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Abstract—While the rollout of the fifth-generation mobile
network (5G) is underway across the globe with the intention
to deliver 4K/8K UHD videos, Augmented Reality (AR), and
Virtual Reality (VR) content to the mass amounts of users, the
coverage and throughput are still one of the most significant
issues, especially in the rural areas, where only 5G in the low-
frequency band are being deployed. This called for a high-
performance adaptive bitrate (ABR) algorithm that can maximize
the user quality of experience given 5G network characteristics
and data rate of UHD contents.

Recently, many of the newly proposed ABR techniques were
machine-learning based. Among that, Pensieve is one of the state-
of-the-art techniques, which utilized reinforcement-learning to
generate an ABR algorithm based on observation of past decision
performance. By incorporating the context of the 5G network and
UHD content, Pensieve has been optimized into Pensieve 5G. New
QoE metrics that more accurately represent the QoE of UHD
video streaming on the different types of devices were proposed
and used to evaluate Pensieve 5G against other ABR techniques
including the original Pensieve. The results from the simulation
based on the real 5G Standalone (SA) network throughput shows
that Pensieve 5G outperforms both conventional algorithms and
Pensieve with the average QoE improvement of 8.8% and 14.2%,
respectively. Additionally, Pensieve 5G also performed well on the
commercial 5G NR-NR Dual Connectivity (NR-DC) Network,
despite the training being done solely using the data from the
5G Standalone (SA) network.

Index Terms—5G Network, 5G Standalone, Adaptive Bitrate,
UHD Video, QoE

I. INTRODUCTION

In the early 2020s, the deployment of 5G networks started
around the world with goals to enable the new application
of mobile networks for Ultra High Definition (UHD) video
streaming, Virtual Reality (VR)/Augmented Reality (AR) con-
tent delivery, Smart City, Industrial Automation, Self Driving
Vehicle, etc. There are mainly two types of 5G deployment that
are being deployed commercially: 5G Non-Standalone (NSA),
and 5G Standalone (SA). In the early stage of 5G deployment,
mobile network operators will utilize the 5G NSA architecture
and deploy only 5G base station (gNodeB) without deploying
5G Core. This allows the network operators to rollout 5G
very quickly and lower the cost of initial deployment. While
this type of deployment allows fast roll-out during the initial
stage of 5G deployment, the usage of 4G Long-Term Evolution
(LTE) signaling from the legacy Evolved Packet Core (EPC)

Fig. 1: Coverage of Different 5G Frequency Bands

means that features such as network slicing and Ultra-Reliable
Low Latency Communications (URLLC) are unavailable. The
ultimate goal of 5G evolution is to migrate toward 5G SA
architecture with the deployment of 5G Core, then switch to
5G Signaling, which supports new 5G features [1].

While 5G promises to provide up to 20 Gbps peak downlink
throughput and 10 Gbps peak uplink throughput with low
latency [2], that speed is only achievable in the area with High
Frequency Band (mmWave) service [3][4], which is known to
have poor coverage and intended for the very high-density
urban environment only. In the suburban and rural areas, the
middle frequency band and low-frequency band are commonly
used (see Figure 1). The middle frequency band are capable of
delivering throughput up to 1.7 Gbps in ideal condition with
typical real-world throughput of around 100 Mbps to 1 Gbps
[5], while the low-frequency band is usually deployed on the
existing LTE frequency spectrum either by migrating toward
5G completely or by the use of Dynamic Spectrum Sharing
(DSS). The low-frequency band only provides the basic service
with typical throughput of lower than 100 Mbps. As networks
migrate toward the SA architecture, low-frequency bands,
formerly used for LTE networks, are heavily used to extend
5G coverage in suburban and rural areas. 5G deployed in the
low-frequency band only provides a latency advantage over
the existing LTE network while offering no throughput uplift
at all. This means that the delivery of UHD videos and VR/AR
content over 5G in suburban and rural areas can poses a
significant challenge due to the limited throughput. Figure 2
illustrates the typical throughput of the 5G SA network on a
train in the suburban area in Saitama Prefecture, Japan.

In the real-world situation, it’s inevitable that the users will
be moving between the service area of different frequency
bands, which offer different maximum theoretical throughput.

ar
X

iv
:2

21
2.

14
47

9v
1 

 [
cs

.N
I]

  2
9 

D
ec

 2
02

2



Fig. 2: Real-World Throughput of Low Frequency 5G Band
in Suburban area in Saitama Prefecture, Japan

Fig. 3: SoftBank 5G SA Throughput on JR Yamanote Line in
Tokyo, Japan
While high and middle-frequency bands are adequate for
UHD video delivery, the low-frequency band might not be
able to provide high enough throughput for smooth playback,
resulting in bad Quality of Experience (QoE) due to rebuffer-
ing and stuttering. This may cause the user to give up the
service causing a loss of business and profit. While HTTP
adaptive streaming techniques such as MPEG-DASH have
been evaluated to performed considerably good on 5G middle
frequency band with Massive MIMO deployment [6], it can
not keep up very well when the user equipment (UE) is being
handover between different frequency bands with different
maximum throughput because the throughput range became
very broad as seen in Figure 3. Therefore, more advanced
ABR algorithm should be used to cope with the issue.

Due to the unpredictable nature of Mobile Network, conven-
tional Adaptive Bitrate (ABR) algorithms that utilize a set of
rules are unlikely to successfully deliver good QoE. Pensieve
[7] has been proved to be one of the most successful imple-
mentations of Reinforcement Learning (RL) in ABR streaming
applications. However, the original work was optimized for 3G
Universal Mobile Telecommunications System (UMTS) and
4G LTE network, which has different characteristics than 5G
New Radio (NR). Therefore, in this paper, Pensieve will be
optimized for 5G NR and evolved to ”Pensieve 5G.” New QoE
metrics based on recent works on Quality of Experience on
different types of devices will be introduced, then will be used
to evaluate and compared Pensieve 5G to other adaptation al-
gorithms. Finally, Pensieve 5G will be evaluated on the world’s
first 5G NR Dual Connectivity (5G NR-DC) deployment [8],
allowing the combination of middle frequency 5G band (sub-
6 GHz) to high frequency 5G (mmWave) band, on NTT
DoCoMo, the largest mobile network operator in Japan. The
rest of the paper is organized as follows: Section II will provide
some of the related works, Section III describes how the
experiment is being configured and introduces newly proposed
QoE metrics, Section IV presents the experiment results, and
the conclusion and future work should be discussed in Section
V.

II. RELATED WORK

Conventional ABR algorithms work by one of the two
following principles: estimating the network throughput (Rate-
based), or monitoring playback buffer status (Buffer-based). A
rate-based algorithm such as FESTIVE [9] works by monitor-
ing past chunk download activities or utilize other techniques
such as TRUST [10] in order to make a prediction about
the network throughput, then attempt to fetch the best quality
chunk based on the prediction. While Buffer-based algorithms
such as BOLA [11], and FRAB [12] attempt to keep their
buffer level at the target value. Latest works such as BOLA
have the ability to stop the chunk download, then switch to the
lower quality one if the download time is deemed excessive.
These methods may work well with legacy 3G UMTS or 4G
LTE networks due to the fixed maximum carrier bandwidth of
5 MHz and 20 MHz, respectively. However, the introduction
of carrier aggregation (CA) [13] in LTE-Advanced (LTE-A)
resulted in highly unpredictable throughput that varies by
a huge margin from one base station to another as mobile
network operators might not deploy all frequency bands on
every base station.

Recently, Y. Yuan et al. proposed VSiM [14] to improve
QoE Fairness for Mobile Video Streaming. The system works
by detecting the client’s mobility profile, then triggering the
server push mechanism to push multiple low-quality chunks
to fill the client’s buffer using QUIC protocol when the server
detected that the client buffer is starving. While the system is
quite robust against rebuffering and provides state-of-the-art
performance in QoE fairness, mobility profile detection works
by actively obtaining GPS location from clients, which may
cause excessive battery drain and privacy concerns.

III. TEST CONFIGURATIONS

A. Throughput Data Collection

To get a good variety of training data, data from multiple
network operators across two countries that provides commer-
cial 5G SA service were obtained. This includes Advanced
Info Service (AIS) Thailand, SoftBank Japan, and NTT Do-
CoMo Japan. Additionally, multiple types of User Equipment
with a variety of network capabilities were used including
Samsung Galaxy Z Flip3 5G (SM-F711B), Samsung Galaxy
S22 Ultra (SC-52C), and ASUS Smartphone for Snapdragon
Insiders (EXP21), which should provide generalized data that
is not unique to one specific model of user equipment or
network. To collect the data, mobile network testing tools
called ”Network Signal Guru” from Qtrun Technologies were
used. Test cases were set up to download a large file via
HTTP protocol for an infinite amount of time with the option
to automatically restart upon connection loss turned on. The
log file was imported into ”AirScreen” software from the
same company, then the application layer throughput with
timestamp was exported into CSV format. The log file also
contains RF signal parameters, which will be used in future
works. In contrast to the original Pensieve, in which only the
traces with average throughput from 0.2 Mbps to 6.0 Mbps



TABLE I: YouTube Median AV1 Bitrate, Buffer Length, and
Buffer Size for each video resolution

Resolution Median Buffer Buffer
Bitrate (kbps) Length (s) Size (MB)

144p 83 120 1.3
240p 181 120 2.7
360p 397 120 6.1
480p 725 120 10.6
720p 1861 120 28.8
1080p (Full HD) 3372 120 51.3
1440p 8706 57.5 94.2
2160p (UHD 4K) 17941 30.6 97.5
2880p 13873 56.7 103.9
4320p (UHD 8K) 37087 23.8 101.6

were included, all traces regardless of minimum or maximum
throughput were included in this work to represent the broad
range of throughput possible in real-world 5G NR network.

To cover typical mobility and everyday use cases. The
throughput collection was done when the UE was at sta-
tionary, moving at walking speed, traveling on cars, trains,
and streetcars. The location of the data collection also varies
from urban, suburban, and rural, which should provide a good
representation of mobile network conditions from close to
ideal conditions to worst-case scenarios. Additionally, UE was
taken into the concert to obtain the data while the base station
was heavily loaded by multiple users. Lastly, the data was
obtained from the service area of the next generation 5G
deployment, the 5G NR-DC on NTT DoCoMo Network.

B. Bitrate, Buffer Length, and Encoding Setting

In the original Pensive [7], the author used the buffer length
of 60 seconds with six representations of the video with
the data rate from 300 kbps to 4.3 Mbps, which covers the
resolution from 240p to 1080p. The chunk length of 4 seconds
was used. The encoding configuration and buffer length was
obtained from YouTube using youtube-dl. The bitrate of AV1
encoding of eight 8K videos was obtained, then the median
value was obtained. The average was not used because some of
the YouTube videos were granted significantly higher bitrate
than the typical bitrate and became an outlier. Additionally, by
selecting the video resolution, pausing the video, then using
the ”Stats for nerds” option on the YouTube playback page,
the buffer length for each resolution can be obtained. Table
I shows the median bitrate, buffer length, and buffer size of
YouTube.

From YouTube configuration, it has been found that the
web browser has a media buffer at a maximum of around
100 MB, so the buffer length of 24 seconds was chosen. To
avoid excessively large chunk size due to the high bitrate
of 8K UHD video, the chunk size was reduced from 4
seconds to 2 seconds. Additionally, due to the lack of AV1
decoding capability on the experiment test bench, the video
was encoded in VP9 codec with the same bitrate as the
YouTube AV1, which should give a good representation of the
AV1 payload. Finally, due to the 5K resolution on YouTube
being experimental, the bitrate from YouTube was not used
and a bitrate between 2160p (UHD 4K) and 4320p (UHD 8K)
was chosen. The bitrate used for the experiment is summarized

TABLE II: Bitrate used for Experiment

Resolution Bitrate (kbps)

144p 100
240p 300
360p 500
480p 1000
720p 2000
1080p (Full HD) 4000
1440p 8000
2160p (UHD 4K) 18000
2880p 28000
4320p (UHD 8K) 37500

in Table II. The source video was a gaming video with a
resolution of 3840x2160p and a frame rate of 60 fps, the video
was upscaled for the resolutions above 2160p (UHD 4K).

C. QoE Metrics

The original works utilize the general QoE metric from
MPC [15], which can be defined as

QoE =

N∑
n=1

q(Rn)−µ
N∑

n=1

Tn−
N−1∑
n=1

| q(Rn+1)−q(Rn) | (1)

Given video with N chunks, Rn represent the bitrate for
the chunkn and q(Rn) represents the QoE perceived by the
user given the bitrate. Tn is the rebuffering time in seconds
used to penalize the QoE by the factor of µ for the amount of
time user need to wait for rebuffering. Finally, the change in
video quality resulted in reduced smoothness and lowered the
QoE is penalized by the final terms.

However, a study [16] shows that the negative MOS impact
only occurs when the resolution is being lowered from the
higher quality representation to the lower one. Therefore, QoE
should not be penalized for the increase in video quality.
Therefore, the QoE metric should be defined as follows

QoE =

N∑
n=1

q(Rn)−µ
N∑

n=1

Tn−S
N−1∑
n=1

(q(Rn)−q(Rn+1)) (2)

Where S is defined as

S =

{
1 if q(Rn+1) < q(Rn)

0 otherwise
(3)

Six choices of q(Rn) are considered, the first two are from
the original work, while the latter four are newly purposed
based on recent studies:

1) QoElin : q(Rn) = Rn: Used by MPC [17].
2) QoElog : q(Rn) = log(R/Rmin): Used by BOLA

[11], this metric assumes that the quality improvement
became less perceivable at a higher bitrate.

3) QoEHD : 50(Resolution/4320): This assigns the score
out of 50 by using the vertical resolution of the current
chunk proportional to the vertical resolution of the best
quality representation.

4) QoESMARTPHONE : QoE of watching the UHD video
on smartphone out of 50, be taken into account the study
[18], which results shows that QoE improvement on
the smartphone in Non-VR environment is negligible



(a) 5G SA - Driving (b) 5G SA - Streetcar (c) 5G SA - Suburban Train

(d) 5G SA - Rural Train (e) 5G SA - Concert (f) 5G SA NR-DC - Walking

Fig. 4: Summarize of 5G Throughput Characteristics in Various Scenarios

TABLE III: QoE metrics used in evaluation. Each metric is
used in Equation 2

QoE Metric q(R) µ

QoElin Rn 37.5
QoElog log(R/Rmin) 5.93
QoEHD 50(Resolution/4320) 24
QoESMARTPHONE 144p→ 1, 240p→ 10, 360p→ 25, 480p→ 35, 25

720p→ 42, 1080p→ 45, 1440p→ 47,
2160p→ 48, 2880p→ 49, 4320p→ 50

QoETV 144p→ 1, 240p→ 8, 360p→ 18, 480p→ 24, 45
720p→ 30, 1080p→ 35, 1440p→ 42,
2160p→ 46, 2880p→ 48, 4320p→ 50

QoEV R 144p→ 1, 240p→ 6, 360p→ 14, 480p→ 18, 50
720p→ 25, 1080p→ 32, 1440p→ 38,
2160p→ 42, 2880p→ 46, 4320p→ 50

beyond 1080p due to the limited resolution and small
display size.

5) QoETV : QoE of watching the UHD video on an 8K
Television set out of 50, be taken into account studies
[19][20], which shows that the improvement in QoE of
resolution beyond 2160p at typical viewing distance is
minor.

6) QoEV R : QoE of watching VR content a VR headset out
of 50, be taken into account the study [18], which shows
that the improvement in resolution is more perceivable
than when viewing on smartphone likely due to the very
close viewing distance.

D. Proposed Method

Due to the increased complexity resulting from increasing
the number of representations in MPEG-DASH from six to
ten, the number of neurons and filters has been increased from
128 to 320, and the learning rate of the actor-network was
reduced from 1.0 × 10−4 to 5.0 × 10−5. Additionally, the
reward metric used during training was changed from QoElin

used in original work to QoEHD with µ set to 80 instead of
24 during training to prevent the network from preferring to
rebuffer high resolution representation over choosing the lower
resolution one.

As for Pensieve’s simulator, which is used to train the
Pensive 5G neural network, the configuration was adjusted so
that in case the buffer has filled up, the simulator will pause

the video chunk download request for 2000ms instead of the
original configuration of 500ms. Unlike legacy 4G LTE or
3G UMTS networks, the peak throughput of 5G NR is very
high in the area with middle and high-frequency band service,
which can easily cause the buffer to overflow. As one chunk
of the video is 2000ms, this change prevents buffer overflow
by ensuring that one chunk is played back and pruned from
the buffer before adding a new chunk to the buffer.

As for the training data, the original work used the through-
put trace based on the 3G High-Speed Downlink Packet
Access (HSDPA) network and filter out throughput data out-
side the range of 0.2 to 6.0 Mbps, which does not give
a good representation of modern cellular network because
the 3G HSDPA network has a fixed channel bandwidth and
maximum throughput 5 MHz and 14.4 Mbps, respectively.
However, modern LTE networks may have channel bandwidth
between 1.4 MHz and 20 MHz, while 5G networks utilize
channel bandwidth in the range between 5 MHz and 100 MHz.
Therefore, the training data was replaced with throughput data
on the 5G Standalone (SA) network, as mentioned in section
III-A, from various scenarios from high-throughput mid-band
5G Sub-6 Time Division Duplex (TDD) network in the urban
area to fringe area coverage of low-band 5G Sub-6 Frequency
Division Duplex (FDD) network in the rural area. Additionally,
from all the training data, about 10% of throughput data from
the legacy 4G LTE network was also included because of the
similarity in throughput characteristics between 4G LTE and
5G Sub-6 FDD network. Some throughput traces also include
total loss of service to simulate challenging coverage areas
of cellular networks. No throughput filtering was done to the
data as the operation of the ABR algorithm in the challenging
condition is one of the main objectives.

E. Evaluation

To evaluate the performance of ABR algorithms, five 5G
Standalone (SA) scenarios and one 5G NR-DC scenario were
considered. 15-minute long throughput information was ran-
domly chosen from each scenario, then the throughput data
was converted to be compatible with Mahimahi [21] network
emulation tool. A 13-minute long video encoded with the



Fig. 5: Comparison of various ABR algorithms on various scenarios on 5G Standalone (SA) and 5G NR Dual-Connectivity
(NR-DC) networks by using various QoE metrics. The results has been normalized against Pensieve 5G results.

parameters in section III-B was played back and the results
were collected for each test case. To obtain the result for
the original Pensieve, the training data was replaced with the
same dataset as Pensieve 5G, but the training parameters were
remain at the original configuration. The original Pensieve’s
simulator was used to train Pensieve, while Pensieve 5G was
trained using the newly proposed configuration. Both Pensieve
and Pensive 5G were trained for 120,000 epochs, then the best
model was used for the evaluation.

The throughput characteristics of each scenario can be seen
in Figure 4a, 4b, 4c, 4d, 4e, and 4f. Pensieve 5G, Pensieve
[7], Buffer-Based (BB) [22], Rate-Based (RB), BOLA [11],
MPC [17], and robustMPC [17] were evaluated in this work.

IV. EXPERIMENT RESULTS

From the experiment, when comparing Pensieve 5G to
conventional ABR algorithms. Pensieve 5G performed well
overall across all considered case scenarios. The main focus
of the discussion will be based on QoEHD, which reflects
the raw performance, and QoESMARTPHONE , which is the
most likely use cases of typical users. In the cases with good
middle-frequency band coverage such as streetcars, driving,
and concert cases, when compared to other ABR algorithms,
Pensieve 5G managed to deliver an average improvement

of 4.8% and 3.0%, for QoEHD and QoESMARTPHONE ,
respectively. When comparing to the original Pensieve, which
did not design for large throughput range of 5G, Pensieve 5G
yield 44.2% better performance in QoEHD, but only providing
1.5% improvement when considering QoESMARTPHONE .
It’s worth mentioning that, in the cases with good connection
quality, the original Pensieve and Buffer-Based (BB) ABR
significantly underutilized the available bandwidth resulting
in suboptimal performance. The 5G NR-DC case follows
this trend, where all ABR algorithms performed well except
Pensieve and BB, which underutilized the available bandwidth,
resulting in Pensieve 5G performing an average of 17.5%
better than Pensieve across all QoE metrics on 5G NR-DC.

When considering the less ideal cases like Suburban Train
and Rural Train, the Pensieve 5G yield an average of 14.8%
and 12.0% improvement in QoEHD and QoESMARTPHONE ,
respectively, over conventional ABR techniques. Addition-
ally, when considering the original Pensieve, Pensieve 5G
provides 31.0% better QoEHD and 4.2% uplift in QoEHD

and QoESMARTPHONE . Overall, Pensieve 5G provides an
average of 8.8% and 14.2% better QoE across all metrics
against conventional ABR techniques and Pensieve, respec-
tively, demonstrating the superior performance suitable for the



5G network environment.

V. CONCLUSIONS AND FUTURE WORK

In this paper, new QoE metrics for streaming of 4K/8K
UHD contents on various devices were introduced to reflect
the recent works and newly developed use cases. Then, the
new configurations and training dataset based on a 5G network
environment were proposed for Pensieve, a reinforcement-
learning-based ABR technique, which developed into Pensieve
5G. The newly proposed QoE metrics as well as some from
the original works were used to evaluate Pensieve 5G against
the original Pensieve and other conventional ABR techniques.
While Pensieve 5G did not outperform other ABR algorithms
in all scenarios like the original work, it still delivers an
average of 8.8% better performance compared to conventional
techniques and 14.2% improvement over Pensieve, being able
to take full advantage of the available network bandwidth
to maximize the QoE in most cases including some of the
challenging ones. Therefore, Pensieve 5G has the potential
to become a useful technique to improve UHD 4K/8K video
streaming QoE on the 5G NR network across various use
cases and scenarios. As for future work, the incorporation
of other RF parameters into the decision factor of the ABR
algorithm should improve the performance of Pensieve 5G
over the existing methods by a significant margin, especially
in rural areas with challenging RF conditions and frequent
complete loss of service.
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