arXiv:2301.04510v1 [eess.SP] 11 Jan 2023

Time of Arrival Error Estimation for Positioning
Using Convolutional Neural Networks

Anil Kirmaz*T, Taylan Sahin*, Diomidis S. Michalopoulos*, Muhammad Ikram Ashraf*,
and Wolfgang Gerstacker!
*Nokia Strategy and Technology, Munich, Germany,
fInstitute for Digital Communications, Friedrich-Alexander-Universitit Erlangen-Niirnberg, Erlangen, Germany

Abstract—Wireless high-accuracy positioning has recently at-
tracted growing research interest due to diversified nature of
applications such as industrial asset tracking, autonomous driv-
ing, process automation, and many more. However, obtaining a
highly accurate location information is hampered by challenges
due to the radio environment. A major source of error for time-
based positioning methods is inaccurate time-of-arrival (ToA) or
range estimation. Existing machine learning-based solutions to
mitigate such errors rely on propagation environment classifi-
cation hindered by a low number of classes, employ a set of
features representing channel measurements only to a limited
extent, or account for only device-specific proprietary methods
of ToA estimation. In this paper, we propose convolutional
neural networks (CNNs) to estimate and mitigate the errors of
a variety of ToA estimation methods utilizing channel impulse
responses (CIRs). Based on real-world measurements from two
independent campaigns, the proposed method yields significant
improvements in ranging accuracy (up to 37%) of the state-of-
the-art ToA estimators, often eliminating the need of optimizing
the underlying conventional methods.

Index Terms—Time-of-arrival estimation, high accuracy posi-
tioning, convolutional neural networks.

I. INTRODUCTION

Location information is vital for many applications across
various domains including industrial internet-of-things (IIoT),
emergency services, transportation, and many more. Some of
the applications, such as industrial asset tracking, autonomous
driving and process automation, require highly accurate po-
sition estimation as emphasized in 3GPP [1]. Location infor-
mation can be obtained by various approaches including time-
based, angle-based and fingerprinting-based techniques using
radio signals. One of the major approaches in widely utilized
time-based positioning is to estimate the time-of-arrival (ToA)
of the received positioning signals. Combined with time-of-
transmission (ToT), i.e., the time when the radio signal is sent
from the transmitter, ToA is used to calculate time-of-flight
(ToF), i.e., the time it takes for the radio signal to travel from
transmitter to receiver. Then, the range between transmitter
and receiver can be estimated using ToF since the radio signals
travel at a known speed, i.e., the speed of light, and can be
utilized for positioning.

The accuracy of ToA estimation is limited by various factors
such as challenging propagation conditions, synchronization
errors, measurement inaccuracies and limitations in radio re-
sources. Some of the factors, such as hardware properties and
limited radio bandwidth, are determined strictly by the cost

or regulation limitations and are more difficult to eliminate.
However, some others that are related to the propagation
environment may be detected and mitigated to some degree by
convenient post-processing especially when a large radio band-
width, e.g., that of an ultra-wideband (UWB) transmission,
is available. Among propagation environment related factors,
non-line-of-sight (NLOS) propagation is one of the primary
error sources in time-based positioning methods since it de-
correlates the time-of-flight (ToF) and the distance between
transmitter and receiver.

Various approaches have been proposed to improve the
accuracy of the time-based positioning techniques through
identifying or mitigating the effect of propagation conditions
on positioning. Binary classification of the propagation en-
vironment has been studied commonly in the form of line-
of-sight (LOS) versus non-line-of-sight (NLOS) classification
using hypothesis testing based on probabilistic models [2],
supervised machine learning (ML) [3], [4] and unsupervised
ML [5], [6]. Furthermore, multi-class classification has been
proposed by dividing NLOS propagation into two sub-classes
depending on the partial or full blockage of the LOS path [7],
[8], by adding a multipath class to the binary classification
problem [9], or by classifying the material of the LOS blocking
objects [10].

Even though the classification approach can improve the
ranging or positioning accuracy through utilizing only the
favorable, i.e., LOS, measurements [3], [4], [5], discarding
NLOS measurements might lead to a poor positioning perfor-
mance when the number of the available measurements is low.
Moreover, such classification methods may not utilize the full
information present in the measurements since the number of
classes might be insufficient to describe the severity of the
NLOS propagation in the measurements fully.

Ranging error mitigation by processing various features
extracted from a received UWB waveform was studied by
utilizing support vector machines and Gaussian process esti-
mators [8], [11], or by fuzzy comprehensive evaluation along
with propagation channel identification [12]. Although the
methods were reported to yield an improvement in ranging, the
predetermined features extracted from the received waveform
might not represent all information in the received waveform
with respect to the ranging error. Such information loss was
overcome in [3], [13] where the ranging error was estimated
directly from a given channel impulse response (CIR) by using



artificial neural network (ANN) estimators. However, only a
specific UWB measurement and ranging device (DWM1000
[14]) which utilizes a proprietary ranging algorithm was
considered. Although a leading-edge detection method was
mentioned to be used for ToA estimation in [14], details on
the adopted detection algorithm were not provided. In [15],
ToA estimation via convolutional neural networks (CNNs) was
studied, and the corresponding performance was compared
with that of some conventional, i.e., non-ML, ToA estimators.
However, the CNNs were trained mainly with simulation data,
and ToA error estimation was not studied which can provide
a measure of reliability of ToA estimation.

In this paper, we investigate the problem of estimating the
errors of various ToA estimators from a given CIR. Then, the
estimated errors can be mitigated to improve ranging accuracy
and, thereby, performance of a positioning system. The main
contributions of this paper are as follows:

« We propose a novel CNN-based scheme to estimate and
mitigate errors of various conventional ToA estimation
algorithms with different computational complexity such
as inflection point estimation (IFP) [16] and peak detec-
tion [17], and compare their performance to that of the
leading-edge detection (LDE) [18] and the DWM1000
module [14] for a given CIR.

e We analyze the error mitigation performance of the
proposed CNN estimator for the cases of optimized and
suboptimal versions of the underlying ToA estimation
algorithms.

o We evaluate the performance for two independent real-
world datasets to ensure that the results are not specific
or biased to a single measurement campaign.

The analysis in this paper demonstrates that the proposed
CNN-based error mitigation scheme improves the accuracy of
the underlying conventional ToA estimators significantly even
if they are improved with a basic error mitigation method.
Furthermore, the proposed method is shown to provide a
robust ranging performance in case the parameters of the
underlying conventional ToA estimators are suboptimal.

II. SYSTEM DESCRIPTION

The considered scheme is composed of a two-step process.
In the first step, an initial ToA estimation is realized based
on a given CIR by one of the conventional methods listed in
Section II-B1. In the second step, the initial ToA estimate and
the CIR are input to an ANN to estimate the error of the initial
ToA estimation. Then, this information is utilized to mitigate
the error of initial ToA estimation, according to
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where ToA onventional» €Toa and ToA represent the initial ToA
estimated by a conventional method, the estimated error of
the conventional ToA estimate and the mitigated ToA, respec-
tively.

A. CIR and ToA Estimation

A CIR characterizes the communication channel and con-
tains information on the travel time of radio signals from
transmitter to receiver. Transmitted signals might arrive at
the receiver from different paths, e.g., direct, reflected, or
diffracted paths. ToA represents the arrival time of the first
arriving signal at the receiver and can be determined from a
given CIR.

B. Baseline Methods

1) Conventional ToA Estimators

In this work, we consider widely used conventional ToA
estimators, namely Peak, IFP and LDE, as well as DWM:

o Peak: The delay time of the first peak of the CIR above

a noise threshold is considered as ToA [17].

e [FP: The delay time of the first point above a noise
threshold where the CIR concavity changes [16] is es-
timated as ToA.

e LDE: The CIR is filtered by a moving average window
whose output is further passed through two different
moving maximum window filters in parallel. The first
delay time above a noise threshold where the output of
the smaller maximum window filter exceeds the output
of the larger maximum window filter by a factor, i.e., the
leading-edge detection factor, is determined as ToA [18].

o DWM: ToA is estimated by the DWM1000 device. The
DWM estimates used in this paper are taken from the
publicly available datasets [3], [19]. Although a leading-
edge detection method was mentioned to be used for
the ToA estimation in the device’s user manual [14], the
details of the DWM1000’s internal estimation algorithm
are not provided.

For Peak, IFP, and LDE, we define the noise threshold in
terms of the relative path strength similar to [20], formulated
as

Yen; = a max{CIR;} 2)

with the noise threshold factor . LDE has three additional
parameters, namely the leading-edge detection factor and the
size of the small and large windows. The parameters of Peak,
IFP and LDE are optimized by an exhaustive search to yield
the lowest mean absolute ToA error.

2) Benchmark ToA Error Mitigation Method

In addition to the described conventional ToA estimators, we
consider a benchmark scheme to estimate the error of the ToA
estimation conducted by these conventional methods. Denoted
by CnstAvg, this benchmark models the ToA error as constant
and given by the mean of the error for each conventional ToA
estimator. Following the estimation of ToA error, the error can
be mitigated according to (1).

C. Ranging Based on ToA Estimation

The range, i.e., the distance between the tag and anchor, can
be estimated by multiplying the mitigated ToA by the speed
of the radio signals, i.e., speed of light, according to

~

R = ¢(ToA' — ToT), 3)
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Fig. 1: Flow diagram and the naming of the considered ToA estimators.

where ¢ and R represent the speed of light and the estimated
range, respectively. ToT in (3) can be eliminated by using a
two-way-ranging or a time-difference-of-arrival scheme. Sub-
sequently, positioning of a target device can be performed by
utilizing the range estimates with respect to multiple anchors
with known locations. As a result, improving the accuracy
of ToA estimates, i.e., through the error mitigation, yields an
improved ranging, thereby, a more accurate positioning.

III. PROPOSED METHOD

A. ToA Error Mitigation Using ANNs

The complex nature of NLOS or multipath propagation
poses a challenge to accurate modelling of ToA estimation
error based on an input CIR. Therefore, an ANN seems a
sensible choice to model the error of the ToA estimation.

We employ a one-dimensional CNN similar to [3], [13] to
estimate the error of the conventional ToA estimators based
on the input CIR, since CNNs are shown to be useful in
identifying spatial correlations among the input samples [21].
Besides the CIR, ToA onventional 1S also input to the CNN. Then,
the output of the CNN, épa, is used to mitigate the error of
the conventional ToA estimator according to (1).

The utilized CNN comprises 3 convolutional layers followed
by a fully connected layer. 16 output channels are used in each
convolutional layer with a kernel size of 5 and a stride of 2
where no pooling layer is used in order to avoid a potential
information loss. The rectified linear unit (ReLU) is used as the
activation function in each neuron except for the output layer,
and dropout regularization with a factor of 0.5 is utilized to
prevent over-fitting. The CNNs are trained by using the Adam
optimizer [22] with a learning rate of 10~2 and a batch size
of 32 to minimize the mean-squared error (MSE) between the
estimated and the real ToA error.

The parameters of the CNN estimator are optimized using
training and validation data. It was observed that increasing
the number of hidden layers or number of output channels
further does not result in a significant additional performance
gain.
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Fig. 2: Randomly shifted and padded CIRs using the described pre-processing.
B. Dataset Description and Pre-processing

1) Datasets

We have used two publicly available datasets comprising
real-world UWB measurements, which we refer to as Office
and Room. Office dataset, given in [3], pertains to two dif-
ferent office environments, Officel and Office2. Room dataset,
described in [13] and given in [19], comprises measurements
taken in different sized office-like rooms with different dimen-
sions. The measurements in both datasets are taken with 499.2
MHz of bandwidth at 3993.6 MHz of center frequency.

It is assumed that the propagation channel between trans-
mitter and receiver is reciprocal, i.e., identical, for forward
and backward transmit directions, and the channel coherence
time is larger than the reply time of the applied two-way
ranging system. Such assumptions are realistic and required
since a single CIR is provided per each two-way ranging in
the datasets.

2) ToA Labeling

The ToA delay time estimated by DWM, 'ﬁDWM, the
corresponding ranging error, €r, and time resolution of the
CIR (i.e., the absolute time lapse between consecutive CIR
indices), d;, are given (or can be obtained) from the datasets
[3], [19]. Utilizing this information, we determine the ground-
truth ToA indices, i.e., ToA labels, according to

€R
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As such, the ranging error is converted into a ToA error which
is subtracted from the estimated ToA to determine the true
ToA.

It should be noted that labeling real ToA in real-world CIR
measurements is challenging and the introduced labeling may
contain errors due to the clock drift, finite bandwidth and finite
sampling rate.

3) Data Pre-processing

Only 152 (out of 1016) samples after the first detected path
were considered for each CIR in [3], whereas additional 5 CIR
samples prior to the detected first path were also considered
in [13] yielding CIRs with 157 samples. We further add a
random number of noise-like samples (maximum 30 samples)
prior to each CIR shifting CIRs randomly with respect to the
time axis to eliminate a potential bias, and apply padding to
the end of CIRs accordingly, yielding CIRs with 187 samples
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Fig. 3: The CDF of ranging error of the proposed CNN-based estimator in comparison to (a) conventional ToA estimators and (b) benchmark CnstAvg
estimators, and comparison of (c) 90th percentile and (d) mean absolute ranging error of the considered schemes

for Room dataset.

as shown in Fig. 2. The ToA labels are shifted together, i.e.,
by the same amount, with the CIRs.

Each CIR is normalized by its maximum value before being
input to the proposed CNN estimator to prevent a potential
bias that might be caused by varying absolute amplitudes of
the CIR samples.

The datasets are divided into training, validation and test
data for the CNN. Further, to enable a fair comparison, the
training and validation data are used together to optimize
the parameters of the conventional ToA estimators and the
benchmark error mitigation method. The test data is selected
from measurements taken in another environment (i.e., another
office or another sized-room) than the training and validation
data to assess the generalizability of the results. This approach
is in line with the recent 3GPP agreements on evaluating the
generalization performance of ML models used for positioning
[23]. Training and validation data comprise 70% and 30%
of the measurements belonging to the same environment, re-
spectively, resulting in approximately 5000 training samples in
each scenario for the Office dataset. To make a fair comparison
between the two datasets, we also use approximately 5000
training samples for each scenario in the Room dataset. It is
noted that the Office dataset includes repeated measurements
taken from each anchor-tag location pair, i.e., not all training
samples is associated with a different anchor-tag location pair,
unlike the Room dataset.

IV. PERFORMANCE EVALUATION

In this section, we present performance results based on
real-world measurements for the proposed (CNN) and the
benchmark (CnstAvg) ToA error mitigation methods as well
as conventional, i.e., unmitigated, ToA estimators (LDE, IFP,
Peak, DWM). The naming of the estimators considered in this
paper is shown in Fig. 1. We utilize the PyTorch framework to
train the CNN. The results are generated based on 10 random
selections of training and test measurement samples for each
scenario to average out potential variations across data chunks.

A. Ranging Accuracy Evaluation

As evaluation metric, we consider the absolute ranging error,
€|R|» given by

€ir| = | R — Ruuel, (5)

where Ry denotes the real range obtained from the datasets
(31, [19].

We provide the CDF of the ranging error for different
ToA estimation schemes in Figs. 3 and 4, for Office and
Room datasets, respectively. It can be observed from Figs.
3-4 that the proposed CNN-based error mitigation scheme
improves the accuracy of the conventional ToA estimators. The
improvement in 90th percentile ranging error varies between
19-74% and 4-38% for Room and Office datasets, respectively,
depending on the utilized conventional ToA estimator. The
smaller improvement for the Office dataset can be explained by
the fact that the Office dataset contains repeated measurements
taken for the same anchor-tag location pairs, unlike the Room
dataset. As a result, there is a lower number of measure-
ments taken for unique anchor-tag location pairs leading to
an insufficient amount of unique data for the CNN to be
trained. Furthermore, all methods perform worse in Office
dataset than in Room dataset despite the same measurement
and ranging module, DWM1000, used. This can be explained
by the different propagation environments, i.e., the propagation
environment for Office dataset might be more challenging, or a
discrepancy in the calibration of the DWM1000 module, e.g.,
antenna delay calibration.

Comparing the two error mitigation methods, i.e., CNN and
CnstAvg, the proposed CNN-based method further yields a
considerably better performance than CnstAvg in most cases,
and a similar performance in the worst case, depending on
the underlying conventional ToA estimator. The gain of the
CNN estimator over CnstAvg estimator lies between 16-37%
and 3-16% in Room and Office datasets, respectively, in 90th
percentile ranging accuracy. Our performance evaluation also
enables a comparison of conventional ToA estimators from the
literature. Figures 3a and 4a show that LDE outperforms IFP
and Peak. Peak is observed to show the worst performance
in both datasets possibly due to the susceptibility of the peak
detection to multipath propagation [18], [24].

B. Comparison with DWM

Figure 3a shows that DWM outperforms LDE slightly
whereas LDE has a marginally better performance than DWM
according to Fig. 4a. The similar performance of DWM and
LDE can be explained by the fact that a leading-edge detection



IFP4CNN
FP+CnstAvg
IFP
D§+Cnst§vg

Peak+CNN
Peak+CnstAvg

P
=

~
1
& a

LDE:

2 |LDE+CNN
2 |LDE+CnstAve

.0 75.0 117.0 78.0 81.0 81.0 62.0 74.0 87.0

(©)

#
EX
3
°
a
a
o
~
o
3
o

0.7 0.8
LDE+CNN

= Peak+CNN
IFP+CNN

= DWM+CNN

—— Peak+CNN -

= DWM+CNN -

0.6 0.7
LDE+CNN

0.8

0.9

1.0

N

IFP+CnstAvg
FP
DWM+CitAvg
DWM

5
g

E
LDE+CnstAvg =
Peak+CnstAvg w

b5}
s

8

IFP+CNN TFP+CnstAvg

DWM+CnstAvg

i
a

DE+CNN
LDE+CnstAvg
Peak+CNN
Peak+CnstAvg
IFP4CNN

|
@
&

L

0.75 1.00 1.25 0.75

Ranging Error (m)

(a)

1.50

Ranging Error (m)

£[RF?" (cm):32.0 33.0 33.0 36.0 39.0 59.0 47.0 51.0 52.0 34.0 39.0 36.0

(d)

1.00 1.25 1.50 175 2.00

(b)

Fig. 4: The CDF of ranging error of the proposed CNN-based estimator in comparison to (a) conventional ToA estimators and (b) benchmark CnstAvg
estimators, and (c) 90th percentile and (d) mean absolute ranging errors of the considered schemes

for Office dataset.

method was utilized by the DWM1000 device. Another obser-
vation is that CnstAvg degrades the performance of DWM, i.e.,
CnstAvg+DWM performs worse than DWM, in mean absolute
ranging error for Office dataset. This can be explained by
the fact that the average ToA estimation error of DWM is
substantially different for Officel and Office2, i.e., for training
and test data.

Accuracy performance comparison of DWM+CNN and
LDE+CNN shows contradicting results, similar to the com-
parison between DWM and LDE. LDE+CNN outperforms
DWM+CNN for the Office dataset while DWM+CNN has the
superior performance for the Room dataset. The underlying
reason might be a discrepancy in the calibration of the
DWMI1000 device in the two measurement campaigns. The
details of the DWM1000’s internal estimation algorithm were
not provided neither in the device’s user manual [14] nor
in the descriptions of the measurements campaigns [3], [13].
Therefore, it is difficult to draw further conclusions regarding
the performance of DWM-related estimators.

C. Effect of Utilizing Sub-optimal Conventional Methods

Various approaches can be used to optimize the parameters
of the conventional methods. For instance, as an alternative
to selecting the noise threshold in terms of the relative path
strength [20], it can also be determined in terms of the
thermal noise [11]. Additionally, the number and density of the
candidate values of an exhaustive or grid search might yield
different optimized parameters. As a result, the parameters of
the utilized conventional ToA estimators can be sup-obtimal.

In Table I, we provide the results related to the impact
of optimizing the conventional ToA estimators. Such impact
could not be evaluated for DWM since it is based on a propri-
etary detection algorithm. It can be observed from Table I that
the performance of the conventional ToA estimators heavily
depends on the parameter optimization for the measurements
in both datasets. The proposed CNN estimator provides a ro-
bust ranging estimation, in case the utilized conventional ToA
estimators are not optimized carefully. Specifically, using the
proposed CNN estimator, the loss in ranging performance due
to suboptimal parameters of the conventional ToA estimators
is at most 8 cm at 90th percentile for both datasets, compared

TABLE I: 90th percentile absolute ranging errors of the considered
ToA estimators and the increase in ranging error due to suboptimal
(underlying) conventional ToA estimators.

ToA (error) 90th% (€| r|) (cm)
estimation method Office dataset | Room dataset

2 o LDE 71 27
5 £ A [ LDE+CnstAvg 65 29
S Ew | @ [ LDE+CNN 62 22
588 | o Peak 117 83
83 E S | Peak+CnstAvg 75 35
& 8 s A~ Peak+CNN 73 22
BE 5 TFP 81 35
g g £ [ IFP+CnstAvg 81 35

3 TFP+CNN 78 25

T 5 | o LDE +28 +12
@wES | A [ LDE+CnstAvg +12 3
&5 | 7 [ LDE+CNN +8 +0
€38 Peak +31 +22
22% | § [PeakeCnstAvg +18 +13
29£ | & [ PeakiCNN +4 +7
£° § IFP +37 +34
= ‘g £ | £ [ IFP+CnstAvg F11 21

s ° TFP+CNN +6 +6

to 21 cm of CnstAvg and 37 cm of the conventional ToA
estimators.

D. Complexity Analysis

Finding peaks of the input CIR dominates the computational
complexity of Peak requiring O(N) operations, where N
denotes the length of the CIRs. The complexity of IFP is
mainly determined by the calculation of the gradient where
a subtraction and a division is performed for each element
yielding a complexity of O(N). LDE is composed of a
moving average filter followed by two moving maximum
filters where the outputs of the two moving maximum windows
are compared element-wise. The window size is constant in
all three filters, and the window is shifted through the CIR
yielding an overall complexity of O(N).

Each one-dimensional convolutional layer of the proposed
CNN is associated to a constant filter size, and a constant
number of filters is shifted along the input CIR. The subse-
quent single fully connected layer maps the output of the last
convolutional layer to a scalar resulting in an overall complex-
ity of O(N). Although the dependence of the complexity on
the input CIR size is linear for the considered estimators, the
complexities of the estimators are different. Table II shows the



TABLE II: Computation time of the conventional estimators and the additional
latency caused by the CNN mitigation scheme for one sample.

Estimator Peak | IFP LDE | +CNN
Time (ms) | 0.07 | 0.12 | 0.39 | +0.35

time complexity of inference of the estimators that are imple-
mented using Pytorch, numpy and scipy libraries of Python
programming language running on a computer equipped with
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and 24 GB of
RAM. The additional latency caused by the proposed CNN-
based error mitigation scheme is comparable to the latency of
the widely used LDE estimator.

V. CONCLUSIONS

In this paper, we have proposed a supervised ML approach
based on CNNss for estimation of the error of conventional ToA
estimators. These estimates are in turn used for mitigating such
errors to improve the ranging accuracy. We have evaluated
the performance of the proposed methods using real-world
measurements collected from various environments. We first
observed that the performance of the conventional ToA esti-
mators differ significantly from each other, and further require
optimization of their parameters for an improved performance.
While the errors of the conventional ToA estimators could be
mitigated partly by a simple benchmark mitigation scheme,
such approach might even result in a worse performance in
some cases.

As an alternative, the proposed CNN-based error mitigation
method can improve the ranging accuracy of the conven-
tional ToA estimators with an acceptable amount of added
latency. The proposed estimator was shown to outperform the
benchmark error mitigation scheme by up to 16-37% in 90th
percentile ranging accuracy depending on the environment.
In addition, it was shown that the proposed CNN estimator
provides a robust ranging performance, with only less than 8
cm of additional ranging error in 90th percentile, in case the
parameters of the underlying ToA estimators are suboptimal.
Thus, the CNN estimator can eliminate the necessity of care-
fully optimizing the underlying conventional ToA estimators,
depending on the accuracy requirements. In this way, the
proposed method offers an attractive solution for improving
the ranging accuracy, providing a robust performance under
different conventional ToA estimation algorithms and across
various propagation environments.

In addition to the proposed use of ML to mitigate the error
of conventional ToA estimators, ML methods can be also
applied to estimate the ToA directly, i.e., without requiring
a conventional ToA estimator. Further research is needed to
compare the performance of these two approaches.
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