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Abstract—Leveraging the available millimeter wave spectrum
will be important for 5G. In this work, we investigate the
performance of digital beamforming with low resolution ADCs
based on link level simulations including channel estimation,
MIMO equalization and channel decoding. We consider the
recently agreed 3GPP NR type 1 OFDM reference signals. The
comparison shows sequential DCD outperforms MMSE-based
MIMO equalization both in terms of detection performance and
complexity. We also show that the DCD based algorithm is more
robust to channel estimation errors. In contrast to the common
believe we also show that the complexity of MMSE equalization
for a massive MIMO system is not dominated by the matrix
inversion but by the computation of the Gram matrix.

Index Terms—MIMO equalization, low resolution ADC, mil-
limeter wave, wireless communication.

I. INTRODUCTION

For future millimeter Wave (mmWave) mobile broadband

systems, analog/hybrid beamforming are considered to be a

possible solution to the excessive power consumption at the

receiver. Due to the large bandwidth, high resolution Analog-

to-Digital-Converters (ADCs) have a significant amount of

power. Therefore, they are considered to be a major contributor

to the power consumption of a mmWave receiver.

Analog/hybrid beamforming highly depend on the optimal

alignment of beams. The required beam-training/alignment has

to be implemented as a search procedure, essentially different

configuration are tested and the best one is selected [1]. Con-

sidering such a procedure for multiple UEs at the same time

can be considered to have a large overhead. A possible solution

to these type of systems is digital beamforming with low

resolution ADCs. As we showed in [2] the power consumption

of the receiver frontend of both systems is comparable. In most

cases the low resolution ADC digital beamforming is most

energy efficient. A lot of the work on low resolution ADC

digital beamforming only considers the extreme case of 1-bit

quantization for the inphase and quadrature [3], [4], [5]. As

we showed in [2] it is not clear that 1-bit quantization does

lead to the most energy efficient implementation, we consider

low resolution ADCs in general.

Many of the investigated channel estimation and detection

schemes require detailed knowledge about the structure of the

channel. For example algorithms like GAMP [3], [4] are very

sensitive to the case that their modeling assumptions are not

fully valid. Other algorithms like Expectation Maximization

(EM) require accurate knowledge about the sparsity or related

parameters [3], [4]. In a practical system, this knowledge is

hard to obtain. In addition, the systems should robust regarding

cases, where the assumptions leading to a specific algorithm

are not fully satisfied.

Many massive Multiple Input Multiple Output (MIMO)

equalization schemes consider only perfect channel estimation

[6], [7] even without channel coding. We think the propagation

of the channel estimation error inside the Multi User - Mul-

tiple Input Multiple Output (MU-MIMO) equalization is not

straight forward. Only for linear methods the influence of the

channel estimation error can be investigated theoretically [8].

This motivated us to investigate channel estimation, MIMO

equalization in combination with channel coding and low

resolution ADCs.

Therefore, we wanted to investigate the performance of

these systems without limiting assumptions on the statistics

of the channel. We also wanted to put the focus on linear,

low complexity algorithms while considering reference signals

developed for NR in 3GPP. Even so we do not consider finite

resolution calculation in this work, it is important to mention

that massive MIMO is very robust to these effects [9]. This

could further simplify the required calculation and lead to an

implementation that might even be feasible for mobile devices.

In the following sections, we introduce the used channel

estimation scheme including a description of the recently in

3GPP agreed NR Type 1 OFDM reference signals. Afterwards,

we introduce the sequential Dichotomous Coordinate Descent

(DCD) algorithm for MU-MIMO equalization. In the end,

we show a performance and computational complexity based

comparison to Minimum Mean Square Error (MMSE) MU-

MIMO detection.

II. SYSTEM MODEL

A. NR reference structure

As described in [10], the Orthogonal Frequency Domain

Multiplexing (OFDM) type 1 DeModulation Reference Signals

(DMRS) consists of a Pseudo Noise (PN) sequence defined by

parts of a length-31 Gold sequence. There are three techniques

used to orthogonalize the reference signal for different users:

• Time domain Cyclic Shift (CS)
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Fig. 1. 3GPP NR OFDM type 1 DMRS for up to 8 users.

• Frequency Division Multiplex (FDM)

• Code Division Multiplex (CDM) for the case of more

than 4 users

The resource grid in Fig. 1 shows a possible allocation of

the reference symbol Resource Elements (REs) within a slot.

Among the three ways to orthogonalize the reference signals

send by different users or for different MIMO streams, FDM

and CDM are most commonly used in many communication

systems. CS is not encountered in many current wireless

communication standards except for Long Term Evolution

(LTE) Uplink (UL), thus more detailed explanation on how

it could provide sufficient orthogonality is needed.

Since a CS of half of the OFDM symbol offers the

highest distance between two reference sequences used for

different users, only this value is foreseen in the standard.

Due to the properties of the Fourier transformation, a cyclic

shift of N/2 in the time domain corresponds to a modula-

tion of the frequency domain sequence with the sequence

c = [−1, 1,−1, 1, · · · ]T . The reference symbol sequence s

is generated as QPSK symbols with the bits defined by a

PN sequence. In this case one user sends the sequence s

and the other the time domain cyclic shifted version s ⊙ c.

Assuming perfect synchronization and the delay spread of the

channel being smaller than the Cyclic Prefix (CP), the linear

convolution with the channel is converted to a circular one.

To demodulate the DMRS, we first transform the signal

into the frequency domain. Afterwards, we multiply with the

complex conjugate of the of the used reference sequence. Since

this would correspond to a cyclic convolution in the time

domain this does still include all possible cyclic shifts and

therefore also the one from the cyclic shifted sequence. Thus,

additionally we need to apply a windowing in the time domain

to limit the interference among the original sequence and its

cyclic shift. The windowing in the time corresponds to a cyclic

convolution in the frequency domain. It will be implemented

by the spatial smoothing filters shown in the following channel

subsection. Combining this observations with the fact that s

should be designed to have a cyclic auto-correlation function

with only one strong peak and only small values otherwise, we

can conclude that a cyclic shift can sufficiently orthogonalize

TABLE I
CONFIGURATION OF NR TYPE 1 OFDM REFERENCE SIGNALS.

MIMO layer i [wi

CS(0), w
i

CS(1)] wi

FDM [wi

CDM(0), wi

CDM(1)]

1 [1, 1] 0 [1, 1]

2 [1,−1] 0 [1, 1]

3 [1, 1] 1 [1, 1]

4 [1,−1] 1 [1, 1]

5 [1, 1] 0 [1,−1]

6 [1,−1] 0 [1,−1]

7 [1, 1] 1 [1,−1]

8 [1,−1] 1 [1,−1]

the signal from different users.

In general we can describe the reference signal of ith MIMO

layer ri on sub-carrier k and OFDM symbol ℓ as

ai(k,ℓ) = αCS(i, k)αFDM(i, k)αCDM(i, ℓ)[s]⌊k/2⌋, (1)

where αCS(i, k), αFDM(i, k) and αCDM(i, ℓ) are the changes of

sequence based on CDM, FDM and CS. These parameters are

defined in the following way

αCS(i, k) = wi
CS(⌊k/2⌋ mod 2),

αFDM(i, k) =















1, k mod 2 = wi
FDM

0, otherwise

,

αCDM(i, ℓ) =















wi
CDM(0), ℓ = ℓ0

wi
CDM(1), ℓ = ℓ0 + 1

,

(2)

where ℓ0 is the first DMRS symbol with DMRS in a slot. A

table of the parameters wi
CS, wi

FDM and wi
CDM dependent on

the MIMO layer i can be found in Table I. It is important to

mention that for the case of 1 to 4 MIMO layers, no CDM

based orthogonalization is necessary,

B. Channel Estimation

Assuming perfect synchronization of the timing and carrier

frequency, the OFDM receive signal Yk,ℓ of subcarrier k and

OFDM symbol ℓ can be written as

Yk,ℓ, = Hk,ℓXk,ℓ + ηk,ℓ, (3)

where we assume that the Channel Impulse Response (CIR) is

shorter than the CP, and Hk,ℓ, Xk,ℓ and ηk,ℓ are the channel,

transmit signal and white Gaussian noise of the system,

respectively. Time-frequency filters are used to interpolate the

channel estimates between the position of the reference sym-

bols. A two times 1-D time-frequency interpolation method

based on a MMSE criteria as described in [11] is identified as

the solution with the best performance complexity trade-off.

First we use a 1-D time-frequency-space filter for smoothing of

the estimate on all subcarriers. Afterwards, we interpolate and

extrapolate the channel on all OFDM symbols. This procedure

is executed for each antenna separately. It is important to



note that this technique assumes knowledge of the following

statistical channel parameters:

• Doppler spread

• Delay spread

• Receive Signal to Noise Ratio (SNR) of each user

As we consider a MU-MIMO scenario, we need to ensure

that different users have orthogonal reference sequences. In

particular, we will assume that the training sequences are

orthogonal. As we showed in the previous subsection, this

can be ensured by the chosen design. Therefore, the following

calculation is done for each user, and thus no user index is

included to simplify the notation.

Assuming a reference symbol is present on subcarrier q
and symbol time p, we multiply the signal with the known

reference signal to obtain the corresponding channel estimate

for this symbol

Ĥp,q = Yp,qX
∗
p,q = Hp,q + ηp,q, (4)

where we assume that
∣

∣X∗
p,q

∣

∣ = 1. By combining the channel

estimates for all resource elements on K subcarriers and L
symbols we get

ĥr =
[

Ĥ1,1, Ĥ2,1, · · · , ĤK−1,L, ĤK,L

]T

. (5)

For all positions where no reference signals were sent, the

corresponding element of ĥr is set to zero. The set P contains

the indices of the reference symbols in ĥr.

Applying the matrices for interpolation and smoothing in

time At and frequency Af domain, we get the overall estimate

of the channel at each position

ĥ = Atf ĥr = (At ⊗Af ) ĥr . (6)

We choose these interpolation matrices separately for each

dimension separately to reduce the complexity. In general to

achieve the theoretical optimal performance, these interpola-

tion matrices have to be chosen according to the covariance

matrix of the channel, which might not be separable. As shown

in [11] for the time-frequency case this leads to a minimal

performance loss, but with significantly lower complexity.

In many cases the covariance is unknown, and one would

need to generate the interpolation martrices based on some

model for the covariance, whose parameters would also then

have to be estimated. It is important to mention that the

same interpolation matrix Af is used for all OFDM symbols

containing reference symbols. This means that if the reference

signal pattern in these symbols is not the same, we need to

apply different matrices for each symbol. But fortunately this

assumption holds true for the chosen 3GPP NR OFDM type

1 DMRS.

For the example in this work we assume the channel remains

constant in one subframe of 14 OFDM symbols (Doppler

spread equal to zero). Therefore, the time interpolation matrix

At consists only of a averaging among the OFDM symbols

that contain reference symbols.

The frequency interpolation and smoothing matrix Af is

based on the MMSE solution described in [11]. To generate

these matrices based on this method, we need to generate the

auto and cross correlation of the channel Rhdhd
and Rhdhℓ

.

The symbols hd and hℓ are the vector of the channel at

the position of the reference signals and the channel on all

subcarriers on OFDM symbol ℓ. In the case that we know all

these matrices, the interpolation matrix is defined as

Af = Rhdhℓ
(Rhdhd

+Rηη)
−1

, (7)

where Rηη is the noise covariance matrix. In a practical

system we could easily have hundreds of subcarriers, thus

the complexity of the matrix inversion is extreme. Even if

the values of the inversion are precomputed the following

matrix vector multiplication also has a high complexity. We

therefore limit the length of reference symbols considered for

the interpolation to KC . This does decrease the complexity

and has only a minor impact on the performance, since the

channel that have a large distance in terms of subcarriers are

close to uncorrelated.

In addition for a practical system is in many cases not pos-

sible to directly observe and estimate the covariance matrix of

the channel, especially at the position with no reference signals

present. Consequently, we use a model for the generation of

the covariance matrices. For many real world scenarios the

channel path arriving later at the receiver propagate through

a longer path, thus leading to lower energy at the receiver.

This can be well approximated by a exponential Power Delay

Profile (PDP).

Since all the elements of Rhdhℓ
and Rhdhd

represent the

cross correlation of different elements of the channel. Thus, all

elements of these matrices are defined by the cross correlation

between the channels on subcarrier i and j

E[hih
∗
j ] =

1

1− j2πτRMS∆fd(i, j)
, (8)

where τRMS is the Root Mean Square (RMS) delay spread and

d(i, j) the distance of the ith to the jth subcarrier.

III. MIMO DETECTION ALGORITHM

In this section we show how the sequential DCD with bound

is derived from a relaxation of the Most Likelyhood (ML)

MIMO equalization. The classical problem of ML detection

can be formulated as

x̂ = argmin
xn∈X

||y −Hx||
2
2 , (9)

where X is the set containing all possible transmit symbols.

The symbols x, H , y and x̂ represent the transmit symbol, the

channel, the receive symbol and the symbol after the detection

of the system. The complexity of this discrete optimization

problem grows exponentially with the dimensions of x and the

size of the set X. Thus, for higher number of spatial streams

as envisioned for massive MIMO it is not feasible to solve

this problem.

Fortunately, as the number of receive antennas grows large

with respects the number of simultaneously served users, the

MMSE solution to the relaxed optimization problem

x̂ = argminE
[

||y −Hx||
2
2

]

, (10)



Algorithm 1 Sequential DCD with bound

Require: A, b, N , H , B, Nu, Mb

Initialization: x← 0, r ← b, α← H , m← 0,

UpdateFlag ← false, k ← 0
while m < Mb do

for n ∈ {1, · · · , N} do

if α/2[A]n,n < |[r]n| then

t← [x]n + sign([r]n)α
if t ≤ B then

[x]n ← t
r ← r − sign([r]n)αan

UpdateFlag ← true, k ← k + 1
end if

end if

end for

if k ≥ Nu then

return x, r

end if

if UpdateFlag then

UpdateFlag ← false

else

m← m+ 1, α← α/2
end if

end while

return x, r

approaches the performance of the ML detection [12]. Un-

fortunately, the close form solution to this problem requires

knowledge about the noise covariance matrix. For a system

with a large number of antennas this is hard to attain.

Therefore, we choose to relax the ML detection problem

in a ways that reduces the complexity, but not making any

assumptions on the noise statistics

x̂ = argmin
ℜ(xn)∈[−B,B], ℑ(xn)∈[−B,B]

||y −Hx||
2
2 . (11)

The variable B forces the real and imaginary part of each

element of the vector x̂ to be in the range from −B to B.

In the following paragraphs we will show how to solve this

optimization problem efficiently and that we do not need to

make any assumption on the noise statistics.

This problem can be reformulated into solving the following

linear system of equations

HHHx = HHy. (12)

Thus, we can utilize a coordinate descend based method to

solve this problem. To reduce the complexity we selected the

step-size to be of the form 2−l, where l is an integer. This

has the advantage that all multiplications with this number

can be implemented as bit shifts. These algorithms are called

DCD as described in [13], [14] for multi user detection in a

Code Division Multiple Access (CDMA) system and is shown

in Algorithm 1. The parameters H , B, Nu and Mb are the

maximum step-size, the upper bound of detected symbols, the

maximum number of updates and the maximum number of

step-size divisions by 2 of the algorithm. The parameter B
should be chosen in a way to just accommodate the Quadrature

Amplitude Modulation (QAM) constellation in the scaling

before the data detection. For the case that the constellation is

not bounded this parameters can be set to a reasonable large

value or even infinity. A DFT-spread-OFDM (DFT-s-OFDM)

system is a example for a constellation that is not bounded

when the data detection is calculated in the frequency domain.

The value of H should be of the form 2−l, where l is an

integer. Since it is not useful to start with a step-size that is

larger than the final bound, H should also be smaller than

B. A good way to choose H would be H = 2⌊log2
(B)⌋. This

ensures that we start with the maximum possible step-size to

enable fast convergence. The symbols A, b and N define the

linear systems of equations

Ax = b, (13)

and the size of the vector b. The vectors x and r represent

the resulting vector and the residual error, which is updated in

every step. Since algorithm 1 solves only real linear systems

of equations A and b are related to H and y in the following

way

A =









ℜ(HHH) −ℑ(HHH)

ℑ(HHH) ℜ(HHH)









, b =









ℜ(HHy)

ℑ(HHy)









. (14)

Since we solve the equivalent real linear system of equations

the value of N is double the number of users/spatial streams

to be detected. The resulting value of x is also going to be

split between real and imaginary part in the same way as b.

A simple recombination of x leads to detected symbol.

IV. SIMULATION RESULTS

In this section we compare the performance of sequential

DCD to MMSE equalization. Since we consider system with

low resolution ADCs and channel estimation error, the noise is

in general not white. We also tested additional noise whitening

for both system, but since no performance gain was observed

at an addition computational cost, we only show results

without noise whitening. The simulation parameter in Table

II shows the most important simulation parameters. It is also

important to mention that the bounds for the sequential DCD

equalization tightly encloses the QAM constellation.

A. Performance Results

The uncoded and coded Bit Error Rate (BER) results are

shown in Fig. 2 and 3. Due to the frequency selective channel

and the 2-bit resolution ADCs, the uncoded BER does exhibits

a error floor. It is also obvious that error floor of the DCD is

lower then the one of the MMSE algorithm w/o ideal channel

estimation. As we can see from the zoomed in part around

10−2 BER, the performance of DCD is slightly more robust

to channel estimation errors. Fig. 3 shows that these results

translate well to a system with channel coding.



TABLE II
SIMULATION PARAMETERS.

Parameter Value

Reference Signal 3GPP NR OFDM type 1 DMRS

Channel Estimation 2x1D MMSE and ideal

Number of Users 8

Number of receive antennas 64

Channel model Exponential PDP (no Doppler
spreach)

SNR definition Average per user per antenna SNR

Channel code LTE turbo code with rate 0.9

MIMO detection algorithms MMSE and DCD-Bound

ADC resolution 2 bit

Modulation format 16 QAM
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Fig. 2. Uncoded BER results
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Fig. 4. Histogram of the additions require to converge.

TABLE III
COMPLEXITY PER OPERATION.

operation real addi-
tions

real multi-
plications

logic op-
erations

HHH 8128 8192 19038400

hHy 2032 2048 5521600

HHH + I 16 0 2000

(HHH + I)−1 1700 1900 4392500

(HHH + I)−1hHy 240 256 593200

Sequential DCD with
bound

2000 0 250000

B. Computational Complexity Results

Since the DCD algorithm has no multiplications we need to

compare the complexity to MMSE by mapping additions and

multiplications to logic operations. The work in [15], [16] offer

a mapping of real additions and multiplications to logic gates.

Assuming 18 bit signed fixed point calculation an addition

and a multiplication can be implemented using 125 and 2200

NAND gates with two inputs, respectively. To compare the

different algorithms, we compare this number of logic gates as

the number of logic operation required to calculate the result.

As the sequential DCD algorithm is an iterative procedure

we need to investigate the converges of it. The histogram in

Fig. 4 shows the number of addition used to process one

symbol vector for the simulation parameters presented in the

preceding paragraph. The comparisons are implemented as

a subtraction followed by checking if the sign bit is set or

not. Therefore, they are counted to have equal complexity

compared to an addition. The number of comparisons is low

compared to additions used for updating the residual vector r.

The average complexity is 1972 real additions. For simplicity

we use 2000 for the following analysis.

From the Table III it is easy to see that even just the

TABLE IV
COMPLEXITY RESULTS.

detection algorithm scenario 1 scenario 2

MMSE 29547700 109040100

Sequential DCD with bound 24810000 99840800



multiplication with the already inverted matrix is more com-

plex the solving the linear system of equations with the

Sequential DCD algorithm with bound. It is also obvious

that the complexity is dominated by the computation of the

Gram matrix (HHH). It is important to mention that for

the calculation of the Gram matrix, we already exploited the

symmetry of the resulting matrix to minimize the necessary

multiplications and additions. All other computation steps have

a much lower complexity. In this investigation, we neglected

the necessary complexity for normalization of the signal power

and the additional complexity for making the MMSE equalizer

unbiased.

To Compare the MMSE equalizer to the algorithm devel-

oped here, we compare two scenarios. In the first scenario, the

matrix computed to generate the MMSE result is calculated

separately for each sub-carrier (scenario 1). In the second

case we assume that the matrix can be reused to detect the

symbol in 14 consecutive OFDM symbols on the same sub-

carrier (scenario 2). There are few common operations to both

systems and we assume that this intermediate calculations can

be stored and reused for scenario 2. The complexity for both

algorithms are shown in Table IV. The overall computational

complexity of our approach compared to MMSE is reduced

while at the same time the performance is improved. In the

first scenario the improvement is about 16% in the second it

is in the range of 10%.

V. CONCLUSION

Our investigation showed that a bounded DCD MIMO

equalization algorithm does outperform a MMSE based equal-

ization. In addition, sequential DCD has a lower computational

complexity. But it is important to mention that in contrast

to many other papers considering the complexity for massive

MIMO we showed that the complexity is dominated by the

computation of the gram matrix and not the matrix inversion.

This evaluation shows that it is possible to achieve high data

rates with digital beamforming mmWave system with low

resolution ADCs by considering low complexity algorithms.
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