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Abstract—This paper presents a self-optimizing solution foMobility Load Balancing (MLB). The MLB-SON is
performed in two phases. In the first, a MLB contrdler is designed using Multi-Objective Particle Swamn
Optimization (MO-PSO) which incorporates a priori expert knowledge to considerably reduce the seardpace and
optimization time. The dynamicity of the optimization phase is addressed. In the second phase, the tcolfer is
pushed into the base stations to implement the MLB @GN. The method is applied to dynamically adapt Handver
Margin parameters of a large scale LTE network in orde to balance traffic of the network eNodeBs. Numendal
results illustrate the benefits of the proposed sotion.
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l. INTRODUCTION

The Self-Organizing Network (SON) technology hasrbeeceiving a growing interest for two main reason
The Radio Access Networks (RAN) landscape is beegrmcreasingly complex and heterogeneous with co-
existing and co-operating technologies. In paraleitwork operators experience growing pressureedace
operational expenditure (OPEX). The SON technology been introduced as a means to manage complexity
reduce cost of operation, and to enhance perforenand profitability of the network. Self-organizingtworks
aim at autonomously configure newly deployed nekwasdes (self-configuration), tune parameters tprove
Key Performance Indicators (KPIs) (self-optimiza)i@nd perform diagnostic and reparation of fankgwork
nodes (self-healing) [1].

Self-optimization mechanisms are control loops tiaat be deployed in the management- or the coplaole.
Control plane SON can be implemented in the eNod@BiB) and benefit from high reactivity to traffic
variations. For this reason, these SON solutiores sometime denotedn-line SON On the other hand,
management-plane (off-line) SON solutions are deployed in the Network Manag@n®ystem (NMS), and are
interfaced to the operator Operation and Mainteedenter (OMC) by means of APIs. Off-line SON siolu
benefit from abundant data (metrics and KPIs) amtiputational means necessary for processing andngin
powerful optimization methods. The main drawbackhef centralized approach is related to the lomg tscale
that is typically used, in the order of an hour amute.

Mobility Load Balancing (MLB) aims at balancing meirk load by adapting mobility parameters. MLB has
been mainly studied in the context of control-pl&®@N [4-6], and only a few contributions have addesl the
management-plane MLB problem [7]. The aim of thapgr is to study a hybrid approach for MLB SON tkat
performed in two phases. In the first, expert kremgle is combined with the Multi-Objective Parti€evarm
Optimization (MO-PSO). The former allows to derigeparameterized form of the SON function (or the
controller) which is then optimized by the MO-P3Cthe management-plane. In the second phase, mitwlber
is pushed into the control-plane, e.g. within eNBson-line implementation. The advantage of sadolution is
that it benefits from both computation resourceailasle at the management-plane, and from hightixégc
when implemented in the control-plane. It is ndteat a two phase approach for self-optimizatiom lbalancing
has been considered in the framework of Fuzzy Q#ie@ (FQL) [8-9]. This approach can be viewed dslly
control-plane approach, where both learning andtrobnexploration and exploitation in the learning
nomenclature) are performed on-line. It is notext thhybrid learning approach could also be implgetw The
utilization of expert (om priori) knowledge has also an equivalence in the Reiefoent Learning (RL), namely
the definition of a parameterized form of a poldyich is then optimized during the learning proogsg. Policy
Gradient RL [10]).



The paper is organized as follows: Section Il idtrces the system model. Section Il presents the
optimization approach for the static and dynamisesa including the formulation of the MO-PSO, ahd t
incorporation of expert knowledge to the solutiSimulation results for the MLB SON are presente®@éttion
IV followed by concluding remarks in Section V.

Il.  SYSTEM MODEL

This section describes the LTE interference and&itp-Interference-plus-Noise Ratio (SINR) modséd
in this work. Similar modelling has been used ineotcontributions (see for example [5]).

A. Interference and SINR model

Let I, m denote the average downlink interference percelygda mobilem connected to eNE. The
interference is generated by neighbouring eNBszintd the same frequency. The probability of eNBo
transmit on the same sub-carrier utilised by éNiB equal to the load of eNBL,, defined as the ratio of the
number of used Physical Resource Blocks (PRBd)addtal number of available PRBgg can then be written
as [5]:
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where /1 stands for the interference matrix and the matlement/(k,i) equals one if cellk andi utilize the
same frequency band and zero otherwisalenotes the downlink transmitted power per subieraof eNBi;
Gim andQ, , are the antenna gain and the path loss betweeni @NB the mobilen, respectively. It is noted
that for data services, when there is a single kadhia cell, certain technological implementati@®w to
allocate the entire eNB frequency bandwidth (il.amailable PRBs) to the mobile. In this caBgis the
maximum eNB power anb, - the proportion of transmission time. The SINRnafbile m attached to eNR is
derived from (1) as follows [5]:
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Ni, being the thermal noise per sub-carrier. The adaptodulation and coding scheme is determined fitwen
SINR value through the perceived BLoc Error RateER). In the network simulator, the throughput per PRB
for each user is determined as a function of théRSVia link level curves. It is assumed here tleg user
physical throughput equald;, times the throughput per PRB, whédgis the number of PRBs allocated to user
m.

B. Handover model

3GPP standard has specified hard handover for ityolmilthe LTE network however the implementatidn o
the handover algorithm is not specified in the dtad. A GSM-like hard handover algorithm is propbséa
handover condition on the trasmitted pilot powedté§ined as:

R -R =HM (k,i)+ Hysteresis (3)

andi (in dB) respectively andHM(k,i) is the Handover Margin (HM) between eNBandi. Hysteresis is a
counter-measure that prevents ping-pong effect toyiging a baseline handover threshold against powe
fluctuations due to channel variations. For theesak simplicity, Hysteresisis set to zero and the baseline
threshold value is integrated inttM(k,i). In addition to (3), the following two conditiostiould be verified:

= The received power from the target eNB should bédr than a predefined threshold, and

= Enough resources should be available in the taig8t

I1l.  HANDOVER OPTIMIZATION

A. Expert knowledge

Expert knowledge refers @ priori knowledge on the optimization problem. It givesigh information (or
tendency) on the type of parameter modification Wi#l improve the system performance in differastates of
the system. Expert knowledge can be used to ghmleptimization process and to reduce the seamtesiit is
typically given in the form of a set of rules thafates qualitatively the system state to the patanx. The



system state is defined by a vecibr (q ,um) of system indicators such as eNB load or interfeee and
often does not give direct information on the ysenceived QoS.
As an example, assume th#i¥(i,j) depends on the load of statigr;, and that of its neighbgr L;. Denote

by HM, the planning (or default) value used in the neknmlanning process. Then the expert knowledge ean b
given in the form of the following four rules:

[0) If (L is Low) and<Lj is Low> then(setHM(i,j)to HMg)
(i)  If (L is High) and<LJ- is High> then(setHM (i, )to HM o)
(i) 1 (L is Low) and<Lj is High> then (setHM (i, j)to highvalué)

(v)  If(L is High) and<L is Low> then (setHM (i, j) tolowvalué

Rules () and (i) prevent unnecessary handovers (ping-pong effeRtde (ii) aims at helping the loaded
eNBj by delaying handovers from eNBRule {v) aims at alleviating the loaded eNBy advancing handovers

towards eNHB.

In the general case, the paramet& a function of the vectar. For example the parameteistands for the
Handover Margin (HM), and the vectar — for the load vectorl{L;) (Figure 1). We writex as x = surf(ﬂ)
where surf stands for a multi-dimensional surface (i.e. tatml function). Experience in HM optimization
shows that the parameter functiomaries smoothly witki . The expert knowledge given by a set of rulessidu
to guess a simple form for the functiearf. Our aim is to find a parametric representatiorsuf, namely to
write it as a function of a parameter vegigr p = (pl pm) with a few elements:

x = surf (Gi; p) 4

Hence the form of the functiosurf is fully defined by the vectorp that is determined via an optimization
process. The functiosurfis denoted hereafter as th@rameterization surface
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Fig. 1. Polynomial parameterization surface of HM in tbenf of a linear interpolation of the extreme paints
HM(0,0),HM(1,0),HM(0,1) andHM(1,1), as a function of the loads of two neighbg@NBs.

B. Multi-objective optimization model

Denote by |E(X)=(f1(X),...,fn(X)) the objective function to be optimized Wherfe(x) represents a KPI
which depends on the paramegellt is recalled that the parametehas a parametric representation given by
(4), henceF can be written as a function pf The elemenp; is defined within an interval B min -+ Pimaxl- The
optimization problem is a constraint multi-objeetioptimization problem and is written as follows:



maximize: IE(X)=(fl(x),fz(x),..,fn(x))

. . (®)
subjectto : p; D[pimin,pimaJ; 1=1;--m

Pareto optimal solutions are sought. A solutioRaseto optimal if the objective vector cannot bgroved in
any dimension without degradation in another din@nmsThe solutiorx dominates the solutiaxi if and only if
DiD{l,...,n} , fi(x)z fi(x‘)
and (6)
0jO{1...n}| f;(x)> f;(x)

A solution is said to be non-dominated if theresexino solution that dominates it. The set of nomitiated
solutions within the entire search space constthgePareto optimal front.

C. HM Parameterization Surfaces

This section is devoted to the construction of pasameterization surfaces for tH& parameter. According to
(4) we can write:

HM (i, j)=surfuy (C; ) )

whereL = (Li L ) Li andL; being the load of eNBand of its neighboj respectively. According to the expert

knowledge and the four rules presented in SecfioA (see Fig. 1), we define the functicurf via a linear
interpolation of the four extreme pointdM(0,0), HM(1,0),HM(0,1) andHM(1,1). It is noted thatiM(0,0) and
HM(1,1) can be chosen as the planning vall# or as a value belonging to a small interval arodivt:

surfyy (I:)= HM (0,0)
+(HM (1,0)- HM (0,0)) 0

+(HM (02)- HM (00)) L ®)
+(HM (00)+ HM (11) - HM (01) - HM (10)) L 1

Eqg. (8) has the form of a polynomial in the loagandL;:
surfyy (L3 B) = o +BiL; +byL; +bsli L o

with p=(ly o b, b). Figure 1 shows an example of the functonf,yy, (I:; |5). The vectorp is determined
via an optimization process.

With the aim of further improving the solution fthe HM, an exponential parameterization surface is
investigated. This solution accentuates pushintayiteg) mobiles to make handovers for high (absollue)
load differencesl|-L;| between neighboring cells. The exponential typeasiation forsurfyy as a function of
the load differencey, w=L; -L;, and is written as:

bra(a/ow w20

surfy (w; p) = (10)
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where p=(a ,ab). A 3D plot of surfyy in (10) with b=6, 8,=20 anda,=20 is depicted in Figure 2. Results
obtained using the optimized polynomial and exptiaésurfaces are presented in Section IV.

D. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) method isdukere to optimize the parameter vectprthat
defines the parameterization surface. The PSO rdatha robust technique belonging to the categb8vearm
Intelligence methods which is inspired by the social behaviofifflocking organisms [2-3]. It utilizes a
population of particles, each of which representscdution, namely a parameter vector defining the
parameterization surface. In the PSO notationptsition of a particlé, p; stands for the parameter we seek to



optimize (i.e. the parameter vector defining theapeeterization surface in the present work). Theiges
probe regions in the solution space in a parti@hdom way. The exploration of a particle is ddseiin terms
of a velocity Vi, , which is added to the current position to brihg particle to its next position. Hence the
velocity stands for the update brought to a curreslution. The velocity of a particle comprisesetnr
components which depend on its past best positigron the past best position of its neighbouws,and on its

own (current) velocity (Figure 2).
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Fig. 2. Exponential parameterization surface for HM
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Fig. 3. Update of a particle position in the solution spac

The optimization process is carried out as an dpétion loop. At each iteration, the particles esolising
the following update equation applied to each disieam (element)l of the particle:

{vid - o+ opgerand(08){a? - p¢ )+ cmaran(on)of - ) w
pf — p +y

whererand(.) denotes the random function. It has been shtwatt, andc..can be derived analytically from a
single parametep [11], which has been set to 4.14 here. The prokdérhand is multi-objective, with two
objectives to be optimizeé,(ﬁi ) = ( fl(ﬁ ) fz(f)i )) : the network throughput and the access probaliéfined as
the ratio between the number of successful netvemdess attempts to the total number of networksscce
attempts. For each new solution (particle) the oétws simulated andf(ﬁ,) is evaluated. In this work, the
swarm dimension, namely the population size eqilsThe set of neighbors for each particle compride
different particles chosen at random (a particlanch serve as its own neighbor). Hence the veéljpg)i

comprises 3 particles.



The pseudo code for the multi-objective PSO alborits given below:

Initialization
For i=1 to Population Size
Initialize randomy 7,G,and I|ist

of neighbours of p{: (Qk)i, kD{12,3};

End

Repeat for Ny iterations
For i=1 to Population Size
1.1f F(p)-F(G) then G=p
2. g = max{gy),

3. For each di mensi on, update pid usi ng equation (11)
End

The term %' determines the multi-objective characteristithef algorithm. We say that the partigie is
better thanp; , i.e. F(p;)>- F(

i)
F(B)- Fp; ) IF (1(m) 2 1(p;) AND £() 2 £.(p, )] AND
(fl(P|)> fl(pj) OR fy(p)> fz( )

if the following condition is satisfied

(12)

The condition (12) states that the solutignis better thanr)j if at least one of its objectives, or f,, is

strictly bigger whereas for the other objectiveg ttelation =' holds. In step 2 of the PSO algorithm, the
maximum is calculated with respect to the operatodefined in (12). If more than one non-dominateltitgmn

is found in a neighbouring set, i.e. for which tiedation (12) is not verified, the first non-domied solution
encountered is chosen. This last simplificatioovwed to use the multi-objective version of the P3gbr@thm
written above, which is simpler than the ones disdrin [12].

E. Dynamic optimization

The optimization framework presented above caniteettly extended to perform dynamic optimization of
the HM parameterkIM(i,j), written hereafter ablM;. In the dynamic optimizatiorklM; becomes a function of
time:

HM;; (t) = surfpy (I:(t) : f)) (13)
and is updated ever; seconds (set here to 5 sec.) according to theVakes that are used to samplef,y.

Each solution for the surfacgurfyy, (L(t); p) is evaluated as in the static optimization casendua simulation
period of 2000 (simulator) seconds, required taehconvergence of the optimization objectives.

It is noted that the small dimension of the seagdice considered here allows to use the simpléwer§the
PSO described in Section IIl.D in a dynamic cont®&dr a bigger search space, more sophisticatedatdic
PSQ" algorithms may be necessary with slower cajarare properties [13].

IV. RESULTS

Consider a LTE network composed of 45 eNBs in asdemrban environment (see Figure 4). A semi-
dynamic simulator is used to simulate the LTE nekwio the downlink. The simulator performs correlét
Monte Carlo snapshots with a time resolution oé@osd to account for the time evolution of the reetwFTP
data traffic is considered. The principles of a isdymamic simulator are described in [14]. The OkwaiHata
propagation model is used for the 2GHz band. Thk loss at a reference distance of 1 km and thie lpas
exponent are chosen as -128 dB and 3.76 respgct®Seadowing is modeled as a log-normal randonatbei
with a 6 dB standard deviation. The spectrum edfficiy depends on the SINR and on the Adaptive Mdidula
and Coding scheme used. The mapping between the i the corresponding spectral efficiency isiedrr
out using a quality table incorporated within thedator. Fast fading is implicitly taken into aeod by the
quality table.



Each eNB has 15 PRBs, corresponding to a 3 MHzwaiditial allocation. A frequency reuse factor of 3 is
used. FTP calls are generated using a Poissongsradgparametedl =5arrivals per second. The arrivals are
uniformly distributed within the network area. Then-uniform eNBs' positions results in highly namfarm
load distribution as can be seen from the histogoéiigure 6b. Each user is allocated between owkefaur
PRBs to download a file of 10 Mbits. The duratidm@ommunication depends on the allocated resswcd on
the user spectral efficiency (or throughput). Tineusation parameters are summarized in Table |.

The HM parameterization surface is optimized ushegmulti-objective PSO algorithm described in gett
[11.D. Each particle (solution) corresponds to atidict parameterization surface and is definedheyparameter
vectorp defined in Section 111.C for the polynomial andetbxponential surfaces. Two objectives are used to
guide the PSO optimization: the total throughputaifeNBs in the network averaged over the simaoiati
period, Throughput and the probability of accessing the netwdPk,..ss FOr each particle the network is
simulated during a period dffsi,= 2000 (simulator) seconds to allolihroughputand P,..essindicators to
converge. The PSO algorithm uses a population aiz&0 particles and is repeated,,,, =30 iterations,
namely 300 fitness (solution) evaluations are peréal. Both static (eq. (7)) and dynamic (eq. (13))
optimization are performed. In the static optimiaat the loads used to sample the optimizationasarfare
considered fixed during the entire optimizationqe®s. These load values are the average loadsatattérom
a single simulation of the network with the plarqmiiM value, HM; = 6 dB.

TABLE I. SIMULATION PARAMETERS.
Parameter Setting
System bandwidth 3MHz
Frequency reuse scheme 3
Cell layout 45 eNBs, sectorized
Inter-site distance 1.5t0 2 km
PRB per eNB 15

PRB assigned per mobile
PRB transmit power

1 to 4 (first-come first-serve basis)
32 dBm

Thermal noise density -174 dBm/Hz

Traffic type FTP

File size 10 Mbits

Path Loss 128 + 37.6 lgg(R), R in km
Shadowing standard deviation 6 dB

Mobility 40% of users are mobile
Speed 30 km/h
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Fig. 4. A LTE network with 45 eNBs

Figure 5 presents the MO-PSO results in g Throughput plane for both static and dynamic
optimization. The solution corresponding to thenplagHM, value (denoted hereafter as the planning solution)



is plotted using a yellow circle. The first Parétont in red triangles corresponds to the statitnoigation with

the polynomial parameterization surface functioh (Ehe results for the Pareto front using the exmbial
parameterization surface (10) are shown with btueages in the Figure. The paramdign (10) is fixed to the
planning value of 6 dB and the parametarsand a, are optimized by the PSO. The Pareto-front for the
exponential solution clearly dominates that of plaéynomial solution. The results for the dynamidimjization
using the exponential parameterization surface §t&3epicted in green diamond in Figure 6. EadB atlapts
the HM; parameters every five seconds by sampling the rexg@l parameterization surface at the
corresponding load valués andL;. One can see that dynamic optimization produdestter controller than the
static optimization, and the performance gain ugit®) improves the throughput and access probplilit a
few percent with respect to the planning solution.
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Fig. 5. Pareto-front solutions for constant optimizatiathvpolynomial (triangles) and exponential (squaprameterization surfaces, and
for the dynamic optimization using the exponergiaiface (diamonds) in tH®..ss Throughputplane. The planning solution withiM, of 6
dB is plotted using a circle.

Denote the neighbor with which the eNB has thedardiandover traffic exchange as tiest neighbour
Figure 6a presents a histogramHti¥l; of the eNBs and their corresponding best neighbéur a solution on
the Pareto front for the polynomial parameterizatgurface in Figure 5. One can see that the opdiioiz
spreads the histogram to both low and high vallias.optimized solution has many eNBs with IBiM; values
(i.e. smaller tharHM,) allowing to advance the handovers. Several eNgstiseirHM; increase above 7 dB
resulting in the delay of handovers towards loaeldB8s. The load histogram for the planning solutiatin
HM=6 dB (white) and for the same optimized solutisrépicted in Figure 6b. One can see that the MO-PS
reduces the number of eNBs with very high/low loads
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Fig. 6. HM histogram for a solution on the Pareto fronttfte polynomial parameterization surface (a), #redcorresponding load
histogram for the planning (white) and an optimigeld.ck) solutions (b).

V. CONCLUSIONS

This paper has presented an efficient methodolagydiesigning MLB SON controller. The method
combinesa priori expert knowledge with Multi-Objective Particle Swa Optimization (MO-PSQO), which
allows to considerable reduce the search spactharcbmputational time required for designing theBVBON
controller. Thea priory knowledge provides the parameterized form of tharoller which is optimized by the
MO-PSO. It has been shown that dynamic optimizatiotperforms static optimization, namely producetes
MLB-SON controller, which improve the throughputdaaccess probability by a few percent with respethe



planning solution.
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