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Abstract—We propose a novel neural waveform compression
method to catalyze emerging speech semantic communications.
By introducing nonlinear transform and variational modeling,
we effectively capture the dependencies within speech frames
and estimate the probabilistic distribution of the speech feature
more accurately, giving rise to better compression performance.
In particular, the speech signals are analyzed and synthesized by a
pair of nonlinear transforms, yielding latent features. An entropy
model with hyperprior is built to capture the probabilistic
distribution of latent features, followed with quantization and
entropy coding. The proposed waveform codec can be optimized
flexibly towards arbitrary rate, and the other appealing feature is
that it can be easily optimized for any differentiable loss function,
including perceptual loss used in semantic communications. To
further improve the fidelity, we incorporate residual coding to
mitigate the degradation arising from quantization distortion
at the latent space. Results indicate that achieving the same
performance, the proposed method saves up to 27% coding rate
than widely used adaptive multi-rate wideband (AMR-WB) codec
as well as emerging neural waveform coding methods.

I. INTRODUCTION

Waveform coding and parametric coding are two main-

stream categories of speech coding methods. Waveform coding

aims to produce a high-fidelity reconstruction with a decent

compression ratio for efficient transmission in a commu-

nication system. Parametric codec introduces a parametric

decoder that synthesizes speech from sets of acoustic features,

where the features are encoded and compressed as conditional

variables for the decoder. In this work, we consider speech

waveform coding based on artificial neural networks (ANN).

The existing neural waveform coding methods are character-

ized by an auto-encoder combined with a trainable quantiza-

tion module [1], [2]. Due to the advances in deep learning,

vector quantization (VQ) has been applied to ANN-based

speech coding to compress the latent feature of speech more

efficiently [2], [3]. It is optimal when the best reproduction

codebook is found, and the theoretical limits of performance

of VQ have been investigated [4]. Despite its optimality, it’s

computationally expensive in VQ as the size of the codebook

is increasing exponentially with the rate. Vector quantized

variational auto-encoders [2] (VQ-VAE) concentrates on dis-

crete latent representation through a parametrization of the

posterior distribution of discrete latents. It performs well on
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a low latent capacity (the dimensionality of the latent space)

in parametric codecs. VQ-VAE followed with a WaveNet [5]

generative decoder achieves a low coding rate at 1.6 kbps

(103 bit per second), yet at the cost of complexity from the

generative model [6]. The generative decoder does not ensure a

faithful reconstruction of raw audio. However, on the condition

of a large latent capacity, which implies a high bitrate, the

size of the VQ codebook and the complexity of searching the

codebook soar.

Another critical feature of speech codec is rate scalability.

VQ-VAE itself does not support rate scalability intrinsically,

where the prior is assumed constant and uniform [2]. To enable

rate control, existing works [7]–[9] imposed a constraint on

the entropy of quantized latent features to formulate the rate-

distortion (RD) objective. However, due to the high complexity

of VQ mentioned previously, the entropy is estimated over

the marginal distribution of the scalar quantization bins. Thus,

the dependency among the latent features is ignored, i.e., the

actual distribution of latent features is not well captured.

Inspired by neural image compression [10]–[12], we further

consider the dependency within the latent features of speech

frames rather than quantizing and encoding them directly.

Despite linear models in traditional digital signal processing,

the nonlinearity and linearity of raw waveform are jointly ana-

lyzed, yielding latent features. In particular, the dependencies

of the latent speech features are well learned by a pair of

hyperprior transform, and accordingly, an entropy model is

established to guide the entropy coding. To catalyze emerg-

ing semantic communications [13]–[17], the target of speech

compression is not limited to waveform fidelity. Perceptual

metrics are considered in model training to align with human-

to-human semantic communications. Both waveform distortion

and perceptual distortion are included in the RD Lagrangian

objective to achieve a rate-perception-distortion trade-off. On

that basis, we investigate a residual coding scheme to mitigate

the degradation arising from quantization, which takes place

in the latent space.

We verify the performance of the proposed speech wave-

form coding method across various rates. We observe a

noticeable improvement in objective quality scores, compared

to existing neural waveform coding methods as well as widely

used adaptive multi-rate wideband (AMR-WB) codec [18] and

Opus codec [19]. In addition, adding a residual latent feature

coding branch further reduces the impact of quantization of

latent features and shows substantial gain at high bitrates.
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With the decrease in the target rate, the residual branch tends

to encode the residuals with fewer bits. Achieving the same

target of objective quality scores, our method can save up to

27% coding rates in low bitrate region compared to traditional

codecs.

II. PRELIMINARIES

A. Vector Quantization in Speech Coding

Vector quantization (VQ) is a crucial technique to achieve

high compression performance in both traditional and neural

source coding. It is optimal when the correlation of the speech

signal is decomposed completely. VQ was first introduced to

speech coding in linear predictive coding (LPC) since when

VQ is widely used in speech and audio codecs. Researchers

have been devoted to reducing the computational and storage

cost of VQ and codebook search algorithms [4]. In neural

speech coding, vector quantized variational auto-encoder (VQ-

VAE) [2] replaces continuous latent vectors with codebook

vectors based on the nearest distance rule.

B. Residual Coding in Speech Coding

Residual coding, a well-formalized technique applied in

compressing multi-media signals, is to encode the difference

between the actual input and what the codec predicts. [8]

encodes raw signals or residual signals (error of linear predic-

tion) in cascaded stages where each one encodes what is not

reconstructed from preceding modules. However, this multi-

stage solution is auto-regressive, i.e., the module input relies

on the output of the preceding one. It becomes intractable in

communication systems. SoundStream [20] cascades layers of

VQ performing quantization iteratively to reduce the codebook

size, yet with equal rate allocation for each stage. In this

work, we propose a residual branch to encode the residual

of latent arising from quantization as a compensation, and the

rate allocation for the primary latent and the residual of latent

is well-tuned by setting a weighted RD objective.

III. METHOD

In this section, we elaborate on the proposed speech

waveform compression method based on nonlinear transform.

Based on this backbone, we propose a novel residual coding

method. Finally, the training techniques are introduced.

A. Architecture

We consider wideband signal input with a sampling rate of

16 kHz. The waveform is firstly processed to a stack of frames

x ∈ R
N×C×L, where N is the number of frames, C is the

number of sound channels, and L is the frame length (the

number of sampling point). Its probability is given as px(x).
Fig. 1 illustrates the overall architecture of our proposed

method. The waveform analysis transform, parameterized by

φg is a stack of convolutional neural networks, transforms

frames x into latent feature y = ga,φg
(x). Different strides

and dilations are used in order to capture various resolutions of

speech features. The dilated convolution block is composed by

layers with increasing dilations, from coarse to fine. Inspired
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Fig. 1. Network architecture of the proposed model of speech waveform
coding. In the training phase, ȳ, z̄ are replaced by ỹ, z̃, respectively.

by ResNet [21], each convolutional block is connected by a

shortcut. At the decoder side, given reconstructed latent feature

ŷ, the synthesis transform recovers the speech signals as x̂ =
gs,ψg

(ȳ), whereψg encapsulates the neural network parameter

of the synthesis transform.

For compression purpose, the latent feature y is to be

quantized as ȳ and then entropy coded. Then, the expected

length (rate R) of the compressed bit sequence is equal to the

entropy of ȳ, i.e.,

R = Ex∼px
[− log pȳ (ȳ = Q (y))] . (1)

As is shown in Fig. 1, the latent representation of speech y

is quantized using a uniform scalar quantizer Q, rounding to

nearest integers ȳ. The arithmetic encoder (AE) and decoder

(AD) act as the entropy coder. To allow optimization via

gradient descent in the model training phase, following [10],

an offset o is added to the speech feature, yielding a proxy

quantized representation ỹ = y + o = ga,φg
(x) + o, where

o is randomly sampled from a uniform U(− 1
2
, 1
2
). The proxy

quantized feature satisfies pȳ (k) = pỹ (k) , ∀k ∈ Z.

With respect to quantization, it is optimal to use VQ and

search a codebook, yet leading to high complexity in time and

space. Previous work adopted scalar quantization to reduce the

codebook size and then estimated the marginal distribution

of latent feature for each yi ∈ y, i = 1, 2, · · · . However,

the real distribution of y is not accurately modeled, consid-

ering the dependency among its elements, i.e., the entropy

of y is overestimated. Hence, we build an additional set of

latent variables z̃ to represent the dependencies by applying

another analysis transform by z = ha,φh
(y), z is named

hyperprior of the speech feature. Similarly, in the training

phase, z̃ = z + o is a replacement for rounding operation

z̄ = Q(z). We variationally model the proxy quantized latent

ỹ as a multivariate Gaussian. The standard deviation of ỹi is

predicted as σi by a hyperprior decoder parameterized by ψh,

acting as side information for the entropy coding of ȳ. To save



the cost of side information, we assumed that ỹi is zero-mean

and then the posterior distribution of ỹ given z̃ is derived as

p (ỹ|z̃;ψh) =
∏

i

(

N
(

0, σ2
i

)

∗ U

(

−
1

2
,+

1

2

))

, (2)

with σ = [σ1, σ2, · · · , σi, · · · ] = hs,ψh
(z̃), N

(

0, σ2
i

)

de-

noting the zero-mean Gaussian distribution with standard

deviation σi. As no prior belief about z̃ exists, it is modeled

by a non-parametric factorized density model [10].

To sum up, since the true posterior pỹ,z̃|x is intractable, we

approximate it with a parametric variational density

qỹ,z̃|x =
∏

i

U(ỹi|yi −
1

2
, yi +

1

2
)
∏

j

U(z̃j |zj −
1

2
, zj +

1

2
),

(3)

where U(m − 1
2
,m + 1

2
) denotes the uniform distribution

centered on m ∈ R with range from m − 1
2

to m + 1
2

. The

training objective is to optimize φg,ψg,φh,ψh to minimize

the Kullback-Leibler (KL) divergence between the variational

density qỹ,z̃|x and the true posterior pỹ,z̃|x over the source x,

i.e.,

ExDKL

[

qỹ,z̃|x‖pỹ,z̃|x
]

= ExEỹ,z̃∼qỹ,z̃|x
[− log p (ỹ|z̃)

− log p (z̃)− log p (x|ỹ) + log q (ỹ, z̃|x)] + const,
(4)

where the fourth term is also constant because of the constant

width of the uniform distribution. The first two terms in (4)

denote the rate of encoding latent features and side informa-

tion, respectively. The third term measures distortion. Hence, it

gives rise to an RD optimization problem, where a higher rate

allows for lower distortion. The training detail is introduced

in subsection III-C.

The network configuration is listed in Table I. The synthesis

transform decoder shares a similar design to the waveform

analysis transform encoder with a mirrored design, which is

omitted in the table.

TABLE I
NETWORK CONFIGURATION OF WAVEFORM ANALYSIS TRANSFORM

ENCODER & HYPERPRIOR ENCODER USING CONVOLUTIONAL NEURAL

NETWORKS.

Module #Channel Kernel Dilation Scaling

Encoder

Input Conv 64 9 0 -

Dilated Conv Block ×4 64 9 1,2,4,8 -

Downsampling 64 9 0 2

Dilated Conv Block ×4 64 5 1,2,4,8 -

Downsampling 4 5 0 2

Hyperprior Encoder

Input Conv 32 9 0 -

Dilated Conv Block ×3 32 9 1,2,4 -

Downsampling 32 9 0 2

Dilated Conv Block ×2 32 5 1,2 -

Downsampling 2 5 0 2

B. Residual Coding

Based on the above backbone, we additionally introduce

residual coding to mitigate the quantization loss of latent

features. Previous residual coding solutions [8] adopted a

sequential coding manner where the subsequent coding relies

on the reconstruction in previous stages, which is inefficient

and impractical for communication systems. We integrate dif-

ferential coding into the backbone, where the residual coding

takes place in the latent space instead of re-encoding the

residual waveform. Thus, the residual branch is trained jointly

without depending on the quality of the reconstruction.
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Fig. 2. Architecture of speech waveform coding with residual coding of latent
features. In the training phase, ȳ, z̄, ȳr are replaced by ỹ, z̃, ỹr , respectively.

The residual branch at the most right of Fig. 2 encodes

the residual latent r = y − ȳ = y −Q(y), where Q(·) is the

rounding operation. Likewise, r is encoded as yr by a residual

analysis transform. Similar to hyperprior z, yr is then modeled

by a non-parametric factorized density model, quantized and

entropy coded. The inference model recovers the synthesized

residuals r̂ parameterized by a residual synthesis transform.

Finally, the waveform synthesis transform reconstructs the

waveform signals by merging the primary latent feature ȳ and

the residual r̂, written as x̂ = gs,ψg
(ȳ, r̂).

In our experiments, lightweight convolutional networks are

applied as the residual analysis transform and synthesis trans-

form to reduce the extra model complexity. The detail of the

training strategy is introduced in the following subsection.

C. Model Training

As illustrated in (4), the goal is to optimize the parameter

set to achieve a trade-off between the compression ratio



and the speech reconstruction quality, i.e., an RD trade-off.

Specifically, the loss function L is written as

L = Ex

[

− log pȳ|z̄ (ȳ|z̄)− log pz̄ (z̄) + λd (x, x̂)
]

, (5)

where the Lagrange multiplier λ governs the trade-off. The

first two terms work out to be the coding rate of the proxy

quantized version of y and z. The third term d (·, ·) is the

distortion between the original waveform and reconstructed

one and we adopt euclidian distance.

In the residual coding scheme, additional RD constraint on

the residual latent features is required. As the residual r of

y is not derivative, the optimization of waveform analysis

transform is independent of the residual one. The extra ob-

jective function is to optimize the residual analysis/synthesis

transform to minimize the KL divergence between qỹr |r and

the true posterior pỹr|r , i.e.,

ErDKL

[

qỹr |r‖pỹr|r

]

= ErEỹr∼qỹr |r
[− log p (ỹr)

− log p (r|ỹr)] + const.
(6)

In joint training, the rate of the primary and the residual

latent are combined where a seesaw effect exists with different

rate allocation strategies for the two branches. Specifically, the

rate term is the summation of the rate of three bitstreams in

Fig. 2 with R = Ex [− log2 p (ỹ|z̃)− log2 p (z̃)− log2 p (ỹr)]
in bit. The result of rate allocation is provided in Section IV.

With regard to the distortion term d, it can be designed flex-

ibly to satisfy specific purposes. In human-to-human semantic

communications, the waveform fidelity is not all that essential,

but the human perceptual similarity between the reconstructed

speech waveform and the original one is also important.

Hence, we both count the waveform distortion in time

domain, as well as the perceptual loss defined in frequency

domain. Mean square error (MSE) between the raw waveform

x and the reconstructed waveform x̂ evaluates the reconstruc-

tion error in time domain, formulated as

LMSE = Ex ‖x− x̂‖22 . (7)

As subjective perceptual scores or objective scores usually

cannot be directly optimized because of non-differentiable

property. Perceptual quality of reconstructed speech waveform

is considered in frequency domain. Specifically, we optimize

the model to reduce the reconstruction error of mel frequency

cepstral coefficient (MFCC) [22] features to persue the con-

sistency of the feature in frequency (mel scale) domain with

Lperc = Ex

K
∑

k=1

‖mk (x)−mk (x̂)‖
2

2, (8)

where mk is the MFCC function of k-th filterbank. Specifi-

cally, we choose K = 4 filterbanks with scale from 8 to 128.

While training the residual coding branch, an additional

MSE term LresMSE is used to optimize the residual encoder

and decoder only, where

LresMSE = Er ‖r − r̂‖
2

2 . (9)

In a nutshell, the overall loss function to train the model with

residual coding is a weighted sum of the loss components as

L = R + λMSELMSE + λresLresMSE + λpercLperc, (10)

where the λ hyperparameter set controls the ratio of the

perception and distortion term with the rate term as reference.

It gives rise to a rate-perception-distortion trade-off, and a

higher λ prompts the model to learn latent representation

with higher entropy to reduce the distortion or improve the

perceptual quality. In this way, a wide range of bitrates is

achievable for our speech coding method.

IV. EXPERIMENTS

In this section, we provide illustrative numerical results

to evaluate the compression and quality of speech waveform

coding. Objective quality metric is evaluated, and a subjective

listening test is presented to validate our designed approach.

A. Experimental Settings

The waveform with a single audio channel C = 1 is sampled

at 16 kHz from TIMIT dataset [23]. The training set contains

3.1 hours of speech from 462 speakers, while the test set

contains 0.8 hours of speech. Each frame has L = 512 samples

with an overlap of 32 samples.

B. Results

For reference, uncompressed wideband speech with 16-bit

width has a rate of 256 kbps. As discussed in Section III-C, it

is convenient to tune the coding rate by adjusting the weight

of each term in the rate-perception-distortion objective in (10).

Multiple coding rates are considered from ∼8 kbps to ∼24

kbps.

In terms of objective quality evaluation, we report MOS-

LQO scores computed from perceptual evaluation of speech

quality (PESQ) [24] scores, and MOS-LQO score ranges from

1.0 to 4.5. The following methods of neural waveform coding

are provided for comparison. Cascaded cross-module residual

learning (CMRL) [8] encodes the signals in cascaded stages,

each of which reconstructs the residual from its preceding

modules. “LPC-CMRL” introduces a strong prior with an LPC

model within a single frame, and then encodes the residual

waveform with linear prediction coefficients as an add-on.

“Raw-CMRL” denotes the circumstance that raw waveform

instead of the residual waveform of LPC is compressed by

CMRL. CMRL with collaborative quantization (CQ) learns

the bit allocation between the LPC coefficients and the resid-

uals [9]. AMR-WB [18] and Opus [19] are provided as the

representatives of traditional speech codecs. AMR-WB bitrates

range from 6 kbps through 24 kbps, yet with predetermined

options.

In Fig. 3, methods using residual coding are plotted in

solid lines, or dashed lines otherwise. Results show that

our proposed neural waveform coding achieves a better ob-

jective quality than traditional codecs and existing residual

waveform coding methods across various coding rates. Our

model captures the dependency of the speech features and
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Fig. 4. Rate allocation for encoding latent feature y, hyperprior z, and
residual latent features yr in residual coding scheme.

models its probabilistic distribution more accurately, leading

to better RD trade-off. Waveform coding with VQ-VAE shares

a similar architecture of our waveform analysis encoder and

synthesis decoder, and the posterior categorical distribution

is regularized by an entropy constraint. It can be found in

the figure that VQ-VAE achieves comparative quality scores

with ours at high bitrate with a large codebook to encapsulate

the dependency. However, the complexity of searching the

codebook becomes high consequently.

In the residual coding settings, LPC-CMRL and CQ com-

press the LPC coefficients and the LPC residual signal step

by step rather than the raw signals. However, LPC residuals

depend on the capability of LPC model with quantized coef-

ficients. Our residual coding (solid red line) further improves

the reconstruction quality with lower error introduced by the

latent quantization. It is observed that our residual coding out-

performs the “Raw-CMRL” in the objective listening quality,

especially in low bitrate region. Besides, in comparison to

CMRL, our residual coding does not require auto-regressive

encoding. With the same target of objective quality scores,

our method can save up to 27% coding rates compared to

traditional codecs in low bitrate region.

We also observe the rate allocation in residual coding

scheme in Fig. 4. There is a marked upward trend in the cost

for encoding the residual latent with the target rate increasing,

but the percentage in the total budget is low (< 15%). While

in low rate region, the joint training induces the model not

to encode the residual latent. It indicates that the performance

gain from encoding the primary part of the latent features

is superior to that from encoding the residual with the same

number of bits.

C. Subjective Tests

We implement MUSHRA subjective test [25], which is

a multi-stimulus method for evaluating medium and large

impairments of audio. We randomly select 10 reconstructed

waveform signals from the TIMIT test dataset. In Fig. 5, we

compare the subjective performance with a traditional audio

codec (AMR-WB) and a neural waveform coder with VQ-

VAE defined above. The anchor signal is given by a low-pass

filtered signal with cutoff rate at 3.5 kHz (“LP3.5” in Fig. 5).

High-pitched artifacts occur in VQ-VAE samples, which are

not favored in the listening test. In high bitrate region, our

residual coding scheme shows substantial gain over that does

not encode residual latent features. However, the reconstructed

speech signal is still slightly unsmooth, and noise occurs when

it is expected silent. A reasonable explanation is that our

waveform coding has not considered the correlation across

frames, while linear prediction across frames is adopted in

AMR-WB. And the ANNs process the normalized waveforms,

and thus the distortion on the points with small magnitude is

amplified, according to the nature of human perception.

D. Complexity Analysis

Table II compares the model size of the proposed speech

waveform codec and other neural waveform codecs. For fair

comparison, the two-stage models of CMRL and CQ are listed

in the table. As we shall note, as an auxiliary coding, the

residual coding further alleviates the degradation arising from

the quantization of speech latent features with a low extra cost

of the model complexity.

TABLE II
MODEL PARAMETER COMPARISON OF NEURAL WAVEFORM CODING.

Model Params(×10
6)

CMRL [8] 0.93 (two-stage)

CQ [9] 1.35 (two-stage)

VQ-VAE 1.57

Ours 2.31

Ours (+Residual) 2.57

SoundStream [20] 8.40

We additionally verify the superiority regarding the com-

plexity of training our model compared to training VQ-VAE.

Our model is trained with 200k steps, and VQ-VAE requires

1.5× training steps at 20 kbps and 2.0× at 24 kbps. As the rate

increases, the codebook size of VQ increases, leading to high
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Fig. 5. MUSHRA scores evaluation in three rates, (a) 12 kbps, (b) 16 kbps, (c) 24 kbps. Orange lines are medians. Blue boxes represent the interval between
25th percentile and 75th percentile.

complexity of searching the codebook in a high-dimensional

latent space.

V. CONCLUSION

We have presented a novel neural speech waveform com-

pression method that catalyzes speech semantic communica-

tions. The method captures the probabilistic distribution of

latent speech features accurately by building an entropy model

with hyperprior. It attains a flexible rate-distortion trade-off

and the waveform fidelity is optimized for waveform distortion

and perceptual distortion. An auxiliary branch is established to

encode the residual latent features, improving the speech qual-

ity further. Results indicate that the proposed method achieves

a better RD performance at various bitrates, and the residual

coding scheme outperforms existing residual coding methods,

which adopt multi-stage autoregressive coding. Future research

may include modeling the correlation across frames in time

and frequency domain.
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