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Abstract—Future networks are expected to support various
ultra-reliable low-latency communications via wireless links. To
avoid the loss of packets and keep the low latency, sliding
network coding (SNC) is an emerging technology by generating
redundant packets that are the linear combination of the original
data packets from the current block and some previous blocks.
However, how to take the advantage of re-transmission for SNC
is still an open problem since higher reliability could be achieved
at the expense of large latency caused by round-trip time (RTT).
To deal with this issue, in this paper, we consider the idea
of adjusting the transmission phase and the number of the
redundant packets for SNC with re-transmission. Specifically,
If RTT is large, most of the redundant packets are sent at
the first transmission, otherwise, re-transmission will be used.
We first derive a concise and tight lower bound of the block
error probability of SNC without re-transmission. Then, based
on the bound, the theoretical expressions of the proposed re-
transmission schemes are derived regarding the block error
probability, the average code length, and the average packet
latency. Results show that the proposed SNC with re-transmission
improves block error probability and keeps the low latency.

Index Terms—Average packet latency, convolutional network
coding, first-block error probability, re-transmission, sliding net-
work coding

I. INTRODUCTION

Network coding (NC) is one of the most promising solu-
tions to enabling ultra-reliable low-latency communications
(URLLC) for future networks especially when the wireless
link endures channel fading, interference, and burst error. It
generates redundant packets at the first transmission via the
packet-wise coding to protect the original data packets from
loss, which meets low latency requirements.

The notion of NC was first introduced in the multicast
network for efficient routing [1], which achieves the capacity.
Following the analysis on coding theory, [2] provided the
idea of packet-wise coding to correct the lost data packets
by transmitting the coded (or superposed) packets instead of
the individual original data packets. And the corresponding
bounds were derived in [3], [4] from an information-theoretic
perspective. To approach the given performance bounds, sev-
eral coding schemes have been proposed, such as the fountain
codes [5], random linear network coding [6], and the batched
sparse code [7]. The code length (i.e., the number of coded
packets within each block) cannot be too long to keep the low
latency. This leads to a performance loss on the reliability since
the increase in the code length can provide a lower packet loss
probability.

To deal with the raised challenge, recent advances showed
that the use of the sliding window (or the conventional kernel)
can make the designed code not only keep a lower latency
compared with the one of the code with a long length but
also provide higher reliability compared with the one of the
code with a short length. Codes with such a structure are
called sliding NC (SNC) [8] or convolutional NC [9], [10].
Unlike the aforementioned block codes, SNC generates the
coded packets that are the linear combination of the original
data packets from the current block and some previous blocks.
Through some careful designs, the length of each block can
be short to guarantee the low latency of decoding each packet
while the long length of the sliding window (also known as the
memory length of convolutional codes) keeps the low packet
loss probability. This implies that SNC is a suitable solution
to URLLC.

Existing works of SNC mainly concentrated on the
case without re-transmission. However, with the use of re-
transmission, SNC can achieve higher reliability without in-
creasing the number of redundant packets. The main concern
of enabling re-transmission is the latency since it has to
consider the influence of the round-trip time (RTT), which may
result in an unguaranteed latency. Thus, to keep the low latency
and to take the advantage of re-transmission, how to design
the re-transmission schemes for SNC needs to be addressed.

Motivated by the above observations, in this paper, we
consider SNC with re-transmission and propose three re-
transmission schemes by adjusting the transmission phase and
the number of the redundant packets, i.e., determining whether
the redundant packets are sent at the first transmission, the re-
transmission, or both. To this end, an insightful lower bound of
SNC without re-transmission is derived at first. Based on the
concise bound, we further derive the theoretical expressions
of the block error probability, the average code length, and
the average packet latency for the considered re-transmission
schemes. In the different use cases with the different RTT, we
then can choose the corresponding re-transmission scheme to
ensure the latency.

The rest of this paper is arranged as follows. Section II
provides the network model and the proposed re-transmission
schemes. In Section III, we first derive an upper bound of
the error probability to make the analysis more tractable.
Then, three re-transmission schemes are analyzed based on
the derived bound. Simulation and comparison among block
codes and SNC are provided in Section IV and conclusions
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Fig. 1: Mode 1.

are given in Section V.

II. NETWORK MODEL AND RE-TRANSMISSION SCHEMES
FOR RS-SNC

In this section, the considered end-to-end network model
is described at the beginning. Then, we provide three re-
transmission schemes for Reed-Solomon-based SNC (RS-
SNC) by adjusting the transmission phase and the number of
added redundant packets.

A. Network Model and RS-SNC Basic

Following [8], we consider the end-to-end network where
the source node wants to send the data packets to the sink
node. The binary packet-erasure channel is considered with
the erasure probability ε, i.e., the probability of losing X = r
packets among n packets is

Pr(X = r) =
(
n
r

)
(1− ε)n−rεr = f(r;n, ε), (1)

where X follows the binomial distribution.
To ensure the reliability of transmitting packets, RS-SNC is

applied in this network, which can be regarded as a (n, k, L)
convolutional code with an infinite generation matrix

G =



. . .
... GL

. . .
... GL

G0

...
. . .

G0

...
. . .


(a)
=



. . .
... 0PL

. . .
... 0PL

IkP0

...
. . .

IkP0

...
. . .


,

(2)
where L is the memory length of the code (i.e., the length
of the sliding window is (L + 1)n), Gl,∀l ∈ [0 : L], is the
generator matrix of a (n, k) RS-BC such that G achieves the
maximum distance profile (MDP) [11] by the careful design 1

[12], [13], and a systematic RS-SNC is constructed by making
Gl = [0Pl] for l ∈ [1 : L] and G0 = [IkP0] given as
the condition (a). Then, for the MDP RS-SNC, in a sliding
window of length (l + 1)n, at most (l + 1)(n − k) erasures
can be corrected in the erasure channel [14].

B. Re-Transmission Schemes

We begin with the naive re-transmission scheme as Mode 1
(M1). As shown in Fig. 1, for each block, the first transmission

1To show the existence, a straightforward way is that each Gl is selected
without overlap from the same Vandermonde matrix.

Fig. 2: Mode 2.

Fig. 3: Mode 3.

only contains k original data packets and re-transmits the
demanded number of redundant packets depending on how
many original data packets are erased. Assume the maximum
re-transmission time for each block is 1.

In Mode 2 (M2) shown as Fig. 2, the first transmission of
each block is the same as the one mentioned in M1 while at
the re-transmission phase, if r packets are lost, r+δ redundant
packets will be sent where δ is the extra redundant packets.
Assume Y follows Y ∼ B(X + δ, ε).

Unlike M2 adding the extra redundant packets in the re-
transmission phase, Mode 3 (M3) chooses to add the extra δ
redundant packets in the first transmission instead.

Based on the analysis in the following section, we will
show how RS-SNC with re-transmission achieves an improved
success probability while keeping the low packet latency.

III. RE-TRANSMISSION SCHEMES FOR RS-SNC

In this section, we first bound the performance of RS-
SNC and compare it with Reed-Solomon block code (RS-
BC). Then, based on this lower bound, the analysis of these
three re-transmission schemes is provided in terms of the
corresponding success probability, average code rate, and
average packet latency, respectively.

For RS-SNC, the performance is evaluated by the first-block
success probability, the packet latency, and the code rate. As
follows, we begin with the analysis of the basic RS-SNC.

A. Analysis of RS-SNC

First-Block Success/Error Probability. Since RS-SNC is
not a block code, the performance of RS-SNC is evaluated
by the first-block success probability (also known as first-
event success/error probability), which is widely used for the
analysis of the conventional codes [15], [16, Chapter 4]. The
first-block success probability is defined as the probability of
successfully decoding the current block under the condition
that the previous blocks are correct.



Suppose that the maximum window size of RS-SNC is (L+
1)n, i.e., to decode the i-th block of length n, at most the next
L blocks will be involved. The success probability of decoding
the i-th block of length n is Eq. (3).

For L = 0, the above RS-SNC is actually the (n, k) RS-BC
with the success probability2

Pr suc|L=0 =

n−k∑
δ0=0

f(δ0;n, ε) = F (n− k;n, ε) (4)

which is seen as a naive lower bound of Pr suc. This implies
that the performance of the (n, k, L) RS-SNC is generally
better than the one of the (n, k) RS-BC.

We also derive a more accurate lower bound in the following
lemma, which not only keeps concise but also shows the
influence of the memory length L.

Lemma 1: The lower bound of Pr suc (Eq. (3)) is given as

Pr suc ≥
n−k∑
δ0=0

f(δ0;n, ε)+

n∑
δ0=n−k+1

f(δ0;n, ε)F ((L+ 1)(n− k)− δ0;Ln, ε).

(5)

Proof: To this end, consider the lower bound of the
summation of the 2nd and 3rd terms in Eq. (3) as an example
to show the key idea as follows. The 2nd term in Eq. (3) is
bounded as

2(n−k)−δ0∑
δ1=0

f(δ1;n, ε)

≥
2(n−k)−δ0∑

δ1=0

3(n−k)−δ0−δ1∑
δ2=0

f(δ1;n, ε)f(δ2;n, ε)

(6)

at first, where
∑n
δ0=n−k+1 f(δ0;n, ε) in this term is omitted

temporarily for the sake of simplicity. This makes it possible

2For block codes, the first-block success/error probability is the same as
the block success/error probability.

to be combined with the 3rd term, and the summation is given
as

3(n−k)−δ0∑
δ1=0

3(n−k)−δ0−δ1∑
δ2=0

(
n
δ1

)(
n
δ2

)
εδ1+δ2(1− ε)2n−(δ1+δ2)

(a)
=

3(n−k)−δ0∑
δ=0

∑
δ1+δ2=δ

(
n
δ1

)(
n
δ2

)
εδ(1− ε)2n−δ

(b)
=

3(n−k)−δ0∑
δ=0

(
2n
δ

)
εδ(1− ε)2n−δ

= F (3(n− k)− δ0; 2n, ε),

(7)

where
∑n
δ0=n−k+1 f(δ0;n, ε) in this term is also omitted

temporarily, the condition (a) follows by changing the upper
and lower limits of the double summation, the condition (b)
follows because of Vandermonde’s identity.

For the 4-th term in Eq. (3), by using again the idea in
Eq. (6), the summation of the 4-th term and Eq. (7) is given
as
∑n
δ0=n−k+1 f(δ0;n, ε)F (4(n − k) − δ0; 3n, ε). Using the

above steps, Eq. (5) is finally obtained.
Remark 1 (Lower Bound): There is an intuitive understand-

ing on Eq. (5). If the i-th block of RS-SNC can be decoded
successfully with the help of the next block, then whether
the rest of the L + 1 blocks is erased or not has no effect
on decoding the i-th block. However, for the lower bound, it
strictly determines the erasure pattern of each packet of all the
next L blocks, although some blocks may be unrelated to the
decoding of the i-th block in some cases. This results in fewer
possible combinations and is a lower bound.

Average Packet Latency. We consider the case that the RS-
SNC is a systematic code3. If the p-th data packet in the i-th
block is received correctly, then it can be decoded directly
due to the characteristic of the systematic code. If not, the
p-th data packet cannot be decoded unless the whole block
with n packets is received. Since at most the next L blocks
can help the decoding of the current block, the distribution of
the packet latency of the p-th data packet is given as

3This case is widely used in the real communication systems since the
systematic code can always provide a lower packet latency than the non-
systematic one.

Pr suc =

n−k∑
δ0=0

f(δ0;n, ε)︸ ︷︷ ︸
the 1st term

+

n∑
δ0=n−k+1

2(n−k)−δ0∑
δ1=0

f(δ0;n, ε)f(δ1;n, ε)︸ ︷︷ ︸
the 2nd term

+ · · ·+
n∑

δ0=n−k+1

· · ·
n∑

δL−1=L(n−k)−
∑L−2
j=0 δj+1

(L+1)(n−k)−
∑L−1
j=0 δj∑

δL=0

f(δ0;n, ε) · · · f(δL;n, ε)

︸ ︷︷ ︸
the (L+1)−th term

.

(3)



Pr(DSNC
p = d) =


1− ε, d = 0
ε∆l, d = (l + 1)n− p

for l ∈ [0 : L− 1]

ε(1−
∑L−1
l=0 ∆l), (L+ 1)n− p

0, otherwise

,

(8)

where ∆l is the (l + 1)-th term in Eq. (3).
One can observe that the average packet latency

E
[∑k

p=1D
SNC
p /k

]
of the (n, k, L) RS-SNC is between the

one of the (n, k) RS-BC with the distribution

Pr(DBC
p = d) =

 1− ε, d = 0
ε, d = n− p
0, otherwise

(9)

and the one of the ((L + 1)n, (L + 1)k) RS-BC with the
distribution

Pr(DBC
p = d) =

 1− ε, d = 0
ε, d = (L+ 1)n− p
0, otherwise

. (10)

Remark 2 (Comparable RS-BC): We compare the (n, k, L)
RS-SNC with the (n, k) RS-BC and the ((L+1)n, (L+1)k)
RS-BC in terms of the success probability and the average
packet latency. From Eq. (5), it is obvious that the (n, k, L)
RS-SNC can provide better performance than the short RS-
BC. Besides, we also show Pr suc ≥ F ((L+1)(n− k); (L+
1)n, ε) by using Eq.(6) to bound the 1st term in Eq.(5). This
implies that the (n, k, L) RS-SNC is also comparable with the
long RS-BC. As for the average packet latency, in the ultra-
reliable scenario where the success probability needs to be
guaranteed as 99.999% or higher, ∆0 and ∆1 are the leading
order which contributes the most part of Pr suc. This leads
that the maximum packet latency is normally not greater than
2n− p.

Thus, RS-SNC is a suitable solution to URLLC since the
success probability outperforms the one of the ((L+1)n, (L+
1)k) RS-BC and the packet latency keeps lower. This implies
that RS-SNC not only achieves the reliability of the long code
but also keeps the low latency provided by the short code.

B. Analysis of Proposed Re-Transmission Schemes

As shown in Section III-A, it is difficult to analyze the
success probability (Eq.(3)) of decoding the i-th block directly.
Thus, to make the problem more tractable, we consider the
lower bound of the success probability instead. Clearly, the
lower bound (Eq. (5)) consists of two parts, the success
probability Pr suc|L=0 of directly decoding the i-th block
and the one of decoding the i-th block involving the next L
blocks, both of which are heavily related to the probability
Pr suc|L=0. This implies that we should focus on the analysis
of Pr suc|L=0.

Mode 1. The probability of directly decoding the i-th block
is given as

Pr suc|L=0 = Pr(X = 0) +

k∑
r=1

(1− ε)r Pr(X = r)

= (1− ε2)k,

(11)

where X is the binomial distribution of X ∼ B(k, ε) and Y
follows the binomial distribution of Y ∼ B(X, ε). Besides,
due to the consideration of re-transmission, the code rate
(length) is dynamic. Thus, we derive the average code length
to characterize its performance, which is given as

nM1 = kPr(X = 0) +

k∑
r=1

(k + r) Pr(X = r) = k + εk.

(12)

The distribution of the packet latency of the p-th data packet
in Mode 1 is

Pr(DM1
p = d) =


1− ε, d = 0
εf(r; k − 1, ε), d = k + r

+1 +NRe − p
0, otherwise

(13)

for each r ∈ [0 : k − 1], where NRe stands for the latency
related to RTT.

Mode 2. Pr suc|L=0 is given as

Pr suc|L=0 =

k∑
r=0

Pr(Y ≤ δ|X = r) Pr(X = r)

=

k∑
r=0

f(r; k, ε)F (δ; r + δ, ε),

(14)

the average code length is

nM2 =

k∑
r=0

(k + r + δ) Pr(X = r)− δ Pr(X = 0)

= k + δ + εk − δ(1− ε)k,

(15)

and the distribution of the packet latency of the p-th data
packet in Mode 2 is

Pr(DM2
p = d) =


1− ε, d = 0
εf(r; k − 1, ε), d = k + δ + r

+1 +NRe − p
0, otherwise

(16)

for each r ∈ [0 : k − 1].
Mode 3. We have

Pr suc|L=0 =

δ∑
r=0

Pr(X = r) +

k+δ∑
r=δ+1

(1− ε)r−δ Pr(X = r)

=F (δ; k + δ, ε)

+ (1− ε)k(1 + ε)k+δF (k − 1; k + δ, ε̂)
(17)



by introducing ε̂ = 1
1+ε ,

nM3 =

δ∑
r=0

(k + δ) Pr(X = r) +

k+δ∑
r=δ+1

(r + k) Pr(X = r)

=

δ∑
r=0

(δ − r)f(r; k + δ, ε) + k + ε(k + δ),

(18)

and

Pr(DM3
p = d) =



1− ε, d = 0
εf(r; k − 1, ε), d = k + δ − p

for r ∈ [0 : δ − 1]
εf(r; k − 1, ε), d = k + r + 1

+NRe − p− δ
for r ∈ [δ : k − 1]

0, otherwise

,

(19)

accordingly.
Remark 3 (Characteristics of Three Re-Transmission

Modes): Some characteristics of the above three modes are
given as follows based on the derived results.

• Mode 1: In this mode, the average code rate is fixed as
1/(1 + ε), which cannot be flexibly adjusted. And the
success probability decreases rapidly with the increase
in k. This implies that, for URLLC considering the
reliability of 99.999% or higher, the naive re-transmission
mode is not suitable.

• Mode 2 and Mode 3: A way to improve the reliability
is to add some extra redundant packets in either the first
transmission (as M3) or the re-transmission (as M2). This
would ensure that the success probability satisfies the
target. By comparing nM2 with nM3, one can observe
that the throughput of M2 is greater than the one of
M3 if ε is small, but the latency would become large
if RTT increases. This means we need to switch modes
with respect to the different cases to meet the guaranteed
reliability and latency.

Remark 4 (Special Cases): When δ is equal to 0, the success
probability of M2 and M3 is reduced to the same one of M1,
which verifies the correctness of the derivation.

• Mode 2. By setting δ = 0 in Pr suc|L=0, we have
Pr suc|L=0 = F (0; k, ε2) = (1− ε2)k.

• Mode 3. By setting δ = 0 in Pr suc|L=0, we
have Pr suc|L=0 = F (0; k, ε) + (1 − ε)k(1 +
ε)kF (k − 1; k, 1/1 + ε) = (1−ε)k+(1−ε)k(1+ε)k(1−
(1 + ε)−k) = (1− ε)k(1 + ε)k = (1− ε2)k.

IV. SIMULATION RESULTS

In this section, we provide some simulation results to verify
the derived bounds, first-block error probability (i.e, 1-Pr suc),
and average packet latency. Further, three re-transmission
schemes are compared and their characteristics are demon-
strated.

We consider the random erasure channel where the packet
erasure probability follows the binomial distribution with

the parameter ε. For the re-transmission case, the maximum
number of re-transmissions is set to one.

Fig. 4 shows the comparison of the first block error
probability among RS-SNC and the RS block codes. As
analyzed in Section III-A, RS-SNC achieves a lower error
probability compared with the corresponding RS block code.
In other words, (n, k, L) RS-SNC outperforms the comparable
(n(L+1), k(L+1)) RS block code. When L = 1, the derived
bound is the same as the simulated one, which verifies the
correctness of Eq. (5).
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Fig. 4: First-block error probabilities of RS-BC and RS-SNC
with respect to the packet erasure probability and the length
of the sliding window.

We also present the average packet latency of RS-SNC and
RS-BC in Fig. 5. Clearly, the latency of the (n, k, L) RS-SNC
is between the one of (n(L+1), k(L+1)) RS-BC and the one
of (n, k) RS-BC. Combining the results of Fig. 4 and Fig. 5,
we can conclude that RS-SNC is more reliable compared with
the long code and also keeps low latency close to the one of the
short code, especially for URLLC with the success probability
of 99.999% or higher.

When the re-transmission enables, the block error proba-
bility can be further decreased. As shown in Fig. 6, under
the same average code length, both M2 and M3 can pro-
vide improved performance compared with the classical RS-
SNC. Especially, M2 outperforms M3, because, in the re-
transmission phase, M2 provides a lower code rate, which
leads to higher reliability.

However, in terms of the average packet latency, we can
observe that M3 is the lowest one compared with the other
two modes in Fig. 7. Combining the results of Fig. 6 and
Fig. 7, for the large RTT (i.e., Nre = 8), M3 is the optimal
choice under the small ε. if Nre is small, M2 is the best one
of which the average latency is close to M3 and the block
error probability is the lowest one. This means that SNC with
re-transmission can provide improved reliability and meet the
required latency by the switch of the phase that transmits the
redundant packets under the same average code length.
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Fig. 5: Average packet latency of RS-BC and RS-SNC with
respect to the packet erasure probability and the length of the
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Fig. 6: First-block error probabilities of RS-BC, RS-SNC, and
the re-transmission schemes with respect to the packet erasure
probability and the length of the sliding window.

V. CONCLUSIONS

In this paper, we have considered three re-transmission
schemes to enhance the performance of SNC. Firstly, the
concise and tight lower bound has been derived for SNC
without re-transmission. Then, with the help of the bound,
we have derived the corresponding expressions for the pro-
posed re-transmission schemes. Through adjusting the phase
of sending redundant packets, SNC with re-transmission has
achieved a lower first-block error probability and kept the low
latency under the same average code length compared with
the conventional SNC and block codes.
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