
ar
X

iv
:2

30
2.

13
44

5v
1

 [
cs

.N
I]

 2
7

Fe
b

20
23

Dynamic Resource Allocation for Metaverse

Applications with Deep Reinforcement Learning

Nam H. Chu 1, Diep N. Nguyen1, Dinh Thai Hoang1, Khoa T. Phan2,

Eryk Dutkiewicz1, Dusit Niyato3, and Tao Shu4

1School of Electrical and Data Engineering, University of Technology Sydney, Australia
2School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
3School of Computer Science and Engineering, Nanyang Technological University, Singapore

4Department of Computer Science and Software Engineering, Auburn University, USA

Abstract—This work proposes a novel framework to dynam-
ically and effectively manage and allocate different types of
resources for Metaverse applications, which are forecasted to
demand massive resources of various types that have never been
seen before. Specifically, by studying functions of Metaverse
applications, we first propose an effective solution to divide
applications into groups, namely MetaInstances, where common
functions can be shared among applications to enhance resource
usage efficiency. Then, to capture the real-time, dynamic, and

uncertain characteristics of request arrival and application de-
parture processes, we develop a semi-Markov decision process-
based framework and propose an intelligent algorithm that can
gradually learn the optimal admission policy to maximize the
revenue and resource usage efficiency for the Metaverse service
provider and at the same time enhance the Quality-of-Service
for Metaverse users. Extensive simulation results show that our
proposed approach can achieve up to 120% greater revenue
for the Metaverse service providers and up to 178.9% higher
acceptance probability for Metaverse application requests than
those of other baselines.

Index Terms—Metaverse, deep reinforcement learning, semi-
Markov decision process, network slicing.

I. INTRODUCTION

Although the Metaverse paradigm was first introduced in

1992, the recent efforts from big companies (e.g., Facebook,

NVIDIA, and Microsoft) have made the Metaverse to be one

of the most active fields for both academia and industry [1].

The major difference between the Metaverse and existing

virtual worlds (e.g., Pokemon Go and Second Life) is that

Metaverse can be recognized as the seamless integration of

multiple virtual worlds [1]. Specifically, conventional virtual

worlds limit the users’ experiences in their specific environ-

ment, whereas the Metaverse allows users to seamlessly move

between virtual worlds by a unified representation (e.g., an

avatar). Therefore, similar to our real lives, users in Metaverse

can preserve their belongings and appearance regardless of

their application that they are experiencing. Moreover, the

Metaverse is likely to blend the physical world and the digital

world with the aid of innovative technologies, such as Digital

Twin and Extended Reality (XR) [1]. Thus, the Metaverse is

expected to revolutionize various aspects of our lives, such as

healthcare, smart industries, and e-commerce.

However, to fulfil the user experience and Quality-of-

Service (QoS) requirements, the Metaverse indeed requires

extremely intensive resource demands that have never been

seen before. First, the comprehensive integration of XR in

the Metaverse demands enormous data collected from per-

ceived networks, e.g., the Internet of Things (IoT), intensive

computing for rendering three-dimensional objects, and ultra-

high-speed and low-latency connections for guaranteeing the

QoS and seamless user experience. Second, millions of users

are expected to join the Metaverse concurrently, making the

network data usage increase more than 20 times [2]. Third, the

Metaverse puts new constraints on networking. In particular,

in the current online system (e.g., massive multiplayer online

games), the downlink requires a much higher throughput

than that of the uplink [3]. In contrast, the Metaverse likely

demands intensively high throughput for both down and up

connections. It stems from the fact that users can create, share,

and trade their assets to other users in any virtual world in

the Metaverse. Thus, the Metaverse will demand paramount

resources exceeding those of any existing online platform [1].

As a result, resource management in Metaverse is one of the

biggest challenges hindering the deployment of Metaverse.

To address the Metaverse resource management, utilizing

the multi-tier cloud computing architect can be considered as

a promising solution. First, multi-tier computing can relief the

burden of massive resource demands on end-users for running

Metaverse applications. Second, the multi-tier architecture

can mitigate point-of-congestion problems of the centralized

computing resource allocation architecture, where all resources

are gathered and allocated from a centralized node. Third,

the distribution of resources (e.g. computing, storage, and net-

working) along the path from end-users to the cloud can reduce

the stress due to the enormous amount of data exchanged by

the Metaverse operation over the networks. Finally, moving

resources nearer to end-users results in decreasing delay, which

is one of the most important factors in user experiences [4].

Thus, the multi-tier computing architecture can be considered

to be the most suitable solution for the Metaverse.

Since the Metaverse is only at the beginning stage, only

a few research works consider resource management [5]–

[8]. In [5], the authors address the problem of allocating

http://arxiv.org/abs/2302.13445v1

resources by considering an edge-computing architecture to

allocate computing resource to nearby Metaverse users. The

work in [5] is extended in [6] and [7] by considering different

types of resources (e.g., storage and radio). Differently, the

authors in [8] consider the resource allocation for perception

networks (e.g., the IoT) that are employed to get real-world

data for the Metaverse applications. Note that none of the

above works investigates the multi-tier computing architec-

ture for resource allocation in Metaverse. Instead, they only

consider a single-tier computing architecture, which is unable

to facilitate the Metaverse’s massive resource demand. In

addition, it can be observed that applications of Metaverse may

share some same functions. For example, in practice, many

applications, e.g., the Walking Dead: Our World and Pokemon

Go, are currently using the same functions provided by the

Google Maps API [9]. Thus, resource utilization can increase

dramatically if a common function can be shared between

applications. Nevertheless, all of the above studies are unable

to take advantage of this aspect to maximize resource usage

efficiency. Moreover, the resource demands of Metaverse are

highly dynamic and uncertain since users can come and leave

at any time, making resource management based on conven-

tional optimization methods ineffective. Therefore, effective

solutions to address these problems are urgently needed.

To address the above challenges, this paper proposes a novel

framework that can automatically and intelligently manage

various resource types of the underlying multi-tier computing

architecture to maximize the performance of the Metaverse

system. First, we propose a new application decomposition

technique for Metaverse applications, by which functions of a

Metaverse application can be executed separately at different

tiers of the computing architecture depending on the available

resources of each tier and the requirements of these functions.

As such, this technique can leverage resources at different tiers

simultaneously, thereby providing a flexible and high efficient

solution for managing Metaverse applications. Second, we pro-

pose a novel paradigm, namely MetaInstance, that can exploit

the similarities of Metaverse applications to maximize resource

utilization. Third, we develop a highly-effective framework

based on the semi-Markov decision process to capture the

real-time property of the Metaverse together with a self-

learning algorithm based on deep reinforcement learning to

automatically learn the optimal policy for the system under

the resource demand’s uncertainty and dynamic. Finally, we

perform extensive simulation and show that our proposed

solution clearly outperforms other baseline approaches.

II. DYNAMIC MULTI-TIERS RESOURCE ALLOCATION

ARCHITECTURE FOR METAVERSE

As illustrated in Fig. 1, this work considers a Metaverse

system managed by a service provider, where multiple Meta-

verse applications (e.g., healthcare and education) can operate

simultaneously. To address the massive resource demands of

Metaverse, we propose a novel multi-tier resource manage-

ment framework that can dynamically and effectively dis-

tribute various resource types for Metaverse’s applications.

Tier-1

...

...

...

...

Tier-2

Tier-N

MetaSlice

Decomposition

& Analysis

Multi-tier Resource

Architecture

Resource

Allocation

...

Shared

Functions

MetaInstance N

Dedicated

Functions

Shared

Functions

MetaInstance 1

Dedicated

Functions

t
MetaSlice Requests

...

MetaSlices

Education

Healthcare

Metaverse Service Provider

Transportation

Fig. 1: The system model of the proposed framework, in which

various resource types at different tiers can be simultaneously

utilized and shared to create MetaSlices.

Specifically, we consider that the system has P types of

resources (e.g., networking, storage, and computing), which

are distributed at different tiers along the way from end-users

to the cloud. By doing so, this framework can offer a more

flexible, efficient, and robust solution for deploying Metaverse

applications compared to that of the centralized cloud ar-

chitecture. It can be observed that a Metaverse application,

namely MetaSlice, consists of independence functions, and

thus we propose an application decomposition technique, in

which functions of an application can be separately created at

different tiers depending on their requirement and the available

resources at each tier. For example, a MetaSlice for navigation

may include a driving assistant, real-time traffic, and a digital

map. Since the driving assistant and real-time traffic require

low delay, they can be created at a low tier (e.g., tier-1).

In contrast, the digital map has a low update frequency, and

thus it can be created at a higher tier. Thus, the application

decomposition can provide an effectively and flexibly way for

deploying MetaSlices. The decomposition of applications can

be done by existing methods, e.g., [10].

We consider that there are G classes of MetaSlices ac-

cording to their characteristics, e.g., QoS, user experience,

and technical requirements. In addition, the system can host

various MetaSlice types simultaneously, e.g., education, nav-

igation, and tourism. As analyzed in the previous section,

concurrent MetaSlices in the system may share some common

functions. If common functions are shared among MetaSlices,

a lot of resources can be saved, thereby increasing system

resource usage efficiency and revenue of the provider. To that

end, this study proposes to group MetaSlices into clusters, i.e.,

MetaInstances. As illustrated in Fig. 1, a MetaInstance can

be determined by shared functions and dedicated functions of

specific MetaSlices. To manage MetaSlices, we consider that

each MetaInstance maintains a function description, which is

updated whenever a MetaSlice is added or departs. Techni-

cally, a MetaSlice can be deployed in a similar way as as

that of a network slice in 5G network slicing [11]. However,

their functions and the ways they are implemented are very

different. Specifically, the 5G network slicing aims to provide

various types of end-to-end connections from mobile users

to service providers, e.g., ultra-reliable low-latency communi-

cations (uRLLC) and enhanced Mobile Broadband (eMBB).

In network slicing, a network slice is a logical network built

on top of a physical network to support one connection type

(e.g., uRLLC and eMBB). Each network slice is created based

on multiple predefined functions of 5G network providers.

On the other hand, our proposed solution offers an effective

and flexible approach to implementing and managing the

Metaverse applications. In particular, our proposed framework

first decomposes a MetaSlice (i.e., Metaverse application) into

independent functions. Then, each function will be allocated

different types of resources (e.g., radio, computing, and stor-

age) at different network tiers regarding its requirements. In

addition, because functions’ serving capabilities are limited,

the user experience may be degraded if too many MetaSlices

share the same function. Therefore, this work considers that

the maximum of NL MetaSlices can share one function simul-

taneously. The above analysis demonstrates that the proposed

framework can not only benefit the provider by maximizing

resource usage efficiency but also offer a better user experience

and QoS for end-users. To obtain these results, MetaSlice

admission control and resource management play the key

roles. On the one hand, accepting/rejecting a MetaSlice request

determines the provider’s revenue and the user’s QoS (e.g., ser-

vice availability). On the other hand, better resource utilization

can help the provider to save more resources required to host

future MetaSlices, thereby increasing its long-term revenue.

Thus, this paper focuses on the admission control and resource

management in the proposed framework.

Upon a MetaSlice request arrives, the Metaverse system

makes a decision (i.e., accept or reject) based on the system’s

available resources and the requested MetaSlice’s required

resources and class. If the request of MetaSlice m is accepted,

the system will examine the accepted MetaSlice to determine

its similarities with ongoing MetaInstances as follows. Let the

functions in a MetaSlice m be denoted by a function vector

fm,{F f
m}Kf=1 where K is the total number of functions

supported by the system and F f
m represents an appearance of

function f in this MetaSlice, i.e., F f
m = 1 if MetaSlice m uses

function f , and F f
m = 0, otherwise. Similarly, the function

vector of MetaInstance i is given as fi,{F f
i }

K
f=1. Then, the

similarity index between MetaSlice m and MetaInstance j
is calculated by any similarity function such as cosine and

Jaccard [12]. Here, we use the Jaccard similarity function,

denoted by dJaccard, which is defined as follows:

dJaccard(fm, fj) =
fm · fj

||fm||2 + ||fj ||2 − fm · fj
, (1)

where || · || is the 2-norm of a vector and the nominator is the

dot product of two vectors.

After obtaining all the similarity indexes, the system will

add MetaSlice m to the MetaInstance that has the highest

similarity index. If MetaSlice m has dedicated functions, the

system will allocate resources to create these functions. In a

case that MetaSlice m does not have any common function

with ongoing MetaInstances, the system will create a new

MetaInstance for it. Once a MetaSlice completes/departs, its

occupied resources are released. In practice, the request arrival

and MetaSlice departure processes are highly dynamic and

uncertain. To address these challenges, we develop a semi-

Markov decision process-based framework in the next section.

III. METAVERSE ADMISSION CONTROL FORMULATION

This paper develops a semi-Markov Decision Process

(sMDP) to enable the system to adaptively decide to ac-

cept/reject a request based on (i) its currently available re-

sources, (ii) the requested MetaSlice’s required resources, and

(iii) its class, under the high dynamic and uncertainty of

request arrival and MetaSlice departure processes. In addition,

the sMDP makes decisions in a real-time manner, and thus it

can capture the real-time admission control. The rest of this

section will describe our proposed sMDP-based framework.

A. State Space and Action Space

Since the resources of the provider are limited, to maximize

the provider revenue, it is necessary to consider the system’s

available resources and the required resources of requests. In

addition, the class identification (i.e., class ID) of a requested

MetaSlice is also important because each class can bring dif-

ferent income for the provider. Generally, the sMDP specifies

decision epochs as time points where decisions are taken [13].

As such, in this work, we can define the decision epochs as

inter-arrival time between two consecutive MetaSlice requests.

Therefore, the system state s at a decision epoch can be

defined as s , (nu,nm, g), where g is the class ID of the

requested MetaSlice, and nu={np
u}

P
d=1 and nm={np

m}Pd=1

are two vectors representing the system available resources and

the required resources of a requested MeraSlice, respectively.

Each coordinate of these vectors, i.e., np
u and np

m, specifies

the number of resources types p. Thus, the system state space

is given as follows:

S ,

{

(nu,nm, g) : g ∈ {1, . . . , G};

nd
u and np

m ∈ {0, . . . , Np}∀p ∈ {1, . . . , P}
}

,
(2)

where Np is the total number of resources type p of the

provider.

Note that in our proposed sMDP, a state transition from

state s to state s′ only happens when an event arises, e.g.,

the arrival of a MetaSlice request. Let e={eg}
G
i=1 denote

the system event, where eg ∈ {−1, 0, 1} indicates that (i) if

eg = 1, a request class-g arrives, (ii) if eg = −1 a MetaSlice

class-g departs, and (iii) eg = 0, otherwise. Consequently, we

can derive the set of all possible events as follows:

E ,
{

e : eg ∈ {−1, 0, 1};

G
∑

g=1

|eg| ≤ 1
}

. (3)

For the case when there is no MetaSlice of any class departing

or arriving, we can define a trivial event, i.e., e∗ , (0, . . . , 0).
Suppose that at state s a request arrives, then the system

must take an action as, which is to accept (i.e., as=1) or reject

(i.e., as=0) this request to maximize the provider’s long-term

revenue. Therefore, we can define the action space at state s
as As , {0, 1}.

B. Transition Probability and Immediate Reward Function

To obtain the transition probabilities that the system transits

from one state to another, we adopt the uniformization tech-

nique [13]. In practice, end-users join and leave the system

at any time, which is unknown in advance. Thus, this paper

considers that the arrival process of requests class-g and the

departure process of MetaSlices class-g follow the Poison

distribution with mean λg and the exponential distribution with

mean 1/µg, respectively [13]. Let xg denote the number of

ongoing MetaSlices class-g, we then can represent the number

of all running MetaSlices by a vector x , {xg}
G
g=1. Given the

above, parameters of uniformization are defined as:

z = max
x∈X

G
∑

g=1

(λg + xgµg), (4)

zx =
G
∑

g=1

(λg + xgµg), (5)

where X denotes the set of all possible values for x. Now, the

occurrence probability of the next event e is given as follows.

The probability of an arrival of request class-g appears in e

is λg/z. The probability of a departure of MetaSlice class-

g appears in e is xgµg/z, and the probability that the next

event is a trivial event e
∗ is 1−zx/z. Then, we can obtain

the transition probabilities for the sMDP.

To maximize the long-term revenue for the provider, the

immediate reward function needs to consider the revenue

from leasing resources. In addition, the proposed applica-

tion decomposition and MetaInstance techniques can offer

a higher resource utilization by sharing resources among

the MetaSlices. As such, accepting a MetaSlice with lower

occupied resources will benefit the provider in the long run,

and thus the resource occupation of a requested MetaSlice

is another important factor. Thus, we can define the reward

function as:

r(s, as) =

{

rg −
∑P

p=1 wpn
p
o, if eg=1 and as=1,

0, otherwise,
(6)

where rg is an income obtained by releasing resources for a

MetaSlice class-g, and np
o is an amount of resources type p

occupied by this MetaSlice. Here, the weights, i.e., wp
P
p=1,

define the tradeoff between these factors, which can be set

based on the provider’s business strategies. In (6), it can be

observed that even MetaSlices have the same income (i.e., rg),

accepting the one with lower occupied resources gets a greater

reward, thereby maximizing the provider’s long-term revenue.

The objective of this work is to find an optimal admission

policy π∗ for the system to maximize the long-term average

reward function, i.e., R(π), as follows:

max
π

R(π) = lim
T→∞

1

T

T
∑

t=1

E [rt(st, π(st))] , (7)

where π(st) is the action that is selected at state st at time t
according to the admission policy π and rt is an immediate

reward derived from (6). In the next section, we discuss

our proposed intelligent algorithm that can automatically and

effectively find the optimal policy π∗ for the system.

IV. INTELLIGENT METASLICE ADMISSION CONTROL

In practice, the request arrival and MetaSlice departure

processes are unknown in advance because end-users can

come and leave at any time. Therefore, it is ineffective to

apply conventional optimization techniques to find an optimal

admission policy for the system. In this context, Deep Q-

learning techniques can help the system gradually learn an

optimal admission policy without requiring complete infor-

mation about the request arrival and MetaSlice departure

processes. However, conventional deep Q-learning techniques

face the overestimation problem when estimating the optimal

Q-values [14], i.e., Q∗(s, a), thereby possibly leading to an

unstable learning process or even resulting in a sub-optimal

policy. To address this issue, we develop a highly effective

Deep Reinforcement Learning (DRL)-based algorithm for the

system, namely iMSAC, that adopts recent advanced tech-

niques, i.e., the buffer replay mechanism, the dueling neural

network architecture [15], and the double Q-learning [14]. The

iMSAC is described in details in Algorithm 1.

Algorithm 1 The iMSAC

Initialize ǫ, buffer M, and Q-network Q with random

parameters θ.

Create target Q-network Q̄ by cloning the Q-network.

for step = 1 to T do

Get action at following the ǫ-greedy policy as follows:

at=

{

argmax
a∈A

Q(st, a; θt), with probability 1−ǫ,

random action a∈A, otherwise.
(8)

Execute at, then observe reward rt and next state st+1.

Store experience (st, at, rt, st+1) in M.

Sample M randomly to get a mini-batch of experiences.

Using (9) and (10) to get the Q-value and the target

Q-value, respectively.

Update θ based on SGD algorithm.

Decrease the value of ǫ.
Set θ̄ = θ at every C steps.

end for

In Algorithm 1, at time t, the MetaSlicing system is at

state st and performs an action at derived from the ǫ-policy,

as in (8). Then, the system moves to a new state st+1 and

receives an immediate reward rt. Since experiences, i.e., tuples

< st, at, st+1, rt >, obtained in sMDP are highly correlated,

using them directly to train the Deep Neural Network (DNN)

may lead to a slow convergence speed [17]. To mitigate this

problem, we adopt the replay buffer mechanism, in which

experiences are stored in a buffer M. Then, to train the DNN,

a mini-batch of experiences is sampled randomly from M.

In iMSAC, the DNN is leveraged for estimating the Q-values

so that the input and output layers are set according to the

state dimension (i.e., available resources, required resources

and class ID of the incoming MetaSlice request) and the action

1 10 20 30 40 50

Iteration (7.5x103)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
v
e
ra

g
e
 R

e
w

a
rd

iMSAC+MA

iMSAC

Greedy

Fig. 2: Convergence rate of proposed algorithm iMSAC.

dimension (i.e., accept and reject), respectively. By inputting a

state s in the DNN, estimated Q-values for all actions at state

s are obtained, each corresponding to a neuron in the output

layer. To stabilize the learning process, we adopt the dueling

architecture that divides the iMSAC’s DNN into two streams,

one to estimate the state-value function V(s) and another for

estimating the advantage function W(s, a). It is worth noting

that while V(s) determines how good to be at a state s,

W(s, a) specifies the importance of action a in comparison

with others at state s. Let β and ζ denote parameters of the

V(s) and W(s, a) streams, respectively. Thus, the Q-value of

performing action a at state s is estimated by the iMSAC’s

DNN as follows [15]:

Q(s, a;β, ζ) = V(s;β)+
(

W(s, a; ζ)−
1

|As|

∑

a′∈As

W(s, a′; ζ)
)

.

(9)

To mitigate the overestimation problem, we adopt the double

Q-learning method that uses two identical DNNs, which are

Q-network Q for action selections, and target Q-network Q̄
for evaluating action. Then, the target Q-value at time t is

given as follows:

Zt = rt(st, at) + αQ̄
(

st+1, argmax
a

Q(st+1, a; θt); θ̄t
)

, (10)

where θ and θ̄ denote the Q’s and Q̄’s parameters, respectively.

The importance of future rewards is reflected by the discount

factor α. Since the objective of training Q is minimizing the

distance between the estimated Q-value and the target Q-value,

we can define a loss function at time t as follows:

Lt(θt) = E(s,a,r,s′)

[

(Ht −Q(s, a; θt))
2
]

, (11)

where E[.] is the expectation regard with data points, i.e.,

(s, a, r, s′), in M. In this work, we employ Stochastic Gradient

Descent (SGD) to minimize the loss function Lt(θt) because

this method has lower computing complexity compared with

that of conventional Gradient Descent while the convergence is

still guaranteed [16]. Note that to stabilize the learning process,

as in [17], the target Q-network Q̄ is not updated at every time

step. Instead, at every C steps, θ̄ is cloned from θ.

V. PERFORMANCE EVALUATION

A. Simulation Setting

Unless otherwise stated, the simulation parameters are set

as follows. The system supports nine function types. There are

three different functions for each MetaSlice. We consider that a

10 12 14 16 18 20 22 24 26 28 30

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 R

e
w

a
rd

iMSAC+MA

iMSAC

Greedy

10 12 14 16 18 20 22 24 26 28 30

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

iMSAC+MA

iMSAC

Greedy

(a) Average rewards (b) Acceptance probability

Fig. 3: Vary the total number of system resources.

function can be shared among a maximum of five MetaSlices.

MetaSlices are classified into three classes, i.e., class-1, class-

2, and class-3. The immediate reward rg is set to 1, 2, and

4, and λg is set to 60, 40, and 25 request/hours for class-1,

class-2, and class-3, respectively. In the MetaSlice departure

processes of all classes, µg is set at two MetaSlices/hours.

We consider three resource types, i.e., radio, storage, and

computing, and each MetaSlice’s function requires similar

resources as functions in the Network Slice [18], e.g., 40

MHz, 40 GB, and 40 GFLOPS/s. Note that the proposed

algorithm iMSAC does not require complete information about

surrounding environment (e.g., arrival and departure rates and

total system resources) in advance. Instead, it can adapt its

policy accordingly to practical demands and requirements.

The parameters of the iMSAC algorithm are set as fol-

lows. The value of ǫ is first set to one, and then it slowly

decreases to 0.001. We set the discount factor α to 0.9. The

hyperparameters of Q-network are set similar to those in [15],

e.g., learning rate is 10−3, and C = 104. Recall that the

proposed solution includes the self-learning algorithm iMSAC

and the MetaSlice analysis. Without the MetaSlice analysis,

MetaInstances cannot be created, and thus no function is

shared among ongoing MetaSlices. Hence, to evaluate our

proposed solution, namely iMSAC+MA, we use two baseline

methods, i.e., iMSAC and Greedy policy policy (that always

accepts requests if the system has sufficient resources).

B. Simulation Results

Fig. 2 shows the convergence rate of iMSAC in two

schemes, i.e., with and without the MetaSlice Analyzer. The

average reward obtained by the Greedy policy is also shown

as a baseline. In this experiment, the radio, storage, and

computing resources are set to 480 MHz, 480 GB, and 480
GFLOPS/s, respectively. It can be observed that although the

iMSAC+MA converges slower than the iMSAC does, the

average reward of the policy obtained by iMSAC+MA (i.e.,

0.264) is 48% greater than that of the iMSAC (i.e., 0.17). In

addition, the average rewards of iMSAC+MA and iMSAC are

230% and 123% greater than that of the Greedy, respectively.

Next, we investigate the robustness of our proposed solution

by varying the radio, storage, and computing resources from

400 MHz, 400 GB, and 400 GFLOPS/s to 1200 MHz, 1200

10 12 14 16 18 20 22 24 26 28 30

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

10 12 14 16 18 20 22 24 26 28 30

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

10 12 14 16 18 20 22 24 26 28 30

Total Number of Resources

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
c
c
e
p

ta
n

c
e
 P

ro
b

a
b

il
it

y

Class-1

Class-2

Class-3

(a) iMSAC+MA (b) iMSAC (c) Greedy

Fig. 4: The acceptance probability per class when varying total number of resources.

GB, and 1200 GFLOPS/s, respectively. In other words, the

maximum number of functions simultaneously running on

the system is varied from 10 to 30. The policies learned by

the iMSAC and iMSAC+MA are acquired after 3.75×105

iterations. In this experience, we use average reward and

acceptance probability metrics because they clearly demon-

strate the system performance in terms of provider’s long-term

average revenue and the users’ QoS, i.e., service availability.

Fig. 3 demonstrates that the average rewards and acceptance

probabilities obtained by all solutions increase when the

system resource quantity increases. It is stemmed from the

fact that with more resources, the system can host a greater

number of MetaSlices, and thus it can accept more requests

to get higher revenue than those of the system with a lower

amount of resources. As the amount of system resources

increases, iMSAC+MA always obtains the best results in

terms of average reward and acceptance probability, which

are up to 120% and 178.9% greater than those of the iMSAC,

respectively, as shown in Fig. 3. Interestingly, even though the

acceptance probability of the iMSAC is slightly lower than

that of the Greedy, the iMSAC consistently achieves higher

average rewards (e.g., up to 182%) than the Greedy does, as

shown in Fig. 3(a). The reason can be observed in Fig. 4

where we look deeper at the acceptance probability per class.

Specifically, in the iMSAC+MA and iMSAC, the acceptance

probability of class-3, which has the highest immediate reward

(i.e., 4), is much higher than that of class-1, which has the

lowest immediate reward, i.e., 1. In contrast, in the Greedy, the

acceptance probabilities of all classes are similar. The above

results clearly demonstrate the effectiveness and robustness of

our proposed solution.

VI. CONLCUSION

This paper has proposed the novel resource management

framework to dynamically allocate appropriate resources from

different tiers for effectively addressing the massive resource

demands of Metaverse’s applications, thereby maximizing the

provider’s long-term revenue. To capture real time, dynamic

and uncertainty of request arrival and MetaSlice departure

processes, we have developed the sMDP-based framework and

the intelligent algorithm that can gradually learn the opti-

mal admission policy without requiring complete information

about these processes. The simulation results clearly show the

effectiveness and robustness of our proposed solution.

REFERENCES

[1] M. Xu et al., “A full dive into realizing the edge-enabled Meta-
verse: Visions, enabling technologies, and challenges,” arXiv preprint

arXiv:2203.05471, 2022.

[2] https://www.credit-suisse.com/media/assets/corporate/docs/aboutus/
media/media-release/2022/03/metaverse-14032022.pdf, (accessed: May
01, 2022).

[3] X. Wang et al., “Characterizing the gaming traffic of World of Warcraft:
From game scenarios to network access technologies,” IEEE Network,

vol. 26, no. 1, pp. 27-34, Jan. 2012.

[4] J. Zhao, R. S. Allison, M. Vinnikov, and S. Jennings,“Estimating the
motion-to-photon latency in head mounted displays,” in Proceedings of

the 2017 IEEE Virtual Reality (VR), 2017, pp. 313-314.

[5] Y. Jiang et al., “Reliable coded distributed computing for Metaverse
services: Coalition formation and incentive mechanism design,” arXiv

preprint arXiv:2111.10548, 2021.

[6] M. Xu et al., “Wireless edge-empowered Metaverse: A learning based
incentive mechanism for virtual reality,” arXiv preprint arXiv:2111.03776,

2021.

[7] W. C. Ng et al., “Unified resource allocation framework for the edge
intelligence-enabled Metaverse,” arXiv preprint arXiv:2110.14325, 2021.

[8] Y. Han et al., “A dynamic resource allocation framework for syn-
chronizing Metaverse with IoT service and data,” arXiv preprint

arXiv:2111.00431, 2021.

[9] https://analyticsindiamag.com/google-maps-api-is-the-new-imperative-
to-mobile-gaming/, (accessed: May 01, 2022).

[10] B. Alturki et al., “Exploring the effectiveness of service decomposition in
fog computing architecture for the internet of things,” IEEE Transactions

on Sustainable Computing, vol. 7, no. 2, pp. 299–312, Mar. 2019.

[11] https://www.ngmn.org/wp-content/uploads/Publications/2016/
161010NGMNNetworkSlicingframeworkv1.0.8.pdf, (accessed: May
01, 2022).

[12] P. Jaccard, “The distribution of the flora in the alpine zone,” The New
Phytologist, vol. 11, no. 2, pp. 37-50, Feb. 1912.

[13] H. C. Tijms, A First Course in Stochastic Models. Wiley, 2003.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 30, no. 1, 2016, pp. 2094-2100.

[15] Z. Wang et al., “Dueling network architectures for deep reinforcement
learning,” in Proceedings of the 33rd International Conference on Ma-

chine Learning, 2016, pp. 1995-2003.

[16] H. Robbins and S. Monro, “A stochastic approximation method,” The

Annals of Mathematical Statistics, pp. 400-407, Sep. 1951.

[17] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

http://arxiv.org/abs/2203.05471
https://www.credit-suisse.com/media/assets/corporate/docs/aboutus/ media/media-release/2022/03/metaverse-14032022.pdf,
https://www.credit-suisse.com/media/assets/corporate/docs/aboutus/ media/media-release/2022/03/metaverse-14032022.pdf,
http://arxiv.org/abs/2111.10548
http://arxiv.org/abs/2111.03776
http://arxiv.org/abs/2110.14325
http://arxiv.org/abs/2111.00431
https://analyticsindiamag.com/google-maps-api-is-the-new-imperative-to-mobile-gaming/
https://analyticsindiamag.com/google-maps-api-is-the-new-imperative-to-mobile-gaming/
https://www.ngmn.org/wp-content/uploads/Publications/2016/ 161010 NGMN Network Slicing framework v1.0.8.pdf
https://www.ngmn.org/wp-content/uploads/Publications/2016/ 161010 NGMN Network Slicing framework v1.0.8.pdf

[18] G. Dandachi et al., “An artificial intelligence framework for slice
deployment and orchestration in 5G networks,” IEEE Transactions on

Cognitive Communications and Networking, vol. 6, no. 2, pp. 858–871,
Nov. 2020.

	I Introduction
	II Dynamic Multi-tiers Resource Allocation Architecture for Metaverse
	III Metaverse Admission Control Formulation
	III-A State Space and Action Space
	III-B Transition Probability and Immediate Reward Function

	IV Intelligent MetaSlice Admission Control
	V Performance Evaluation
	V-A Simulation Setting
	V-B Simulation Results

	VI Conlcusion
	References

