maximization of a

concave function on vs with the form of SOCP [11], which can

be solved with the common algorithms of convex optimization

(such as interior point method). Therefore, we can obtain the

optimal solution from optimizing the beamforming vector at

the S-AP in the AO with the reflecting coefficients fixed.

B. The Optimization of the Reflecting Coefficients

In the design of the algorithm for CQFP, the computation

complexity is important for the application in the practical

system. To solve P2 in low complexity, the sub-optimal GLD

is proposed to optimize the reflecting coefficients at the RIS.

The general idea of GLD can be described as follows. First,

P2 would be transformed as the minimization of a concave

function. Then, linearization with domain would be utilized

to obtain the local-optimal solution for the minimization of a

concave problem, which is a sub-optimal solution for P2.

P4: min
θ̂,t

−
||(Ĥsvs)

Hθ̂||2

t
(9a)

s.t. θ̂H(
∑J

j=1
PjΦ̃j,b)θ̂ ≤ t, (9b)

(5b), (5c), and (5d).

The problem P2 can be transformed into P4 equivalently,

which is the minimization of a concave problem. The equiv-

alence between P2 and P4 can be proven as follows.

Proof: If θ̂0 is the optimal solution for P2, define t0 =
θ̂H
0 (
∑J

j=1 PjΦ̃j,b)θ̂0. Then, (θ̂0, t0) is a feasible solution for

P4. Assuming (θ̂0, t0) is not the optimal solution for P4, the

optimal solution (θ̂1, t1) of P4 exists and ||(Ĥsvs)
Hθ̂1||2/t1 >

||(Ĥsvs)
Hθ̂0||

2/t0. Therefore,

||(Ĥsvs)
Hθ̂1||2

θ̂H
1 (

J
∑

j=1

PjΦ̃j,b)θ̂1

≥
||(Ĥsvs)

Hθ̂1||2

t1
>
||(Ĥsvs)

Hθ̂0||2

θ̂H
0 (

J
∑

j=1

PjΦ̃j,b)θ̂0

exists, which means that θ̂1 is a feasible solution for P2 with

higher value for objective function of P2, compared with the

optimal solution θ̂0 for P2. This results in the contradiction

with the definition of θ̂0 for P2. Therefore, (θ̂0, t0) is also an

optimal solution for P4.

If (θ̂2, t2) is the optimal solution for P4, t2 =
θ̂H
2 (
∑J

j=1 PjΦ̃j,b)θ̂2 can be proven. The explanation is il-

lustrated as follows. If t2 6= θ̂H
2 (
∑J

j=1 PjΦ̃j,b)θ̂2, t2 >

θ̂H
2 (
∑J

j=1 PjΦ̃j,b)θ̂2 is obtained with the constraints (9b).

Then, a smaller value for objective function of P4 with solution

(θ̂2, t̂2) is obtained, where t̂2 = θ̂H
2 (
∑J

j=1 PjΦ̃j,b)θ̂2. This

also results in the contradiction with the definition of (θ̂2, t2)

for P4. With t2 = θ̂H
2 (
∑J

j=1 PjΦ̃j,b)θ̂2, θ̂2 is the optimal

solution for P4′ shown as

P4′: min
θ̂,t

−
||(Ĥsvs)

Hθ̂||2

t

s.t. θ̂H

(

∑J

j=1
PjΦ̃j,b

)

θ̂ = t,

(5b), (5c), and (5d).

The equivalence between P2 and P4′ is obvious. With all the

derivations and illustrations shown, P2 is equivalent to P4.

Since f(x, t) = ||x||2/t is convex over (x, t ∈ ℜ+),

q(θ̂, t) , −||(Ĥsvs)
Hθ̂||2/t is concave over (θ̂, t ∈ ℜ+). As

P4 is the minimization over the concave problem, the common

methods in convex optimization to solve the minimization

over a convex function for the optimal solution could not be

utilized. However, the approximation of the concave objective

function in P4 with linearization can be considered to obtain

a sub-optimal solution for P4. Linear approximation is the

variation of Taylor expansion by cutting off the Lagrange

form of the remainder or the Peano form of the remainder,

which is in second order. Therefore, the value of the linear

approximation for the objective function in P4 is higher than

the optimal value in P4 for the convexity of the function

||x||2/t, which can explain the sub-optimality of GLD.

With ̟T = [θ̂T t] defined, linearization is utilized to make

q(̟) convexified on ̟k as

q̂(̟;̟k) , q(̟k) +∇q(̟k)
T(̟ −̟k), (10)

where q̂(̟;̟k) is an affine function with convexity and k
is the count number of the iteration in the GLD. The domain

of ̟ is D determined by the constraints (5b), (5c), (5d) and

(9b), and the convexity of the domain can be easily validated.



To keep any feasible point for the problem (10) in D, the

penalty item should be added in (10) for the points out of D.

The linearization for P4 with domain is shown as

q̃(̟; z) , q(z) +∇q(z)T(̟ − z) + I(̟), (11)

I(̟) ,

{

0 ̟ ∈ D,
∞ ̟ /∈ D.

Since I(̟) is a convex function and (10) is an affine function,

q̃(̟; z) in (11) is convex. The gradient of q(̟) can be

obtained as

∇q(̟)T = [−θ̂H(Ĥsvsv
H
s Ĥ

H
s )/t ||(Ĥsvs)

Hθ̂||2/t2]. (12)

Since the optimization of (10) includes the process of iteration

for ̟k, ̟k may be on the boundary of the D. Therefore, the

convex function q̂(̟;̟k) may not be differentiable at ̟k.

If ¯̟ k in q( ¯̟ k) is on the boundary of D, the damped process

as ̟k = ε ¯̟ k + (1 − ε)̟k−1 is executed with ε ∈ (0, 1).
If ̟0 is in the interior of D, ̟k will be guaranteed in the

interior of D.

In the initial phase, the GLD attempts to obtain a feasible so-

lution for P4 randomly. With this feasible point in the domain

of P4, the objective function in P4 would be approximated by

a line segment with the linearization operation. The optimal

solution for the line segment in the feasible domain of P4

is solved as the updated feasible point to start next iteration.

Therefore, the iteration of the ̟k would converge to a local

minimum point of the objective function in P4, which is a

sub-optimal solution of the reflecting coefficients at the RIS.

In summary, the GLD algorithm is shown as Algorithm 1,

whose computation complexity is proportional to O(KN).

Algorithm 1 The Gradient-based Linearization with Domain

algorithm for P4

1: Initial: given ̟0 in interior of D randomly, τ0 = q(̟0),
τ−1 = −∞, k ← 0, set K with a large positive integer.

2: while τk > τk−1& k < K do

3: Linearization with domain: q̃(̟;̟k) = q(̟k) +
∇q(̟k)

T (̟ −̟k) + I(̟).
4: Solve the convex subproblem of minimizing q̃(̟;̟k)

with interior point method and obtain the solution ¯̟ k+1

for τk = min̟ q̃(̟;̟k)with the constraints (5b),

(5c), (5d) and (9b).

5: if ¯̟ k+1 is in the interior of D then

6: ̟k+1 ← ¯̟ k+1

7: else

8: ̟k+1 ← ε ¯̟ k + (1− ε)̟k, ε ∈ (0, 1).
9: end if

10: k ← k + 1
11: end while

IV. THE PRACTICAL CONSIDERATION FOR THE RIS

Although the phase shifts of reflecting coefficients in P0 are

continuous variables ranging in [0, 2π), the phase shifts of the

RIS in practical system are selected from discrete values for

the characteristics of the RIS devices. Usually, the phase shifts

can be quantified by 1 bit or 2 bits [10]. If the phase shifts of

θ̂ in P0 are discrete variables, P0 will become a mixed integer

non-linear problem (MINLP), which is more complicated to be

solved. The discrete phase shifts of θ̂ can be relaxed to contin-

uous variables to obtain the solution, which is corresponding

to P0. Then, the continuous solution can be quantified to

discrete phase shifts. However, new solution should be feasible

for the constraints (5b) and decrease the deterioration of SE

performance. Assuming that θ̄ is a continuous solution for P0

and there are L levels ({φ1, · · · , φL}) for the quantization of

phase shifts, the quantization problem about the phase shifts

of the reflecting coefficients can be illustrated as

P5: min
θd

||θ̄ − θd||
2 (13a)

s.t. ∠([θd]n) ∈ {φ1, · · · , φL}, n ∈ N , (13b)

|θH
d Ĥs,jvs|

2 ≤ Γj , j ∈ J . (13c)

For a small number of reflecting coefficients, the exhaustive

searching method can be utilized to obtain the discrete solution

θd, which should conform to the constraints of (5b) and

optimize the objective function of P0.

In this paper, the NPSP is proposed to obtain the sub-

optimal solution about the discrete phase shifts. The NPSP

method would focus on searching the nearest point in the

candidate set of the discrete phase shifts, where the objective

function would be added with the penalty for invalidation of

constraints. Let us introduce an auxiliary vector b for θd. Then,

the problem about NPSP for solving discrete phase shifts at

the RIS is formulated as

P6: min
θd, b

||θ̄ − b||2 +
µ

2
||b− θd||

2

s.t. b = θd, (13b), and (13c),
(14)

where µ > 0 is the penalty parameters. Given the Lagrange

variables w = [w1, · · · , wJ ]
T � 0 and λ = λR + iλI

(λR = [λR,1, · · · , λR,N ]T and λI = [λI,1, · · · , λI,N ]T) for

Re{b−θd} = 0 and Im{b−θd} = 0, the Lagrangian function

for P6 is

G(b, θd,λ,w) =(b− θ̄)H(b− θ̄) +
µ

2
(b− θd)

H(b− θd)

+
∑N

n=1
In([θd]n) + Re{λH(b− θd)}

+
∑J

j=1
wj(|θ

H
d Ĥs,jvs|

2 − Γj),

(15)

where In(·) is the indicator function (In(x) = 1 if x ∈
{|[θ̄]n|eiφ1 , · · · , |[θ̄]n|eiφL}, otherwise +∞). Then, the dual

problem can be defined as

L(λ,w) , inf
b,θd

G(b, θd,λ,w) (16)

To solve P6 with the NPSP, the iterations about the parameters

are shown as

θ
(k+1)
d = argmin

θd

G(b(k), θd,λ
(k),w(k)), (17a)

b(k+1) = argmin
b
G(b, θ

(k+1)
d ,λ(k),w(k)), (17b)

λ(k+1) = λ(k) + µ(b(k+1) − θ
(k+1)
d ), (17c)



w
(k+1)
j = w

(k)
j + µ(|θ

(k+1)
d Ĥs,jvs|

2 − Γj)
+, j ∈ J . (17d)

Since (Hs,jvs)
H(Hs,jvs) is a real number, the angle calcula-

tion is shown as

∠

(

b(k) + λ(k)/µ

1 +
∑J

j=1 wj(Hs,jvs)H(Hs,jvs)

)

= ∠

(

b(k) +
λ(k)

µ

)

.

Therefore, θ
(k+1)
d in (17a) can be solved by

∠(θ
(k+1)
d ) , argmin

ϕ
||ϕ− ∠

(

b(k) + λ(k)/µ
)

||, (18)

[ϕ]n ∈ {φ1, · · · , φL}, |[θ
(k+1)
d ]n| , [θ̄]n, n ∈ N .

Besides, b(k+1) in (17b) can be solved by

b(k+1) = Y−1
(

2θ̄ + µθ
(k+1)
d + λ(k+1)

)

, (19)

where Y = (2+µ)IN+2
∑J

j=1 w
(k)
j (Hs,jvs)(Hs,jvs)

H. Then,

the proposed NPSP algorithm to solve P6 problem can be

shown as Algorithm 2, whose computation complexity is

proportional to O(Nitr(N(L + 1) + JM +N3)).

Algorithm 2 The Nearest Point Searching with Penalty algo-

rithm for P6

1: Initial: given λ(0), b(0) and w(0) randomly, F
(0)
obj ← +∞,

k ← 0. Set the terminating threshold ς for objective

function in P5 and Nitr for maximum number of iteration.

2: while F
(k)
obj > ς & k < Nitr do

3: Update θ
(k+1)
d , b(k+1) with (18) and (19)

4: if θ
(k+1)
d meets the constraints in (13c) then

5: if ||θ̄ − θ
(k+1)
d ||2 < F

(k)
obj then

6: θo ← θ
(k+1)
d

7: end if

8: F
(k+1)
obj ← min{||θ̄ − θ

(k+1)
d ||2, F

(k)
obj }

9: end if

10: Update λ(k+1), w(k+1) with (17c) and (17d)

11: k ← k + 1
12: end while

13: if F
(k)
obj = +∞ & k = Nitr then

14: The feasible solution for θd is not searched.

15: else

16: Output θo

17: end if

Since θd is the discretization of the θ̄, the constraints of

(13c) may become invalid. Therefore, the feasible θd may

not exist for some CSI Hs,j and the beamforming vector vs,

especially with a small number of elements at the RIS.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are shown to evaluate the

performance of RIS-aided spectrum sharing with multiple PNs.

The general simulation setup is shown in Fig. 2. The path

losses of direct link and the cascaded link over the RIS are 106

dB and 123 dB, respectively, which are calculated by following

y/(m)

x/(m)

1 m

(50, 86.6, 0)
(50, -86.6, 0)

(86.6, -50, 0) (86.6, 50, 0)

(2, 0, 1)

(0, 0, 2)

z/(m)

P-AP1 P-AP2

P-AP4P-AP3 S-AP

RIS

PU

SU

Fig. 2. Simulated scenarios: a RIS-aided SSS coexisting with multiple PNs.

the parameters given in Table I [12]. In particular, due to the

double fading effect [3], the path loss of the cascaded link

over RIS is larger than that of the direct link.

TABLE I
THE PARAMETERS OF THE SIMULATION

Parameters Values

Path loss for RIS-assisted channel 35.6+22.0 lg d
Path loss for direct channel 32.6+36.7 lg d

The maximum transmit power (Pmax) -2 dBm ∼ 14 dBm

The interference threshold (Γj) -115 dBm, j ∈ J
The power of a P-AP (Pj) 10 dBm, j ∈ J

Fig. 3 shows the SE performance of the proposed GLD

with the varying parameter N of the RIS as Pmax of the S-

AP increases from −2 dBm to 14 dBm. Compared with the

scenario without RIS, RIS-aided SSS has obvious gain on the

SE performance, even with N = 1. For the objective function

of P2, the increasing on the parameter N of the RIS not only

provide more flexibility on the optimization of the numerator

in P2, may also amplify or diminish the denominator in P2.

As Fig. 3 shows, our proposed GLD improves the achievable

rate of the SU, which indicates that the increasing on N can

enhance the SE performance of the system. When Pmax ranges

in the interval of high power , the proposed GLD method can

achieve better SE of the system as N becomes larger.

Fig. 4 shows the SE performance of the proposed GLD

and the benchmark semidefinite programming (SDP) method

as the interference threshold of each PN Γj increases. With

more PNs involved in the scenarios of spectrum sharing, the

SE performance of the system decreases sharply for more

interference introduced in the denominator of γb and more

constraints added in (5b), which is shown in Fig. 4. Besides,

the enhancement on the SE performance of the SU becomes

more obvious for the scenarios with a larger number of PNs

as the interference threshold goes up.

For the practical consideration about the reflecting coeffi-

cients, the proposed NPSP is utilized to quantize the phase

shifts of the reflecting coefficients θ̂ at the RIS for the pro-

posed GLD and the benchmark SDP method. Fig. 5 shows the

performance of GLD and SDP with the embedded NPSP for
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Fig. 3. The performance of the SU realized by the GLD method as N varies.
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Fig. 4. The performance of the SU obtained by the GLD method and the
benchmark SDP method versus the interference threshold of each PN with
Pmax = 10 dBm.

the phase discretization of θ̂. The discretization of θ̂ decreases

the achievable rate of the SU slightly for the proposed GLD

and the benchmark SDP method with J = 2 or 3. Besides,

the achievable rate of SU about the proposed GLD with NPSP

embedded for the phase discretization of θ̂ is still better than

that of benchmark SDP method in the same case. It is worth

noting that the achievable rate of the SU with the phase

discretization of θ̂ encounters the sharp decreasing with a

small N , compared with that of continuous value of θ̂. When

N is small, the phase discretization of θ̂ may result in the

invalidation about the constraints in (13c).

VI. CONCLUSION

In this paper, the problem about maximizing the achievable

rate of the SU in RIS-aided SSS with multiple PNs was

formulated, which was split into a SOCP subproblem and a

CQFP subproblem, respectively. The SOCP subproblem has

been proven to be concave, which can obtain the optimal

solution with the common algorithms of convex optimization.

To decrease the computation complexity, we developed the

sub-optimal GLD to solve the CQFP subproblem. Although

more PNs would decrease the SE performance of the SU due

to more interference introduced in the system, our proposed

GLD can improve the achievable rate of the SU compared with
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Fig. 5. The phase discretization of θ̂ by NPSP with Pmax = 10 dBm and
2 bits used to quantify the phase shifts where (c) and (d) mean continuous

value and discrete value for θ̂ with Γi = 5 dB, respectively.

the traditional SDP method. Besides, the NPSP algorithm was

proposed to realize the discretization of phase shifts about the

reflecting coefficients at the RIS in practical system. The RIS

can amplify the effective signals and suppress the interference

of the SU by empowering the radio environments of wireless

channels, which improves the SE performance of the SSS

coexisting with multiple PNs significantly.
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