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Abstract—The dirty paper channel (DPC) under a peak
amplitude constraint arises in an optical wireless broadcast
channel (BC), where the state at one receiver is the transmitted
signal intended for the other receiver(s). This paper studies a
class of peak-constrained DPC that is applicable to the optical
wireless BC, where the channel state (i.e, ‘dirt’) takes values
from some evenly-spaced grid. For the discrete-state DPC studied
this paper, a capacity upper bound is obtained from its state-
free counterpart. To lower bound its capacity, classical dirty
paper coding schemes are revisited, including Costa’s coding for
DPC and Tomlinson-Harashima (TH) precoding, which serves as
benchmark schemes. To improve the benchmark performance,
two new precoding schemes are proposed for the discrete-state
DPC. Although the proposed schemes do not achieve the state-
free capacity contrary to what is known about the Costa’s DPC,
achievable rates within a small gap to the state-free capacity
are demonstrated for the discrete-state DPC. Using the proposed
precoding scheme in a two-user peak-constrained Gaussian BC,
a new capacity inner bound (IB) is obtained, and is shown
to outperform the truncated Gaussian (TG) based IB and is
comparable to the best-known IB.

I. INTRODUCTION

In optical wireless communication (OWC), the following

interference arises: Intersymbol interference (ISI) in multi-

path transmission scenarios, intercolor interference (ICI) in

multicolor transmission scenarios, and interuser interference

(IUI) in broadcasting scenarios. All the interference types

share a common feature that the interference is known at the

transmitter but not to receiver. From an information thoery

perspective, the channel with state, can well model an OWC

link disturbed by ISI, ICI, or IUI, where the interference is

modeled as the channel state [1, Sec. 7.6].

To understand the importance of channel with state, let us

look at the more-developed radio-frequency (RF) communica-

tion channel as an example, where the link with known inter-

ference at the transmitter is modeled as a power-constrained

Gaussian channel with state (also known as a dirty paper

channel, DPC [2]). The milestone work by Costa in 1983 [2]

states that the power-constrained DPC has the same capacity

of a Gaussian channel without state. The proof is based on

the Gelfand-Pinsker Theorem [1, Theorem 7.3] which states

the capacity of general dirty paper channels. Costa’s result

has motivated code design for the RF DPC [3], and enabled

developing capacity-achieving coding schemes for broadcast

channels (BCs) based on the DPC for both the scalar [4] and

the vector cases [5]–[7].

Different from RF communication, OWC DPC is con-

strained by a peak amplitude constraint instead of a power

constraint due to physical properties of optical emitters, such

as LEDs or laser diodes [8], [9]. In spite of the importance

of the peak-constrained DPC in OWC, little is known about

the peak-constrained DPC in the current literature. Note that,

for a peak-constrained Gaussian channel, the optimal code is

shown to follow a discrete distribution [10], [11], instead of the

Gaussian distribution that is optimal in the power-constrained

Gaussian channel. The code design for the OWC DPC is likely

different from that for the RF DPC. Hence, investigating the

capacity of the OWC DPC is an interesting research direction

and is open in the literature.

Hence, we are motivated to study the case when the DPC-

based broadcasting is adopted together with discrete signaling

in OWC. We propose that the alphabets that help to encode

messages of different users should be drawn from the same

grid whose elements are evenly spaced. Then, a class of DPC

with a discrete state will arise in the proposed setting. We

examine the concept in the peak-constrained Gaussian BC with

a scalar input first in this paper, and leave the investigation for

the vector-input case to future work.

In this paper, we study the capacity of the peak-constrained

discrete-state dirty paper channel (DPC) that arises in op-

tical wireless broadcasting with discrete signaling. To this

end, we first revisit the classical coding scheme from the

power-constrained DPC, including Costa’s coding for DPC

and Tomlinson-Harashima (TH) precoding as benchmarks. To

improve the performance obtained by these classical schemes,

we then propose two new precoding schemes for the peak-

constrained discrete-state DPC, and all are based on the

modulo operation. It turned out that the achievable rate of

Costa’s coding, TH precoding, and the first proposed scheme

can only be evaluated through their lower bounds, however,

the second proposed scheme can be approximated through the

approximation of the entropy over the Gaussian-mixture distri-

butions. Numerical results show that both the proposed precod-

ing schemes outperforms the benchmark schemes. We further

examine the application of the peak-constrained discrete-state

DPC in a two-user peak-constrained Gaussian BC with a scalar

input. By applying Scheme 2 to the two-user peak-constrained

Gaussian broadcast channel (BC), a new capacity inner bound

(IB) is obtained, which is shown to outperform the capacity

IB that is based on the truncated Gaussian (TG) distribution

and performs comparable to the best known inner bound that
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is based on a discrete distribution. Thus, the application of the

peak-constrained discrete-state DPC in a vector BC becomes

promising.

In the rest of this paper, after defining some notations, Sec.

II provides basics for BC and define the discrete-state DPC that

arises to facilitate the discussion and analysis in what follows.

Then, Sec. III revisit the classical coding schemes of the

power-constrained DPC in the peak-constrained counterpart to

form benchmark performance. Then, Sec. IV introduces two

new precoding schemes. The achievable rates of all precoding

schemes are numerically compared in Sec. V, and a new

capacity inner bound for the peak-constrained BC has also

been shown in this section. Finally, Sec. VI concludes this

paper.

Notations: Throughout the paper, we use uppercase letters

to denote random variables, such as X , and the corresponding

lowercase letters as their realizations, such as x. Whenever

applicable, the corresponding calligraphic letters represent

their alphabets, such as X . For some set X , denote by |X |
its carnality. The mutual information, entropy, and differential

entropy are denoted by I(·; ·), H(·), and h(·), respectively. We

denote by P[·] the probability of a random event. For a random

variable X , we denote its probability distribution, expectation,

and variance by PX , E[X ], and V[X ], respectively. If X

is uniformly distributed within an interval [a, b], we write

X ∼ Unif([a, b]), or if X is a discrete uniform random

variable, we write X ∼ Unif(X ). Specifically, for an integer

m > 1, if X has m equiprobable mass points that are evenly-

spaced within [0, a], we write1 X ∼ ESDU(a,m), which is

equivalent to X ∼ Unif
(

Ga,m

)

, where Ga,m =
{

ia
m−1

}m−1

i=0
.

Besides, for an alphabet drawn from an evenly-spaced grid

such as Ga,m, we call it a a
m−1 -spaced alphabet, where a

m−1

is the grid spacing. We write X ∼ N (µ, σ2) when X is a

Gaussian random variable with mean µ and variance σ2. For

a random variable X , the notation X(n) denotes a sequence

of n independent and identically distributed instances of X .

We denote by R and N the set of real numbers and natural

numbers, respectively. For x ∈ R, we define its quantization

and quantization error under quantization intervals of width

a ∈ R by (x)qa = x − x mod a and (x)ea = x mod a,

respectively, where mod represents the modulo operation.

Finally, we define [x]+ = max{0, x} and by log(x) the base-2

logarithm of x.

II. THE DISCRETE-STATE DIRTY PAPER CHANNEL:

MOTIVATION AND MODEL

In this section, we first motivate the discrete-state DPC

through OWC BC, then we define the class of discrete-state

DPC that arises in the BC, as well as set the objective of this

paper.

1ESDU stands for evenly spaced discrete uniform.
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Fig. 1. The two-user peak-constrained Gaussian broadcast channel (BC) that
adopts dirty paper coding.

A. The Peak-Constrained Broadcast Channel

Consider a two-user broadcast channel (BC) under a peak-

amplitude constraint as depicted in Fig. 1 or expressed below:

Yi = hiXBC + Zi, i = 1, 2 (1)

where the transmitter wants to send private messages M1 to

user 1 and M2 to user 2 by transmitting XBC ∈ [0,P] through

a noisy link with channel gain hi and Gaussian noise Zi ∼
N (0, σ2

i ), i = 1, 2. Without loss of generality, we let h1 =
h2 = 1, since their difference can be reflected by the noise

variances. We also assume that σ1 < σ2 in this paper, without

loss of generality.

If M1 and M2 are encoded independently, both users will

suffer IUI. To combat IUI at one of the users, such as

user 1, the transmitter encodes M2 to obtain a subcodeword,

denoted by S(n), where n is the code length. Then, the

transmitter encodes (M1, S
(n)) to obtain another subcodeword

X(n), and finally transmits X
(n)
BC = X(n) + S(n). In such

a way, S(n) contributes in generating X(n). Since we only

consider memoryless channels, n will be omitted, henceforth.

Intuitively, this encoding process is similar to dirty paper

coding [2], [4]. Through this encoding process, the BC in (1)

can be seen equivalently as two channels as follows: a P2P

channel with input S and output Y2 = S +X +Z2, where X

is interference, and a dirty paper channel (DPC) with input X

and output Y1 = X + S +Z1, where S is the known channel

state at the encoder.

Through the DPC-based broadcasting scheme, a rate pair

(R1, R2) is achievable for the BC, such that

R1 ≤ I(T ;Y1)− I(T ;S), (2a)

R2 ≤ I(S;Y2), (2b)

where (2a) is obtained from Gelfand-Pinsker (GP) Theorem

[1, Theorem 7.3] under a given PT and mapping x(t, s). Note

that, if X and S are independent, we have I(S;Y2) = I(X +
S;Y2)−I(X ;X+Z2) in (2b), which will be helpful to generate

the numerical results in Sec. V.

B. The Discrete Dirty Paper Channel

We want to investigate a discrete signaling scheme for the

BC in (1) so that S in (2) is discretely distributed. Specifically,

when S is drawn from an evenly-spaced discrete grid, the

following discrete-state DPC arises.



Definiton 1. The class of peak-constrained discrete-state DPC

studied in this paper is defined as follows:

Y = X + S + Z (3)

where Y is the channel output, X is the channel input that

is subject to a peak constraint X ∈ [0,A], Z ∼ N (0, σ2)
is Gaussian noise, and S is the discrete channel state with

alphabet S ⊆ GB,N, for some B > 0 and integer N > 2.

Denote the capacity of the DPC in Definition 1 by C.

Theorem 1 below states an upper bound for C.

Theorem 1. The capacity of the DPC in (3) satisfies that

C ≤ C(A, σ), where

C(A, σ) , min

{

1

2
log

(

1 +
A
2

4σ2

)

, log
(

1 +
A√
2πeσ

)

}

(4)

Proof. The proof is based on the GP theorem [1, Theorem

7.3] and can be found in Appendix A. �

This rest of this paper focuses on studying the ultimate

achievable rate of the DPC in (3), through existing or new

coding/precoding schemes. Next, a benchmark achievable rate

is obtained via Costa’s coding.

III. BENCHMARK ACHIEVABLE RATE OF THE DISCRETE

DPC

In this section, we apply Costa’s coding and Tomlinson-

Harashima (TH) precoding to the DPC in (3), and obtain a

benchmark achievable rate for it. Costa’s coding [2] is de-

signed for the power-constrained Gaussian DPC. The concept

is to construct the codeword through random binning followed

by partially presubtracting the state. In Costa’s coding, T in the

GP Theorem [1, Theorem 7.3] is chosen to be T = X + αS,

wherein X and S are independent and α is optimally chosen to

maximize the achievable rate. While this construction achieves

the capacity of the power-constrained Gaussian DPC, its

achievable rate in the peak-constrained DPC in (3) has not

been studied. Next, a lower bound on the achievable rate of

Costa’s coding in the DPC in (3) is stated in Theorem 2, which

serves as a benchmark for comparison.

Theorem 2. For the DPC in (3), we have C ≥ R0, where

R0 ,
1

2
log

( 12

2πe
+

A
2

2πeσ2

)

. (5)

Proof. The proof can be found in Appendix B, where a con-

struction similar to the one in Costa’s coding is adopted. �

A structured algorithm to realize Costa’s coding is not

available. Fortunately, however, Tomlinson-Harashima (TH)

precoding proposed in [12], [13] can be used in [3], [5]. It can

be shown that TH precoding achieves R0 in the DPC in (3),

providing a structured algorithm. The proof is straightforward

following the proof of [3, Lemma 6] and is hence omitted

here. Next, we propose new precoding schemes for the peak-

constrained DPC in (3), which will be compared with the

benchmark in (5) in Sec. V.

IV. PROPOSED PRECODING SCHEMES

To achieve a larger rate than R0, we propose two new

precoding schemes for the DPC in (3) in this section, as

described next. Both proposed scheme will be shown to

outperform R0 in Sec. V.

A. Proposed Precoding Scheme 1

Scheme 1 can be considered as a variant of TH precoding

(c.f. [3, Lemma 6]) which results to an equivalent modulo

channel, but the encoding process in Scheme 1 is based on

a discrete alphabet where the state will be quantized, which

is different from the TH precoding. In details, the operations

at the transmitter and the receiver of Scheme 1 are given as

follows:

1) Transmitter: Let T ∼ ESDU(A,K) be used for con-

structing the codeword of M . Let ∆ = A

K−1 and denote

A∆ = A+∆. To send M given S, transmit

x =
[

t− (αs+ w)q∆ − w′
]

mod A∆, (6)

where W ∼ Unif([0,A∆]) and W ′ ∼ ESDU(A,K) are

the common random variables whose realizations are

known at both the transmitter and the receiver;

2) Receiver: Upon receiving Y , obtain Y ′ as follows.

y′ =
[

αy + w + w′
]

mod A∆ (7a)

=
[

t− t+ α(x+ s+ z) + w + w′
]

mod A∆ (7b)

=
[

t+ (αs+ w)e∆ + (α− 1)x+ αz
]

mod A∆

(7c)

=
[

t+ w0 + (α− 1)x+ αz
]

mod A∆ (7d)

=
[

t+ z̃′α
]

mod A∆, (7e)

where w0 , [αs+w] mod ∆ and z̃′α , w0+(α−1)x+
αz.

Remark 1. We have the following remarks for Scheme 1.

1) Since the modulo is over A∆ = K∆ on a ∆-spaced

alphabet, the input peak constraints still holds after

precoding, i.e., X ∈ [0,A];
2) Since W mod ∆ ∼ Unif([0,∆]), we have W0 ∼

Unif
(

[0,∆]
)

and W0 is independent of T , S, X , and

Z , according to the Crypto Lemma [14, Lemma 1];

3) T is independent of Z̃ ′
α, which follows 2) above;

4) Scheme 1 forms an equivalent channel that has input T

and output [T + Z̃ ′
α] mod A∆, where Z̃ ′

α is the effective

modulo-channel noise.

The achievable rate of Scheme 1 can be lower bound by R1

as given in Theorem 3.

Theorem 3. For the DPC in (3), we have C ≥ R1, where

R1 ,
1

2
log

(

A
2 +

2A2

K− 1
+ 12σ2

)

− 1

2
log(2πe)

− 1

2
log

(

A
2

12(K− 1)2

[

1− 1

(K− 2)2

]

+ σ2
)

(8)

achieved via Scheme 1.



Proof. The proof can be found in Appendix C. �

Note that, with a proper choice of K, R1 is guaranteed to

outperform R0. The proof is straightforward by comparing

R0 and R1 and is omitted here. This conclusion will also be

observed later in Sec. V, where the achievable rates of different

precoding schemes are compared numerically.

B. Proposed Precoding Scheme 2

Scheme 2 is based on a mapping function ϕ : T × S 7→ U ,

where T ,S,U ⊆ {jδ|j ∈ N}, defined as follows:

u = ϕ(t, s) ,
(

t+ (|T | − 1)s
)

mod
(

|T |δ
)

+ s. (9)

An example is provided to help explain the behavior of the

mapping ϕ, as follows.

Example: Let δ = 1, T = {0, 1, 2}, and S = {0, 1, . . . , 4}.

Then, Table I shows the result of ϕ(t, s).

TABLE I

ϕ(t, s)
s

0 1 2 3 4

t

0 0 3 3 3 6
1 1 1 4 4 4
2 2 2 2 5 5

The operations at the transmitter and the receiver for

Scheme 2 are given as follows:

1) Transmitter: Define δ = B

K−1 , K
′ = ⌊A

δ
⌋ + 1, and

A
′ = (K′ − 1)δ. Let T ∼ ESDU(A′,K′) be used for

constructing the codeword of M . To send M given S,

obtain u = ϕ(t, s) =
[

t+(K′−1)s
]

mod A
′
δ+s through

the mapping function ϕ first, where A
′
δ = A

′ + δ, then

transmit

x = u− s. (10)

2) Receiver: Upon receiving Y , the receiver decodes T ,

where we note that the following holds

y = x+ s+ z = u+ z. (11)

Remark 2. We have the following remarks for Scheme 2.

1) The mapping U 7→ T is a surjective mapping (as

exemplified in Table I), where U is the alphabet of

U = ϕ(T, S). Thus, if U can be detected successfully

from Y = U + Z , then T and the message M can be

obtained successively;

2) The alphabets of the codeword and the state are all δ-

spaced, i.e., T ,S ⊆ {jδ|j ∈ N};

3) X is independent of S, which can be seen from Table I

where, given S ∈ S, the distribution of X = ϕ(T, S)−S

does not change;

4) Scheme 2 does not necessarily make use of the whole

range of feasible input intensity , i.e., X ∈ [0,A], since

δ generally leads to A
′ ≤ A. However, in a DPC-based

broadcasting scheme, δ can be designed to optimize

Scheme 2. This will be explained with more details in

the next section.

Next, Theorem 4 gives the achievable rate of Scheme 2,

which is denoted by R2.

Theorem 4. For the DPC in (3), we have C ≥ R2, where

R2 , I(T ;Y ) (12a)

= h(U + Z)− h(U + Z|T ), (12b)

where U = ϕ(T, S), wherein T ∼ ESDU(A′,K′), A′ = (K′−
1)δ, and K

′ = ⌊A

δ
⌋+ 1.

Proof. This achievable rate is obtained based on the GP The-

orem [1, Theorem 7.3] by noting that the choice of auxiliary

variable and mapping function in Scheme 2 is not optimal,

and T and S are independent. �

Note that, U in (12) is discrete and is independent of the

Gaussian random variable Z , so that h(U+Z) and h(U+Z|T )
can be approximated given the probability mass functions

(p.m.f.-s), PU and PU|T .

V. NUMERICAL RESULTS

In this section, we first numerically compare the achievable

rates of all the precoding schemes that has been discussed so

far. Then, we show how Scheme 2 can help to enlarge the

achievable rate region of the peak-constrained BC in (1). In

all simulations, we let σ = 1 for the DPC, and σ1 = 1, h1 =
h2 = 1 for the BC, without loss of generality. In the discussion

below, we define SNR= 10 log10
(

A

σ

)

, SNR1 = 10 log10
(

P

σ1

)

,

and INR= 10 log10
(

B

σ

)

.

A. Achievable Rates for the DPC in (3)

In this simulation, we compare the achievable rates of all

the precoding schemes, i.e., Ri, i = 1, 2, 3, in the DPC in

(3). Since we are interested in the application of Scheme

2 in the DPC-based broadcasting (demonstrated in the next

subsection), thus, we will constrain the state S to take values

from the same grid as the channel input’s in this simulation.

We will also test the effect of different state strength through

several reference INR values. In details, we first set a reference

grid spacing ∆0 = 3σ, which helps to generate an evenly-

spaced grid ∆N, where ∆ = A

K−1 and K = min
{

2, ⌈ A

∆0
⌉
}

.

Then, we let T ∼ ESDU(A,K) so that T ⊆ ∆N. To generate

the state S, given a reference INR value, we obtain the

corresponding B first, then we can choose an S ⊆ ∆N such

that S ∈ [0,B + ∆], and specify a distribution over S to

generate S. More specifically, as an example in this simulation,

we let S ∼ ESDU
(

B
′, B

′

∆ + 1
)

, where B
′ = ⌈ B

∆⌉∆. Given

(T ,S), we obtain R2 through (12). As for R0 and R1 in this

simulation, both of them only depends on SNR, where we

maximize R1 over K in (8).

Fig. 2 compares R0 (5), R1 (8), and R2 (12), where R1

is obtained by maximizing (8) over K. It can be seen that,

Scheme 2 outperforms both Scheme 1 and TH precoding under

all tested INR and SNR, where TH precoding performs the

worst among all settings. Besides, when SNR≥ 6dB, Scheme

2 achieves a rate that is close to the capacity under all tested

INR, which varies from 5 to 20dB, and when SNR< 6dB,
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Fig. 2. Compare the achievable rate of Costa’s coding and the proposed
precoding schemes in the DPC in (3).

R2 decrease when INR increase. Notably, at high SNR, all

precoding schemes in the simulation tends to approximate

the capacity upper bound C(A, σ), which characterizes the

capacity of the DPC in (3) at high SNR. Also, the close-to-

capacity performance when SNR≥ 6dB shows the promising

efficiency of Scheme 2 when adopted in the DPC-based

broadcasting, as shown in the next simulation.

B. New Inner Bound of the Two-User Peak-Constrained Gaus-

sian BC

For the two-user BC in (1), we adopt Scheme 2, the DPC-

based transmission scheme, to obtain a new inner bound (IB)

for the BC. Two baseline IBs obtained in [9] are compared

with the new inner bound, one beseline IB is based on a

truncated Gaussian (TG) distribution and have been shown to

be tight at high SNR1, and the other baseline IB is based on

an entropy-maximizing discrete (EMD) distribution and super-

position coding, where we set the alphabet size K1,K2 ≤ 40
in [9, Theorem 3]. We also adopts the outer bound (OB) from

[9], which is combined with two other straightforward OBs:

Ri ≤ C(P, σi) and R1 + R2 ≤ C(P, σ1). In this simulation, we

are interested in a moderate SNR1, such as 20 dB, which is

more practical and the computation complexity to obtain the

IB of Scheme 2 is not too high. In the simulation, we adopts

the reference grid spacing, ∆0, to generate an evenly-spaced

alphabet for constructing the codes, and we vary ∆0 within

[0.5σ1, 4σ1] with a step size of 0.5σ1 to cover more settings.

In details, for each ∆0, we first obtain K = min
{

2, ⌈ P

∆0
⌉
}

,

then we go through all possible K1 within the range [1,K].
Let ∆ = P

K−1 . For each K1, let T ∼ ESDU
(

(K1 − 1)∆,K1

)

and construct S ⊆ GP−(K1−1)∆,K−K1+1, which results in

X + S ≤ P, and let S ∼ Unif(S). Note that, each (K,K1,S)
setting corresponds to one set of p.m.f.-s of T , W , S, and

U . Then, a achievable rate pair, (R1, R2), can be numerically

obtained through (2). Finally, the Scheme 2 based IB is the

convex hull of the rate pairs obtained under all settings of

(K,K1,S), as described above. As shown in Fig. 3, it can be

seen that the new IB of Scheme 2 is much larger than the
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1.5
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IB-DPC, optimal ∆0

IB-DPC, ∆0 = 3σ1

Fig. 3. Inner and outer bounds of the two-user peak-constrained Gaussian
BC under SNR1 = 20 dB and σ2 = 10σ1.

IB of a TG distribution under the tested setting and performs

comparable to the second baseline IB, where SNR1 = 20dB

and σ2 = 10σ1. It also shows that ∆0 = 3σ1 leads to a

good approximation for the new inner bound under the tested

setting.

VI. CONCLUSIONS

In summary, we studied a class of peak-constrained discrete-

state DPC that arises in OWC broadcasting with discrete

signaling, and proposed two new precoding schemes to study

its capacity. The proposed schemes are shown to outperform

a baseline performance achieved by Costa’s coding and TH

precoding. Notably, one of the proposed scheme is shown

to achieve rates that are close to capacity. Then, for a two-

user OWC BC, a new inner bound is obtained based on the

developed precoding, which is shown to be comparable to the

best known inner bound that is based on discrete distributions.

As for future work, applying Scheme 2 in a peak-

constrained Gaussian BC with a vector input is our next step.

Besides, the capacity of the peak-constrained DPC under a

general-state case is open, where the proposed scheme 1 can be

a baseline. Since this paper has shown that discrete signaling

outperforms TG signaling, it will be interesting to design and

study practical discrete signaling schemes for OWC BC that

outperforms the well-accepted optical OFDM schemes, which

generates TG distributed signals.

APPENDIX A

PROOF OF THEOREM 1

Proof. For some ǫn > 0 such that limn→∞ ǫn = 0, using

Fano’s inequality, we have

nC = I(M ;Y (n)) + nǫn ≤ I(M ;Y (n), S(n)) + nǫn (13a)

= I(M ;Y (n)|S(n)) + nǫn (13b)

≤ I(M ;X(n) + Z(n)) + nǫn (13c)

≤ nC0(A, σ) + nǫn, (13d)

where C0(A, σ) denotes the capacity of a channel with input

X ∈ [0,A] and output X + Z where Z ∼ N (0, σ2), which



is also the state-free capacity of the DPC in Definition 1.

Next, we have that C0(A, σ) can be upper bounded by C(A, σ)
(defined in (4)) as shown in [8, eq. (19)] and [15, eq. (1)],

resulting in C ≤ C(A, σ). This ends the proof. �

APPENDIX B

PROOF OF THEOREM 2

Proof. In the capacity expression in the GP Theorem [1,

Theorem 7.3], let T = X+αS for some X that is continuously

distributed according to PX and independent of S. Then, we

have

C ≥ max
PX ,α

I(T ;Y )− I(T ;S) (14a)

= max
PX ,α

h(T |S)− h(T |Y ) (14b)

= max
PX ,α

h(X)− h(T |Y ) (14c)

(a)

≥ max
PX ,α,T̂ (Y )

h(X)− 1

2
log

(

2πeE
[(

T − T̂ (Y )
)2]

)

(14d)

(b)

≥ max
PX ,α

h(X)− 1

2
log

(

2πeLMMSE(T, Y )
)

(14e)

(c)
= max

PX

h(X)− 1

2
log

(2πeV[X ]σ2

V[X ] + σ2

)

(14f)

where (a) follows from [16, Theorem 8.6.6] and its corollary

which provides an upper bound for conditional differential

entropy h(T |Y ) through the mean square error (MSE) of

some optimal estimator T̂ (Y ); (b) follows by specifying the

estimator T̂ (Y ) to be an linear minimum mean square error

(LMMSE) estimator [17], which is suboptimal so that the MSE

increases, and the resulting LMMSE is

LMMSE(T, Y )

= V[T ]− E
[

(T − E[T ])(Y − E[Y ])
]

V[Y ]
(15a)

=
(1 − α)2V[X ]V[S] + σ2

V[X ] + α2σ2
V[S]

V[X ] + V[S] + σ2
; (15b)

and (c) follows by letting α = V[X]
V[X]+σ2 which minimizes the

LMMSE(T, Y ) in (15b) over α.

Finally, we specify X ∼ Unif([0,A]), so that h(X) =

log(A) and V[W ] = A
2

12 , then substitute h(X) and V[X ] into

(14f) leading to R0 as shown in (5). This ends the proof. �

APPENDIX C

PROOF OF THEOREM 3

Proof. From the equivalent channel formed by Scheme 1, we

have the following achievable rate

max
α

I(T ;Y ′) = max
α

h(Y ′)− h(Z̃ ′
α mod A∆) (16a)

(a)
= log(A∆)−min

α
h(Z̃ ′

α mod A∆) (16b)

(b)

≥ log(A∆)−min
α

h(Z̃ ′
α) (16c)

(c)

≥ log(A∆)−min
α

h
(

N (0,V[Z̃ ′
α])

)

(16d)

(d)
= R1, (16e)

where (a) follows since T + W0 ∼ Unif([0,A∆]) implies

that Y ′ ∼ Unif([0,A∆]) according to Crypto Lemma [14,

Lemma 1], (b) follows from the Modulo-Reduce-Entropy

(MRE) Lemma [18, Lemma A.3.2], (c) follows since a Gaus-

sian distribution maximizes the differential entropy under a

variance constraint, and (d) follows by solving the following

minimization problem:

α = argmin
α

V[Z̃ ′
α]

= argmin
α

{∆2

12
+

(α− 1)2A(A+ 2∆)

12
+ α2σ2

}

=
A
2 + 2A∆

A2 + 2A∆+ 12σ2
, (17)

where R1 is defined in (8). This ends the proof. �
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