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Abstract—This paper presents a self-optimizing solution for Mobility Load Balancing (MLB). The MLB-SON is 
performed in two phases. In the first, a MLB controller is designed using Multi-Objective Particle Swarm 
Optimization (MO-PSO) which incorporates a priori expert knowledge to considerably reduce the search space and 
optimization time. The dynamicity of the optimization phase is addressed. In the second phase, the controller is 
pushed into the base stations to implement the MLB SON. The method is applied to dynamically adapt Handover 
Margin parameters of a large scale LTE network in order to balance traffic of the network eNodeBs. Numerical 
results illustrate the benefits of the proposed solution.   

Keywords—Mobility Load Balancing; SON; Self-Organizing Networks; handover margin; LTE; Particle Swarm 
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I.  INTRODUCTION 

The Self-Organizing Network (SON) technology has been receiving a growing interest for two main reasons. 
The Radio Access Networks (RAN) landscape is becoming increasingly complex and heterogeneous with co-
existing and co-operating technologies. In parallel, network operators experience growing pressure to reduce 
operational expenditure (OPEX). The SON technology has been introduced as a means to manage complexity, to 
reduce cost of operation, and to enhance performance and profitability of the network. Self-organizing networks 
aim at autonomously configure newly deployed network nodes (self-configuration), tune parameters to improve 
Key Performance Indicators (KPIs) (self-optimization) and perform diagnostic and reparation of faulty network 
nodes (self-healing) [1].  

Self-optimization mechanisms are control loops that can be deployed in the management- or the control-plane. 
Control plane SON can be implemented in the eNodeBs (eNB) and benefit from high reactivity to traffic 
variations. For this reason, these SON solutions are sometime denoted on-line SON. On the other hand, 
management-plane (or off-line) SON solutions are deployed in the Network Management System (NMS), and are 
interfaced to the operator Operation and Maintenance Center (OMC) by means of APIs. Off-line SON solutions 
benefit from abundant data (metrics and KPIs) and computational means necessary for processing and running 
powerful optimization methods. The main drawback of the centralized approach is related to the long time scale 
that is typically used, in the order of an hour and more.  

Mobility Load Balancing (MLB) aims at balancing network load by adapting mobility parameters. MLB has 
been mainly studied in the context of control-plane SON [4-6], and only a few contributions have addressed the 
management-plane MLB problem [7]. The aim of this paper is to study a hybrid approach for MLB SON that is 
performed in two phases. In the first, expert knowledge is combined with the Multi-Objective Particle Swarm 
Optimization (MO-PSO). The former allows to derive a parameterized form of the SON function (or the 
controller) which is then optimized by the MO-PSO in the management-plane. In the second phase, the controller 
is pushed into the control-plane, e.g. within eNBs, for on-line implementation. The advantage of such a solution is 
that it benefits from both computation resources available at the management-plane, and from high reactivity 
when implemented in the control-plane. It is noted that a two phase approach for self-optimization load balancing 
has been considered in the framework of Fuzzy Q-Learning (FQL) [8-9]. This approach can be viewed as a fully 
control-plane approach, where both learning and control (exploration and exploitation in the learning 
nomenclature) are performed on-line. It is noted that a hybrid learning approach could also be implemented. The 
utilization of expert (or a priori) knowledge has also an equivalence in the Reinforcement Learning (RL), namely 
the definition of a parameterized form of a policy which is then optimized during the learning process (e.g. Policy 
Gradient RL [10]).  



The paper is organized as follows: Section II introduces the system model. Section III presents the 
optimization approach for the static and dynamic cases, including the formulation of the MO-PSO, and the 
incorporation of expert knowledge to the solution. Simulation results for the MLB SON are presented in Section 
IV followed by concluding remarks in Section V. 

II. SYSTEM MODEL 

This section describes the LTE interference and Signal-to-Interference-plus-Noise Ratio (SINR) model used 
in this work. Similar modelling has been used in other contributions (see for example [5]). 

A.  Interference and SINR model  

Let Ik,m denote the average downlink interference perceived by a mobile m connected to eNB k. The 
interference is generated by neighbouring eNBs utilizing the same frequency. The probability of eNB i to 
transmit on the same sub-carrier utilised by eNB k is equal to the load of eNB i, Li, defined as the ratio of the 
number of used Physical Resource Blocks (PRBs) to the total number of available PRBs. Ik,m can then be written 
as [5]: 
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where Λ stands for the interference matrix and the matrix element Λ(k,i) equals one if cells k and i utilize the 
same frequency band and zero otherwise; Pi denotes the downlink transmitted power per sub-carrier of eNB i; 
Gi,m and Qi,m are the antenna gain and the path loss between eNB i and the mobile m, respectively. It is noted 
that for data services, when there is a single mobile in a cell, certain technological implementations allow to 
allocate the entire eNB frequency bandwidth (i.e. all available PRBs) to the mobile. In this case Pi is the 
maximum eNB power and Li - the proportion of transmission time. The SINR of mobile m attached to eNB k is 
derived from (1) as follows [5]: 
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Nth being the thermal noise per sub-carrier. The adaptive modulation and coding scheme is determined from the 
SINR value through the perceived BLoc Error Rate (BLER). In the network simulator, the throughput per PRB 
for each user is determined as a function of the SINR via link level curves. It is assumed here that the user 
physical throughput equals Nm times the throughput per PRB, where Nm is the number of PRBs allocated to user 
m. 
 
B. Handover model 

3GPP standard has specified hard handover for mobility in the LTE network however the implementation of 
the handover algorithm is not specified in the standard. A GSM-like hard handover algorithm is proposed. A 
handover condition on the trasmitted pilot power is defined as: 
 

 ( ) Hysteresisi,kHMPP ki +≥−  (3) 

 
and i (in dB) respectively and HM(k,i) is the Handover Margin (HM) between eNB k and i. Hysteresis is a 
counter-measure that prevents ping-pong effect by providing a baseline handover threshold against power 
fluctuations due to channel variations. For the sake of simplicity, Hysteresis is set to zero and the baseline 
threshold value is integrated into HM(k,i). In addition to (3), the following two conditions should be verified: 
� The received power from the target eNB should be higher than a predefined threshold, and 
� Enough resources should be available in the target eNB. 

 

III.  HANDOVER OPTIMIZATION  

A. Expert knowledge 

Expert knowledge refers to a priori knowledge on the optimization problem. It gives rough information (or 
tendency) on the type of parameter modification that will improve the system performance in different states of 
the system. Expert knowledge can be used to guide the optimization process and to reduce the search space. It is 
typically given in the form of a set of rules that relates qualitatively the system state to the parameter x. The 



system state is defined by a vector ( )mu,,uu L
r

1=  of system indicators such as eNB load or interference, and 

often does not give direct information on the user perceived QoS.  

As an example, assume that HM(i,j) depends on the load of station i, Li, and that of its neighbor j, Lj. Denote 
by HM0 the planning (or default) value used in the network planning process. Then the expert knowledge can be 
given in the form of the following four rules: 

(i) If LowisLi  and LowisL j  then ( ) 0HMtoj,iHMset  

(ii ) If HighisLi and HighisL j  then ( ) 0HMtoj,iHMset  

(iii ) If LowisLi and HighisL j then ( ) valuehightoj,iHMset  

(iv) If HighisLi and LowisL j then ( ) valuelowtoj,iHMset  

 

Rules (i) and (ii ) prevent unnecessary handovers (ping-pong effects). Rule (iii ) aims at helping the loaded 
eNB j by delaying handovers from eNB i. Rule (iv) aims at alleviating the loaded eNB i by advancing handovers 
towards eNB j.  

In the general case, the parameter x is a function of the vectoru
r

. For example the parameter x stands for the 
Handover Margin (HM), and the vector u

r
 – for the load vector (Li,Lj) (Figure 1). We write x as ( )usurfx

r
=  

where surf stands for a multi-dimensional surface (i.e. the control function). Experience in HM optimization 
shows that the parameter function x varies smoothly withu

r
. The expert knowledge given by a set of rules is used 

to guess a simple form for the function surf. Our aim is to find a parametric representation of surf, namely to 
write it as a function of a parameter vectorp

r
, ( )mp,pp L
r

1=  with a few elements: 

 ( )p;usurfx
rr

=  (4) 

Hence the form of the function surf is fully defined by the vector p
r

 that is determined via an optimization 

process. The function surf is denoted hereafter as the parameterization surface.  
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Fig. 1. Polynomial parameterization surface of HM in the form of a linear interpolation of the extreme points:  

HM(0,0), HM(1,0), HM(0,1) and HM(1,1), as a function of the loads of two neighboring eNBs. 
 

B. Multi-objective optimization model 

Denote by ( ) ( ) ( )( )xf,...,xfxF n1=
r

 the objective function to be optimized where ( )xfi  represents a KPI 

which depends on the parameter x. It is recalled that the parameter x has a parametric representation given by 

(4), hence F
r

can be written as a function ofp
r

. The element pi is defined within an interval [ maximini p,p ]. The 

optimization problem is a constraint multi-objective optimization problem and is written as follows:  
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Pareto optimal solutions are sought. A solution is Pareto optimal if the objective vector cannot be improved in 
any dimension without degradation in another dimension. The solution x dominates the solution x' if and only if  
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A solution is said to be non-dominated if there exists no solution that dominates it. The set of non-dominated 
solutions within the entire search space constitute the Pareto optimal front. 

C. HM Parameterization Surfaces 

This section is devoted to the construction of two parameterization surfaces for the HM parameter. According to 
(4) we can write:  

 ( ) ( )p;Lsurfj,iHM HM
rr

=  (7) 

 

where ( )ji LLL ,=
r

, Li and Lj being the load of eNB i and of its neighbor j respectively. According to the expert 

knowledge and the four rules presented in Section III.A (see Fig. 1), we define the function surf via a linear 
interpolation of the four extreme points: HM(0,0), HM(1,0), HM(0,1) and HM(1,1). It is noted that HM(0,0) and 
HM(1,1) can be chosen as the planning value HM0 or as a value belonging to a small interval around HM0:  
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Eq. (8) has the form of a polynomial in the loads Li and Lj: 

 
( ) jijiHM LLbLbLbbp;Lsurf 3210 +++=

rr

 (9) 

with ( )3210 b,b,b,bp =
r

. Figure 1 shows an example of the function ( )p;LsurfHM
rr

. The vector p
r

 is determined 

via an optimization process.  

With the aim of further improving the solution for the HM, an exponential parameterization surface is 
investigated. This solution accentuates pushing (delaying) mobiles to make handovers for high (absolute value) 
load differences |Li-Lj| between neighboring cells. The exponential type of variation for surfHM as a function of 
the load difference w, ji LLw −= , and is written as: 
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where ( )b,a,ap 21=
r

. A 3D plot of surfHM in (10) with b=6, a1=20 and a2=20 is depicted in Figure 2. Results 

obtained using the optimized polynomial and exponential surfaces are presented in Section IV. 

D. Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) method is used here to optimize the parameter vector p
r

 that 

defines the parameterization surface. The PSO method is a robust technique belonging to the category of Swarm 
Intelligence methods which is inspired by the social behaviour of flocking organisms [2-3]. It utilizes a 
population of particles, each of which represents a solution, namely a parameter vector defining the 
parameterization surface. In the PSO notation, the position of a particle i, ip

r
 stands for the parameter we seek to 



optimize (i.e. the parameter vector defining the parameterization surface in the present work). The particles 
probe regions in the solution space in a partially random way. The exploration of a particle is described in terms 
of a velocity iv

r
, which is added to the current position to bring the particle to its next position. Hence the 

velocity stands for the update brought to a current solution. The velocity of a particle comprises three 
components which depend on its past best position, iq

r
, on the past best position of its neighbours, ig

r
, and on its 

own (current) velocity (Figure 2). 
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Fig. 2. Exponential parameterization surface for HM. 
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 Fig. 3. Update of a particle position in the solution space. 
 

The optimization process is carried out as an optimization loop. At each iteration, the particles evolve using 
the following update equation applied to each dimension (element) d of the particle: 
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where rand(.) denotes the random function. It has been shown that c1 and cmax can be derived analytically from a 
single parameter ϕ [11], which has been set to 4.14 here. The problem at hand is multi-objective, with two 

objectives to be optimized,( ) ( ) ( )( )iii pf,pfpF
rrrr

21= : the network throughput and the access probability defined as 

the ratio between the number of successful network access attempts to the total number of network access 

attempts. For each new solution (particle) the network is simulated and ( )ipF
rr

 is evaluated. In this work, the 

swarm dimension, namely the population size equals 10. The set of neighbors for each particle comprises 3 
different particles chosen at random (a particle cannot serve as its own neighbor). Hence the vector ( )ikg

r
 

comprises 3 particles.  



The pseudo code for the multi-objective PSO algorithm is given below: 

Initialization 
For 1=i  to Population Size 
 Initialize randomly ii q,p

rr
, and list  

 of neighbours of ip
r
: ( )ikg

r
, { }321 ,,k ∈ ; 

End  
Repeat for maxN  iterations 

For 1=i  to Population Size 

1. If ( ) ( )ii qFpF
rr

f
rr

then ii pq
rr

=  

2. ( )ik
k

i gmaxg
rr

=  

3. For each dimension, update d
ip  using equation (11) 

End 
 
The term 'f ' determines the multi-objective characteristic of the algorithm. We say that the particle ip

r
 is 

better than jp
r

, i.e. ( ) ( )ji pFpF
rr

f
rr

, if the following condition is satisfied 
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The condition (12) states that the solution ip
r

is better than jp
r

 if at least one of its objectives, f1 or f2, is 

strictly bigger whereas for the other objective, the relation '≥ ' holds. In step 2 of the PSO algorithm, the 
maximum is calculated with respect to the operator f  defined in (12). If more than one non-dominated solution 
is found in a neighbouring set, i.e. for which the relation (12) is not verified, the first non-dominated solution 
encountered is chosen. This last simplification allows to use the multi-objective version of the PSO algorithm 
written above, which is simpler than the ones described in [12].  

E. Dynamic optimization 

The optimization framework presented above can be directly extended to perform dynamic optimization of 
the HM parameter, HM(i,j), written hereafter as HMij. In the dynamic optimization, HMij becomes a function of 
time:  

 ( ) ( )( )p;tLsurftHM HMij
rr

=  (13) 

and is updated every ∆t seconds (set here to 5 sec.) according to the load values that are used to sample surfHM. 

Each solution for the surface );)(( ptLsurfHM
rr

is evaluated as in the static optimization case, during a simulation 

period of 2000 (simulator) seconds, required to achieve convergence of the optimization objectives.  

It is noted that the small dimension of the search space considered here allows to use the simple version of the 
PSO described in Section III.D in a dynamic context. For a bigger search space, more sophisticated "dynamic 
PSO" algorithms may be necessary with slower convergence properties [13]. 

 

IV.  RESULTS 

Consider a LTE network composed of 45 eNBs in a dense urban environment (see Figure 4). A semi-
dynamic simulator is used to simulate the LTE network in the downlink. The simulator performs correlated 
Monte Carlo snapshots with a time resolution of a second to account for the time evolution of the network. FTP 
data traffic is considered. The principles of a semi-dynamic simulator are described in [14]. The Okumura-Hata 
propagation model is used for the 2GHz band. The path loss at a reference distance of 1 km and the path loss 
exponent are chosen as -128 dB and 3.76 respectively. Shadowing is modeled as a log-normal random variable 
with a 6 dB standard deviation. The spectrum efficiency depends on the SINR and on the Adaptive Modulation 
and Coding scheme used. The mapping between the SINR and the corresponding spectral efficiency is carried 
out using a quality table incorporated within the simulator. Fast fading is implicitly taken into account by the 
quality table.  



Each eNB has 15 PRBs, corresponding to a 3 MHz bandwidth allocation. A frequency reuse factor of 3 is 
used. FTP calls are generated using a Poisson process of parameter 5=λ arrivals per second. The arrivals are 
uniformly distributed within the network area. The non-uniform eNBs' positions results in highly non-uniform 
load distribution as can be seen from the histogram of Figure 6b. Each user is allocated between one and four 
PRBs to download a file of 10 Mbits. The duration of a communication depends on the allocated resources and on 
the user spectral efficiency (or throughput). The simulation parameters are summarized in Table I.  

The HM parameterization surface is optimized using the multi-objective PSO algorithm described in Section 
III.D. Each particle (solution) corresponds to a distinct parameterization surface and is defined by the parameter 
vectorp

r
 defined in Section III.C for the polynomial and the exponential surfaces. Two objectives are used to 

guide the PSO optimization: the total throughput of all eNBs in the network averaged over the simulation 
period, Throughput, and the probability of accessing the network, Paccess. For each particle the network is 
simulated during a period of Tsimu= 2000 (simulator) seconds to allow Throughput and Paccess indicators to 
converge. The PSO algorithm uses a population size of 10 particles and is repeated 30=maxN  iterations, 

namely 300 fitness (solution) evaluations are performed. Both static (eq. (7)) and dynamic (eq. (13)) 
optimization are performed. In the static optimization, the loads used to sample the optimization surface are 
considered fixed during the entire optimization process. These load values are the average loads calculated from 
a single simulation of the network with the planning HM value, 60 =HM dB.  

TABLE I.  SIMULATION PARAMETERS. 

Parameter Setting 
System bandwidth 3MHz 
Frequency reuse scheme 
Cell layout 

3 
45 eNBs, sectorized 

Inter-site distance 1.5 to 2 km 
PRB per eNB 
PRB assigned per mobile 
PRB transmit power 

15 
1 to 4 (first-come first-serve basis) 
32 dBm 

Thermal noise density  
Traffic type 

-174 dBm/Hz  
FTP 

File size 10 Mbits 
Path Loss 128 + 37.6 log10 (R), R in km 
Shadowing standard deviation 6 dB 
Mobility 
Speed 

40% of users are mobile 
30 km/h 

 

 
 
 Fig. 4. A LTE network with 45 eNBs . 

 

Figure 5 presents the MO-PSO results in the Paccess–Throughput plane for both static and dynamic 
optimization. The solution corresponding to the planning HM0 value (denoted hereafter as the planning solution) 



is plotted using a yellow circle. The first Pareto front in red triangles corresponds to the static optimization with 
the polynomial parameterization surface function (9). The results for the Pareto front using the exponential 
parameterization surface (10) are shown with blue squares in the Figure. The parameter b in (10) is fixed to the 
planning value of 6 dB and the parameters a1 and a2 are optimized by the PSO. The Pareto-front for the 
exponential solution clearly dominates that of the polynomial solution. The results for the dynamic optimization 
using the exponential parameterization surface (13) are depicted in green diamond in Figure 6. Each eNB adapts 
the HMij parameters every five seconds by sampling the exponential parameterization surface at the 
corresponding load values Li and Lj. One can see that dynamic optimization produces a better controller than the 
static optimization, and the performance gain using (13) improves the throughput and access probability by a 
few percent with respect to the planning solution.  
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Fig. 5. Pareto-front solutions for constant optimization with polynomial (triangles) and exponential (squares) parameterization surfaces, and 
for the dynamic optimization using the exponential surface (diamonds) in the Paccess–Throughput plane. The planning solution with HM0 of 6 

dB is plotted using a circle. 
 

Denote the neighbor with which the eNB has the largest handover traffic exchange as the best neighbour. 
Figure 6a presents a histogram of HMij of the eNBs and their corresponding best neighbours for a solution on 
the Pareto front for the polynomial parameterization surface in Figure 5. One can see that the optimization 
spreads the histogram to both low and high values. The optimized solution has many eNBs with low HMij values 
(i.e. smaller than HM0) allowing to advance the handovers. Several eNBs see their HMij  increase above 7 dB 
resulting in the delay of handovers towards loaded eNBs.  The load histogram for the planning solution with 
HM0=6 dB (white) and for the same optimized solution is depicted in Figure 6b. One can see that the MO-PSO 
reduces the number of eNBs with very high/low loads. 
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Fig. 6. HM histogram for a solution on the Pareto front for the polynomial parameterization surface (a), and the corresponding load 
histogram for the planning (white) and an optimized (black) solutions (b). 

 

V. CONCLUSIONS 

This paper has presented an efficient methodology for designing MLB SON controller. The method 
combines a priori expert knowledge with Multi-Objective Particle Swarm Optimization (MO-PSO), which 
allows to considerable reduce the search space and the computational time required for designing the MLB SON 
controller. The a priory knowledge provides the parameterized form of the controller which is optimized by the 
MO-PSO. It has been shown that dynamic optimization outperforms static optimization, namely produces better 
MLB-SON controller, which improve the throughput and access probability by a few percent with respect to the 



planning solution.  
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